JPH0567805A - Avalanche photodiode - Google Patents

Avalanche photodiode

Info

Publication number
JPH0567805A
JPH0567805A JP3256014A JP25601491A JPH0567805A JP H0567805 A JPH0567805 A JP H0567805A JP 3256014 A JP3256014 A JP 3256014A JP 25601491 A JP25601491 A JP 25601491A JP H0567805 A JPH0567805 A JP H0567805A
Authority
JP
Japan
Prior art keywords
layer
superlattice
sheet
light absorption
superlattice multiplication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3256014A
Other languages
Japanese (ja)
Other versions
JP2893092B2 (en
Inventor
Toshiaki Kagawa
俊明 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3256014A priority Critical patent/JP2893092B2/en
Publication of JPH0567805A publication Critical patent/JPH0567805A/en
Application granted granted Critical
Publication of JP2893092B2 publication Critical patent/JP2893092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a tunnel current in a sheet dope layer between an optical absorption layer and a superlattice multiplication layer and prevent a deterioration of high-frequency characteristic by a pileup of a carrier. CONSTITUTION:In a sheet dope layer put between an In0.53Ga0.47As layer 5 of an optional absorption and an In0.52Al0.48As/In0.8Ga0.2As0.6P0.4 superlattice multiplication layer 3, an In0.8Ga0.2As0.6P0.4 layer 12 is formed on a side near to the In0.53Ga0.47As layer 5, and an In0.52Al0.48As layer 11 is formed on a side near the In0.52Al0.48As/In0.8Ga0.2As0.6P0.4 superlattice multiplication layer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信用光検出器に適用
されるアバランシェフォトダイオードに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an avalanche photodiode applied to a photodetector for optical communication.

【0002】[0002]

【従来の技術】波長が1.3μmまたは1.55μmの
光通信用のアバランシェフォトダイオード(以下APD
と称する)には、従来Ge−APDまたはInP/In
GaAsヘテロ接合型APDが用いられてきた。これら
のAPDではキャリアの倍増層としてGeまたはInP
が用いられている。
2. Description of the Related Art Avalanche photodiodes (hereinafter referred to as APDs) for optical communication having a wavelength of 1.3 μm or 1.55 μm
Ge) -APD or InP / In.
GaAs heterojunction APDs have been used. In these APDs, Ge or InP is used as a carrier multiplication layer.
Is used.

【0003】一般にAPDの増倍雑音は、増倍層に用い
る半導体固有の量である電子と正孔とのイオン化率(α
とβ)との比が1から離れるほど小さくなる。しかし、
GeやInPではこの比が1に近いため、雑音が大きい
という問題があった。これを解決するために増倍層に超
格子構造を用いることによってαまたはβの一方を大き
くし、α/βまたはβ/αの比を大きくすることが従来
より提案されている。
Generally, the multiplication noise of APD is an ionization rate (α) of electrons and holes, which is a quantity peculiar to a semiconductor used in a multiplication layer.
And the ratio of β) become smaller as the ratio deviates from 1. But,
Since Ge and InP have a ratio close to 1, there is a problem that noise is large. In order to solve this, it has been conventionally proposed to use a superlattice structure in the multiplication layer to increase one of α and β and increase the ratio of α / β or β / α.

【0004】特にInP基板と格子整合したIn0.52
0.48As/In0.53Ga0.47As層およびIn0.52
0.48As/InxGa1-xAsy1-y層は、伝導帯の不
連続が大きいためにαが大きくなり、低雑音化に有効で
あることが確かめられている。
In particular, In 0.52 A lattice-matched with the InP substrate
l 0.48 As / In 0.53 Ga 0.47 As layer and In 0.52 A
It has been confirmed that the l 0.48 As / In x Ga 1-x As y P 1-y layer has a large α due to a large discontinuity in the conduction band, and is effective in reducing noise.

