JPH0567652B2 - - Google Patents

Info

Publication number
JPH0567652B2
JPH0567652B2 JP90308568A JP30856890A JPH0567652B2 JP H0567652 B2 JPH0567652 B2 JP H0567652B2 JP 90308568 A JP90308568 A JP 90308568A JP 30856890 A JP30856890 A JP 30856890A JP H0567652 B2 JPH0567652 B2 JP H0567652B2
Authority
JP
Japan
Prior art keywords
rubber
latex
liquid
glass fibers
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP90308568A
Other languages
Japanese (ja)
Other versions
JPH03170534A (en
Inventor
Akira Kozuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP26979786A external-priority patent/JPS63126975A/en
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP2308568A priority Critical patent/JPH03170534A/en
Publication of JPH03170534A publication Critical patent/JPH03170534A/en
Publication of JPH0567652B2 publication Critical patent/JPH0567652B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Tyre Moulding (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

発明の目的 産業䞊の利甚分野 本発明はゎムベルト、タむダ等のゎム補品の補
匷甚に甚いるゎム補匷甚ガラス繊維の凊理方法䞊
びに補匷ゎム補品の補造法に関するものである。 埓来の技術 ゎムベルト、タむダ等のゎム補品の匷床を増倧
させる為、ガラス繊維ダヌン等の補匷甚ガラス繊
維が広く甚いられる。 ゎムベルト等のゎム補品は繰返し屈曲応力を受
けるため屈曲疲劎を生じお性胜が䜎䞋し、補匷材
ずゎムマトリツクスの間に剥離が生じ易い。 このような剥離或は性胜の劣化を防止し、充分
な補匷効果を埗るためには、補匷甚ガラス繊維ず
ゎムずの銎染み、接着力を倧きくする効果があ
り、このため補匷繊維衚面に凊理材が塗垃され
る。 凊理材ずしおは各皮組成のものが提案されおい
る。 䟋えばビニルピリゞン−スチレン−ブタゞ゚ン
のタヌポリマヌラテツクス及びレゟルシンずホル
マリンの氎溶性瞮合物を䜵甚した凊理剀、或はゎ
ムラテツクスを添加した凊理剀等各皮凊理剀が提
案されおいる。特開昭55−114551号参照 又ポリむ゜シアネヌト、ポリニトロン芳銙族化
合物、酞性のハロゲン含有ポリマヌを含む凊理液
も提案されおいる。特開昭49−14546号参照 しかしながらこれらの凊理液を䜿甚した凊理法
をガラス繊維に適甚した堎合、 (1) 充分な接着力が埗られない。 (2) 充分な屈曲匷床を有するゎム補品が埗難い。 等の欠点を有しおいた。 近時、自動甚の゚ンゞン付近の枩床䞊昇に䌎
い、タむミングベルト甚のゎムずしおクロロプレ
ンゎム、クロロスルフオン化ポリ゚チレン、氎玠
化ニトリルゎムのような耐熱性のゎムが䜿甚され
るようにな぀お来たが、このような耐熱性のゎ
ム、特に氎玠化ニトリルゎムは接着性が䞀般のゎ
ムに比しお小さいため䞊述の欠点は䞀般のゎムに
比し倧きくなり易く、工業的に満足すべきゎム補
匷甚ガラス繊維の凊理方法䞊びに補匷ゎム補品の
補造法は知られおいなか぀た。 䟋えば、特開昭55−114551号公報蚘茉の凊理剀
で凊理したガラス繊維は氎玠化ニトリルゎムずの
接着性が極めお小さい。 又特開昭49−14546号公報蚘茉の凊理液は、有
機繊維ずは良く接着するが、ガラス繊維ずの接着
性は極めお小さく、ポツトラむフも短い。 発明が解決しようずする問題点 本発明は埓来技術の有しおいた前述の欠点を解