【0005】このような超格子の特徴を生かして低雑音
高速なAPDを作製するためには、光吸収によって生じ
た電子と正孔とのうち、電子のみを選択的に超格子増倍
層に注入することによってアバランシェ増倍を行わなけ
ればならない。このためには、光吸収層を超格子増倍層
と分離しかつこの光吸収層をp形にしなければならな
い。また、光吸収層内でのアバランシェ降伏を制御し、
アバランシェ増幅の起こる場所を超格子領域にのみ限定
するためには、超格子増倍層と光吸収層との電界強度に
差をつけなければならない。
In order to make use of such characteristics of the superlattice to produce a low noise and high speed APD, only electrons out of electrons and holes generated by light absorption are selectively formed in the superlattice multiplication layer. Avalanche multiplication must be done by injection. For this purpose, the light absorbing layer must be separated from the superlattice multiplication layer and the light absorbing layer must be p-type. It also controls the avalanche breakdown in the light absorption layer,
In order to limit the place where avalanche amplification occurs only to the superlattice region, it is necessary to make a difference in electric field strength between the superlattice multiplication layer and the light absorption layer.

【0006】このような要求を全て満足するための構造
としては、p-−InGaAsの光吸収層と超格子増倍
層との間に高いp型不純物密度を有する薄いInGaA
s層(シートドープ層と呼ぶ)を挟む構造を既に特許出
願した(特願平1−119146号)。また、このシー
トドープ層にバンドギャップの小さいInGaAsを用
いたことにより、この層でトンネル電流が発生する場合
には、よりバンドギャップの大きなIn0.52Al0.48
s層,InP層またはInxGa1-xAsy1-y層を用い
ることのより、トンネル電流を制御することができる
(特願平3−760620号)。
As a structure for satisfying all such requirements, a thin InGaA having a high p-type impurity density between the light absorption layer of p -- InGaAs and the superlattice multiplication layer.
A patent has already been filed for a structure sandwiching an s layer (called a sheet dope layer) (Japanese Patent Application No. 1-1119146). In addition, since InGaAs having a small band gap is used for this sheet-doped layer, when a tunnel current is generated in this layer, In 0.52 Al 0.48 A having a larger band gap is used.
The tunnel current can be controlled by using the s layer, the InP layer, or the In x Ga 1-x As y P 1-y layer (Japanese Patent Application No. 3-760620).

【0007】図3はこの特許出願による素子の構造を示
したものである。同図において、1はn+−InP基
板、2はn+−InPバッファー層、3はノンドープI
0.52Al0.48As/In0.8Ga0.2As0.60.4超格
子増倍層、4は不純物密度8×1017cm-3,厚さ16
0Åのp形InP層(シートドープ層)、5は不純物密
度2×1015cm-3,厚さ2μmのp形In0.53Ga
0.47As層、6は不純物密度2×1017cm-3,厚さ5
00Åのp形In0.53Ga0.47As層、7は不純物密度
1×1018-3,厚さ1000Åのp形InP層、8は
不純物密度1×1018-3,厚さ1000Åのp形In
0.53Ga0.47As層、9はAuGeNi電極、10はA
uZnNi電極である。
FIG. 3 shows the structure of the device according to this patent application. In the figure, 1 is an n + -InP substrate, 2 is an n + -InP buffer layer, 3 is a non-doped I
n 0.52 Al 0.48 As / In 0.8 Ga 0.2 As 0.6 P 0.4 superlattice multiplication layer, 4 has an impurity density of 8 × 10 17 cm −3 and a thickness of 16
0 Å p-type InP layer (sheet dope layer), 5 has an impurity density of 2 × 10 15 cm −3 and a thickness of 2 μm p-type In 0.53 Ga
0.47 As layer, 6 has an impurity density of 2 × 10 17 cm -3 and a thickness of 5
P-type In 0.53 Ga 0.47 As layer of Å, 7 is an impurity density of 1 × 10 18 m -3, a p-type InP layer with a thickness of 1000 Å, 8 is an impurity density of 1 × 10 18 m -3, a thickness of 1000 Å p-type In
0.53 Ga 0.47 As layer, 9 is AuGeNi electrode, 10 is A
uZnNi electrode.

【0008】このような構成において、シートドープ層
としてのInP層4の中で電界が弱められ、バンドギャ
ップの小さいIn0.53Ga0.47As層4を用いた光吸収
層には小さな電界しか印加されないためにここでのトン
ネル電流の発生は抑えられる。また、InP層4の一部
(増倍層側)には高電界が印加されるが、この層のバン
ドギャップは大きいためにトンネル電流は発生しない。
In such a structure, the electric field is weakened in the InP layer 4 as the sheet dope layer, and only a small electric field is applied to the light absorption layer using the In 0.53 Ga 0.47 As layer 4 having a small band gap. In addition, the generation of tunnel current here is suppressed. A high electric field is applied to part of the InP layer 4 (on the multiplication layer side), but no tunnel current is generated because the bandgap of this layer is large.

【0009】[0009]

【発明が解決しようとする課題】図4はこのアバランシ
ェフォトダイオードのバンド構造を示したものである。
同図において、In0.52Al0.48As/In0.8Ga0.2
As0.60.4超格子増倍層3は、価電子帯の不連続はほ
ぼゼロであるために有効質量の大きな正孔もパイルアッ
プされることなく、In0.52Al0.48As/In0.8
0.2As0.60.4超格子増倍層3を通過することがで
きるが、シートドープ層にInP層4を用いた場合、シ
ートドープ層としてのInP層4とIn0.52Al0.48
s/In0.8Ga0.2As0.60.4超格子増倍層3との間
に価電子帯の不連続が存在するためにここで正孔がパイ
ルアップしていまうという問題があった。これに対して
シートドープ層にInAlAsなどの超格子増倍層との
価電子帯不連続の小さい半導体を用いた場合には、光吸
収層としてのIn0.53Ga0.47As層5との間の伝導帯
の不連続が大きくなってしまう。電子は正孔に比べて有
効質量が小さいが、光吸収層とシートドープ層との間の
界面においては、電界が弱いために電子がこの界面にパ
イルアップされる。このようなキャリアのパイルアップ
はアバランシェフォトダイオードの高周波特性を著しく
劣化させるという問題があった。
FIG. 4 shows the band structure of this avalanche photodiode.
In the figure, In 0.52 Al 0.48 As / In 0.8 Ga 0.2
Since the As 0.6 P 0.4 superlattice multiplication layer 3 has almost no valence band discontinuity, holes with large effective mass are not piled up, and In 0.52 Al 0.48 As / In 0.8 G
a 0.2 As 0.6 P 0.4 It can pass through the superlattice multiplication layer 3, but when the InP layer 4 is used as the sheet dope layer, the InP layer 4 as the sheet dope layer and the In 0.52 Al 0.48 A
Since there is a discontinuity in the valence band between the superlattice multiplication layer 3 and the s / In 0.8 Ga 0.2 As 0.6 P 0.4 superlattice multiplication layer 3, there is a problem that holes are piled up here. On the other hand, when a semiconductor having a small valence band discontinuity with the superlattice multiplication layer such as InAlAs is used for the sheet dope layer, conduction between the In 0.53 Ga 0.47 As layer 5 as a light absorption layer is used. The discontinuity of the belt becomes large. Although electrons have a smaller effective mass than holes, electrons are piled up at the interface between the light absorption layer and the sheet dope layer due to the weak electric field. Such pile-up of carriers has a problem that the high frequency characteristics of the avalanche photodiode are significantly deteriorated.

【0010】したがって本発明は、前述した従来の課題
を解決するためになされたものであり、その目的は、超
格子増倍層と光吸収層との間のシートドープ層でのトン
ネル電流をなくし、かつキャリアのパイルアップによる
高周波特性の劣化を防止したアバランシェフォトダイオ
ードを提供することにある。
Therefore, the present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to eliminate a tunnel current in a sheet-doped layer between a superlattice multiplication layer and a light absorption layer. Another object of the present invention is to provide an avalanche photodiode that prevents deterioration of high frequency characteristics due to pile-up of carriers.

【0011】[0011]

【課題を解決するための手段】このような目的を達成す
るために本発明は、光吸収層と超格子増倍層との間に挟
まれたシートドープ層に、光吸収層に近い層にInGa
AsPを配置し、超格子増倍層に近い層にInAlAs
を配置したものである。
In order to achieve such an object, the present invention provides a sheet dope layer sandwiched between a light absorption layer and a superlattice multiplication layer, and a layer close to the light absorption layer. InGa
AsP is arranged and InAlAs is formed in a layer close to the superlattice multiplication layer.
Is arranged.

【0012】[0012]

【作用】本発明においては、シートドープ層と光吸収層
との間の伝導帯の不連続およびシートドープ層と超格子
増倍層との間の価電子帯の不連続を低減させる。
In the present invention, the discontinuity of the conduction band between the sheet-doped layer and the light absorption layer and the discontinuity of the valence band between the sheet-doped layer and the superlattice multiplication layer are reduced.

【0013】[0013]

【実施例】以下、図面を用いて本発明の実施例を詳細に
説明する。図1は本発明によるアバランシェフォトダイ
オードの一実施例による構成および各層の電界強度分布
を示す図である。同図において、1はn+ −InP基
板、2はn+ −InPバッファー層、3はノンドープI
0.52Al0.48As/In0. 8Ga0.2As0.60.4超格
子増倍層、11は不純物密度8×1017cm-3,厚さ8
0Åのp形In0.52Al0.48As層、12は不純物密度
8×1017cm-3,厚さ80Åのp形In0.8Ga0.2
0.60.4層、5は不純物密度2×1015cm-3,厚さ
2μmのp形In0.53Ga0.47As層、6は不純物密度
2×1017cm-3,厚さ500Åのp形In0.53Ga
0.47As層、7は不純物密度1×1018-3,厚さ10
00Åのp形InP層、8は不純物密度1×10
18-3,厚さ1000Åのp形In0.53Ga0.47As
層、9はAuGeNi電極、10はAuZnNi電極で
ある。このうち、In0.52Al0.48As/In0.8Ga
0.2As0.60 .4超格子増倍層3の厚さは、0.52μ
mであり、In0.8Ga0.2As0.60.4井戸層の厚さは
200Å,In0.52Al0.48Asバリア層の厚さは20
0Å,超格子の周期は13である。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing a configuration and an electric field intensity distribution of each layer according to an embodiment of the avalanche photodiode according to the present invention. In the figure, 1 is an n + -InP substrate, 2 is an n + -InP buffer layer, 3 is a non-doped I
n 0.52 Al 0.48 As / In 0. 8 Ga 0.2 As 0.6 P 0.4 superlattice multiplication layer, 11 is an impurity density of 8 × 10 17 cm -3, thickness 8
0 Å p-type In 0.52 Al 0.48 As layer, 12 is p-type In 0.8 Ga 0.2 A with an impurity density of 8 × 10 17 cm -3 and a thickness of 80 Å
s 0.6 P 0.4 layer, 5 is a p-type In 0.53 Ga 0.47 As layer having an impurity density of 2 × 10 15 cm −3 and a thickness of 2 μm, and 6 is a p-type In having an impurity density of 2 × 10 17 cm −3 and a thickness of 500 Å. 0.53 Ga
0.47 As layer, 7 has an impurity density of 1 × 10 18 m −3 and a thickness of 10
00Å p-type InP layer, 8 has an impurity density of 1 × 10
18 m -3 , p-type In 0.53 Ga 0.47 As with 1000 Å thickness
Layers, 9 are AuGeNi electrodes, and 10 are AuZnNi electrodes. Of these, In 0.52 Al 0.48 As / In 0.8 Ga
0.2 As 0.6 P 0 .4 thickness of the superlattice multiplication layer 3, 0.52Myu
The thickness of the In 0.8 Ga 0.2 As 0.6 P 0.4 well layer is 200Å, and the thickness of the In 0.52 Al 0.48 As barrier layer is 20 m.
0Å, the superlattice period is 13.

【0014】図1に各層の電界強度の分布を示してお
り、In0.52Al0.48As/In0.8Ga0.2As0.6
0.4 超格子増倍層3に最も大きな電界が加わり、アバラ
ンシェ増倍はここで起きる。In0.53Ga0.47As層5
は光吸収層であり、このIn0. 53Ga0.47As光吸収層
とIn0.52Al0.48As/In0.8Ga0.2As0.60.4
超格子増倍層3との電界強度の差は、不純物密度の大き
いIn0.52Al0.48As層11およびIn0.8Ga0.2
0.60.4層12によって作られる。また、InP層7
は表面再結合を防止するための窓層である。
FIG. 1 shows the distribution of the electric field strength of each layer.
In0.52Al0.48As / In0.8Ga0.2As0.6P
0.4 The largest electric field is applied to the superlattice multiplication layer 3,
Nschier multiplication occurs here. In0.53Ga0.47As layer 5
Is a light absorption layer, and this In0. 53Ga0.47As light absorption layer
And In0.52Al0.48As / In0.8Ga0.2As0.6P0.4
The difference in electric field strength from the superlattice multiplication layer 3 is that the impurity density is large.
In0.52Al0.48As layer 11 and In0.8Ga0.2A
s0.6P0.4Made by layer 12. Also, the InP layer 7
Is a window layer for preventing surface recombination.

【0015】In0.52Al0.48As/In0.8Ga0.2
0.60.4超格子増倍層3の井戸層にInGaAsPを
用いたのは、超格子増倍層には大きな電界が印加される
ので、この部分のバンドギャップを大きくすることによ
ってトンネル効果による暗電流を抑制するためである。
In0.53Ga0.47As光吸収層5は波長1.55μmの
信号光を吸収するためにバンドギャップは小さくしなけ
ればならず、したがってIn0.53Ga0.47Asを用い
る。このため、この部分でのトンネル効果を抑制するた
めには、電界強度を1.5×105 V/cm以下にしな
ければならない。In0.52Al0.48As層11およびI
0.8Ga0.2As0.60.4層12のシートドープ層で電
界強度を低減することは、光吸収層でのアバランシェ降
伏を防止するとともにトンネル効果をも抑圧する。
In 0.52 Al 0.48 As / In 0.8 Ga 0.2 A
InGaAsP is used for the well layer of the s 0.6 P 0.4 superlattice multiplication layer 3 because a large electric field is applied to the superlattice multiplication layer, so that the bandgap in this portion is increased to increase the darkness due to the tunnel effect. This is to suppress the current.
The In 0.53 Ga 0.47 As light absorption layer 5 has to have a small band gap in order to absorb the signal light having a wavelength of 1.55 μm, and therefore In 0.53 Ga 0.47 As is used. Therefore, in order to suppress the tunnel effect in this portion, the electric field strength must be 1.5 × 10 5 V / cm or less. In 0.52 Al 0.48 As layer 11 and I
Reducing the electric field strength in the sheet-doped layer of the n 0.8 Ga 0.2 As 0.6 P 0.4 layer 12 prevents avalanche breakdown in the light absorption layer and also suppresses the tunnel effect.

【0016】一方、シートドープ層内では電界強度が急
激に変化するが、特にIn0.52Al0.48As/In0.8
Ga0.2As0.60.4超格子増倍層3に近いIn0.52
0.48As層11においては、電界強度は大きく、トン
ネル電流が発生する。これを防ぐために本発明において
は、シートドープ層にバンドギャップの大きいInAl
Asを用いた。一方、In0.8Ga0.2As0.60.4層1
2においては、既にIn0.52Al0.48As層11によっ
て電界が弱められているためにIn0.52Al0.48As層
11に比べてバンドギャップの小さい半導体を用いても
かまわない。
On the other hand, in the sheet-doped layer, the electric field strength changes abruptly. In particular, In 0.52 Al 0.48 As / In 0.8
Ga 0.2 As 0.6 P 0.4 In 0.52 A close to the superlattice multiplication layer 3
In the 0.48 As layer 11, the electric field strength is large and a tunnel current is generated. In order to prevent this, in the present invention, the sheet-doped layer is made of InAl having a large band gap.
As was used. On the other hand, In 0.8 Ga 0.2 As 0.6 P 0.4 layer 1
In 2, it may be already using smaller semiconductor band gap than the In 0.52 Al 0.48 As layer 11 to the electric field is weakened by In 0.52 Al 0.48 As layer 11.

【0017】図2に本実施例のアバランシェフォトダイ
オードのバンド構造を示す。入射した信号光は、In
0.53Ga0.47As層5で吸収されて電子正孔対を生成す
る。このうち、電子がIn0.53Ga0.47As層5内の電
界によってIn0.52Al0.48As/In0.8Ga0.2As
0.60.4超格子増倍層3の方向に掃引される。電子がI
0.52Al0.48As/In0.8Ga0.2As0.60.4超格
子増倍層3に注入されるためには、In0.52Al0.48
s層11とIn0.8Ga0.2As0.60.4層12とからな
るシートドープ層の伝導帯の不連続を越えなけれればな
らないが、図2から明かなように伝導帯の不連続は階段
状になっているために個々の不連続は極めて小さく、電
子は順次伝導帯の不連続を越えることができる。
FIG. 2 shows the band structure of the avalanche photodiode of this embodiment. The incident signal light is In
It is absorbed in the 0.53 Ga 0.47 As layer 5 to generate electron-hole pairs. Of these, electrons are In 0.52 Al 0.48 As / In 0.8 Ga 0.2 As due to the electric field in the In 0.53 Ga 0.47 As layer 5.
0.6 P 0.4 Swept in the direction of the superlattice multiplication layer 3. Electron is I
n 0.52 Al 0.48 As / In 0.8 Ga 0.2 As 0.6 P 0.4 To be injected into the superlattice multiplication layer 3, In 0.52 Al 0.48 As
The conduction band discontinuity of the sheet-doped layer composed of the s layer 11 and the In 0.8 Ga 0.2 As 0.6 P 0.4 layer 12 must be overcome, but as is clear from FIG. As a result, the individual discontinuities are extremely small, and electrons can successively cross the conduction band discontinuities.

【0018】一方、イオン化によってIn0.52Al0.48
As/In0.8Ga0.2As0.60.4超格子増倍層3内に
生成された正孔は、In0.53Ga0.47As層5に向かっ
て走る。シートドープ層とIn0.52Al0.48As/In
0.8Ga0.2As0.60.4超格子増倍層3との間には価電
子帯の不連続はないため、正孔はパイルアップされるこ
となく、シートドープ層を通過することができる。
On the other hand, by ionization, In 0.52 Al 0.48
The holes generated in the As / In 0.8 Ga 0.2 As 0.6 P 0.4 superlattice multiplication layer 3 travel toward the In 0.53 Ga 0.47 As layer 5. Sheet dope layer and In 0.52 Al 0.48 As / In
Since there is no valence band discontinuity with the 0.8 Ga 0.2 As 0.6 P 0.4 superlattice multiplication layer 3, holes can pass through the sheet-doped layer without being piled up.

【0019】なお、前述した実施例においては、シート
ドープ層にIn0.52Al0.48As層11とIn0.8Ga
0.2As0.60.4層12とを用いた場合について説明し
たが、In0.8Ga0.2As0.60.4層12においては、
In0.53Ga0.47As層よりもバンドギャップの大きい
InxGa1-xAsy1-y(0<x<1,0<y<1)層
を用いても前述と同様の効果が得られることは言うまで
もない。
In the above-described embodiment, the In 0.52 Al 0.48 As layer 11 and the In 0.8 Ga are used as the sheet dope layer.
The case where the 0.2 As 0.6 P 0.4 layer 12 and the In 0.8 Ga 0.2 As 0.6 P 0.4 layer 12 are used has been described.
Big In x Ga 1-x As y P 1-y (0 <x <1,0 <y <1) the same effects as described above even by using a layer of a band gap than an In 0.53 Ga 0.47 As layer is obtained Needless to say.

【0020】[0020]

【発明の効果】以上、説明したように本発明によるアバ
ランシェフォトダイオードにおいては、シートドープ層
でのキャリアのパイルアップがないために高周波特性を
劣化させることなく、シートドープ層でのトンネル伝導
電流の発生を抑制することができるという極めて優れた
効果が得られる。
As described above, in the avalanche photodiode according to the present invention, since there is no pile up of carriers in the sheet-doped layer, the tunnel conduction current in the sheet-doped layer is not deteriorated without deteriorating the high frequency characteristics. An extremely excellent effect that generation can be suppressed can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるアバランシェフォトダイオードの
一実施例による構成を示す断面図および各層の電界強度
分布を示す図である。
FIG. 1 is a cross-sectional view showing a configuration of an avalanche photodiode according to an embodiment of the present invention and a diagram showing electric field intensity distribution of each layer.

【図2】図1に示すアバランシェフォトダイオードのバ
ンド構造を示す図である。
FIG. 2 is a diagram showing a band structure of the avalanche photodiode shown in FIG.

【図3】従来のアバランシェフォトダイオードの構成を
示す断面図および各層の電界強度分布を示す図である。
FIG. 3 is a cross-sectional view showing a configuration of a conventional avalanche photodiode and a view showing electric field intensity distribution of each layer.

【図4】従来のアバランシェフォトダイオードのバンド
構造を示す図である。
FIG. 4 is a diagram showing a band structure of a conventional avalanche photodiode.

【符号の説明】[Explanation of symbols]

1 n+−InP基板 2 n+−InPバッファー層 3 ノンドープIn0.52Al0.48As/In0.8Ga
0.2As0.60.4超格子増倍層 5 p形In0.53Ga0.47As層 6 p形In0.53Ga0.47As層 7 p形InP層 8 p形In0.53Ga0.47As層 9 AuGeNi電極 10 AuZnNi電極 11 p形In0.52Al0.48As層 12 p形In0.8Ga0.2As0.60.4
1 n + -InP substrate 2 n + -InP buffer layer 3 Undoped In 0.52 Al 0.48 As / In 0.8 Ga
0.2 As 0.6 P 0.4 Superlattice multiplication layer 5 p-type In 0.53 Ga 0.47 As layer 6 p-type In 0.53 Ga 0.47 As layer 7 p-type InP layer 8 p-type In 0.53 Ga 0.47 As layer 9 AuGeNi electrode 10 AuZnNi electrode 11 p In 0.52 Al 0.48 As layer 12 p In 0.8 Ga 0.2 As 0.6 P 0.4 layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 InP基板と格子整合したIn0.52Al
0.48Asをバリア層としIn0.53Ga0.47AsまたはI
xGa1-xAsy1-yを井戸層とする超格子をキャリア
増倍層とし、前記超格子キャリア増倍層とは分離したp
形In0.53Ga0.47Asを光吸収層として有し、前記超
格子キャリア増倍層と光吸収層との間に、前記光吸収層
に近い層にInGaAsPを配置し、前記超格子キャリ
ア増倍層に近い層にInAlAsを配置したことを特徴
とするアバランシェフォトダイオード。
1. In 0.52 Al lattice-matched to an InP substrate
0.48 As as a barrier layer In 0.53 Ga 0.47 As or I
A superlattice having n x Ga 1-x As y P 1-y as a well layer is a carrier multiplication layer, and p is separated from the superlattice carrier multiplication layer.
In 0.53 Ga 0.47 As as a light absorption layer, InGaAsP is arranged between the superlattice carrier multiplication layer and the light absorption layer in a layer close to the light absorption layer, and the superlattice carrier multiplication layer is formed. An avalanche photodiode characterized by arranging InAlAs in a layer close to the.
JP3256014A 1991-09-09 1991-09-09 Avalanche photodiode Expired - Lifetime JP2893092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3256014A JP2893092B2 (en) 1991-09-09 1991-09-09 Avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3256014A JP2893092B2 (en) 1991-09-09 1991-09-09 Avalanche photodiode

Publications (2)

Publication Number Publication Date
JPH0567805A true JPH0567805A (en) 1993-03-19
JP2893092B2 JP2893092B2 (en) 1999-05-17

Family

ID=17286712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3256014A Expired - Lifetime JP2893092B2 (en) 1991-09-09 1991-09-09 Avalanche photodiode

Country Status (1)

Country Link
JP (1) JP2893092B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088455A (en) * 1994-06-21 1996-01-12 Nec Corp Semiconductor photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088455A (en) * 1994-06-21 1996-01-12 Nec Corp Semiconductor photodetector

Also Published As

Publication number Publication date
JP2893092B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JP2937404B2 (en) Semiconductor light receiving element
JP2934294B2 (en) Avalanche photodiode
US5539221A (en) Staircase avalanche photodiode
EP0506127B1 (en) Semiconductor photodetector using avalanche multiplication
US5338947A (en) Avalanche photodiode including a multiplication layer and a photoabsorption layer
US5432361A (en) Low noise avalanche photodiode having an avalanche multiplication layer of InAlAs/InGaAlAs
CA2341110C (en) Avalanche photodiode
US6078602A (en) Separate confinement heterostructured semiconductor laser device having high speed characteristics
JP2695112B2 (en) Avalanche photodiode with superlattice-structured amplification layer
JP4058921B2 (en) Semiconductor photo detector
JP2590817B2 (en) Photo Detector
JP2978572B2 (en) Semiconductor light receiving element
JP2893092B2 (en) Avalanche photodiode
JP2700492B2 (en) Avalanche photodiode
JP2730471B2 (en) Superlattice avalanche photodiode
JP2664960B2 (en) Avalanche photodiode
JP2670557B2 (en) Avalanche photodiode
JPH06188449A (en) Msm type photodetector
JP3018589B2 (en) Semiconductor light receiving element
JPH0265279A (en) Semiconductor photodetecting element
JPH01144687A (en) Semiconductor photodetector
JPH03291978A (en) Avalanche photodiode
JP2671555B2 (en) Superlattice avalanche photodiode
JPH0389566A (en) Superlattice avalanche photodiode
JP2754652B2 (en) Avalanche photodiode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 13