消するこずを目的ずするものである。 発明の構成 問題点を解決するための手段 本発明は前述の問題点を解決すべくなされたも
のであり、ビニヌルピリゞン−スチレン−ブタゞ
゚ンのタヌポリマヌラテツクス、ゎムラテツクス
及びレゟルゞン−ホルムアルデヒドの氎溶性瞮合
物を含む第液で凊理した埌、ハロゲン含有ポリ
マヌ及びむ゜シアネヌトを含む第液で凊理する
こずを特城ずするゎム補匷甚ガラス繊維の凊理方
法䞊びにビニヌルピリゞン−スチレン−ブタゞ゚
ンのタヌポリマヌラテツクス、ゎムラテツクス及
びレゟルゞン−ホルムアルデヒドの氎溶性瞮合物
を含む第液で凊理した埌、ハロゲン含有ポリマ
ヌ及びむ゜シアネヌトを含む第液で凊理したガ
ラス繊維で氎玠化ニトリルゎムを補匷するこずを
特城ずする補匷ゎム補品の補造法を提䟛するもの
である。 次に、特蚱請求の範囲第項蚘茉の発明第
発明を曎に具䜓的に説明する。 先ず第液に就いお説明する。 ビニルピリゞン−スチレン−ブタゞ゚ンのタヌ
ポリマヌラテツクス以䞋タヌポリマヌラテツク
スず呌ぶずしおは、ビニルピリゞン、スチレン
及びブタゞ゚ンを10〜2010〜2060〜80の重量
割合で共重合させたものを䜿甚するのが特に適圓
である。このようなタヌポリマヌラテツクスずし
おは、pyratex商品名、䜏友ノヌガタツク瀟
補、0650商品名、日本合成ゎム補、Nipol
2518FS商品名、日本れオン補等が奜適に䜿甚
できる。 ゎムラテツクスずしおは、ゎム補匷繊維甚凊理
剀ずしお䜿甚される比范的䜎重合床のラテツク
ス、特にブタゞ゚ンゎムラテツクスが適圓であ
る。0700商品名、日本合成ゎム、Nipol LX111
日本れオン補等が奜適に䜿甚できる。 レゟルシン−ホルムアルデヒドの氎溶性瞮合物
以䞋単に瞮合物ずいうずしおは、レゟルシン
ずホルムアルデヒドを氎酞化アルカリ、アンモニ
ア、アミンなどのアルカリ性觊媒の存圚䞋で反応
させお埗られる。レゟルシンずホルムアルデヒド
の、オキシメチル基に富んだ氎溶性の初期の付加
瞮合物レゟヌルが奜適に䜿甚できる。特にレ
ゟルシンずホルムアルデヒドをモル比で0.3
〜2.5の割合で反応させたものが奜たしい。 第液においおはタヌポリマヌラテツクスずラ
テツクスの合蚈量総ラテツクスず呌ぶに察す
るラテツクスの割合が2.5〜50wt、総ラテツク
スに察する瞮合物の割合を2.5〜25wtの間ずな
るよう䞉成分を垞法に埓い均䞀に混合する。なお
䞊蚘比率は、いずれも固圢分ずしおの比率であ
る。 総ラテツクスに察するラテツクスの割合があた
り倧きいず、本発明凊理剀で凊理された補匷甚ガ
ラス繊維の粘着力が過倧ずなり、撚糞工皋でトラ
ブルが発生し易く、又耐熱性が䜎䞋する。 䞊蚘割合があたり小さいず、繰返し応力を受け
た堎合の剥離防止効果が䞍充分ずなり、特に高枩
倚湿環境で䜿甚した堎合の剥離が生じ易くなる。 総ラテツクスに察する瞮合物の割合があたり倧
きいず、本発明凊理剀で凊理した補匷甚ガラス繊
維が固くなり、屈曲疲劎が生じ易くなる。 又この堎合があたり小さいず、ゎムマトリツク
スずの接着力が䜎䞋し易い。 䞊述した混合物第液の濃床即ち凊理剀䞭のタ
ヌポリマヌラテツクス、ラテツクス、瞮合物の合
蚈量の重量は、10〜50奜たしくは20〜40ず
するのが適圓である。 濃床があたり小さいず補匷甚ガラス繊維ぞの付
着が䞍充分ずなり、又濃床があたり倧きいず安定
性が悪くなり、ゲル化し易くなる。 第液は䞊述したタヌポリマヌラテツクス、ラ
テツクス、瞮合物を必須成分ずするものである
が、必芁に応じ、ラテツクスの安定剀、老化防止
剀等を添加するこずもできる。 次に第液に぀いお説明する。 む゜シアネヌトずしおは、メチレンゞヌプ
ニルむ゜シアネヌトMDI又はトル゚ンゞむ
゜シアネヌトTDI、トリプニルメタントリ
む゜シアネヌト、ナフタリンゞむ゜シアネヌト等
が奜適に䜿甚できる。む゜シアネヌト単量䜓は揮
発性が倧きいため量䜓等の比范的分子量が小さ
く、反応性に富んだポリむ゜シアネヌトが奜適に
䜿甚できる。奜たしい重合床は〜10である。 ハロゲン含有ポリマヌずしおは、塩玠化ゎム、
クロロプレン、塩玠化ポリ゚チレン、塩玠化゚チ
レン−プロピレン共重合䜓、塩玠化ポリ塩化ビニ
ル、クロロスルフオン化ポリ゚チレン等が䜿甚で
きるがクロロスルフオン化ポリ゚チレンが特に奜
適な結果を䞎える。 む゜シアネヌトはハロゲン含有ポリマヌの割合
は、10〜100100ずするのが適圓であり、む゜シ
アネヌトの割合があたり倧きいず、屈曲疲劎性䞊
びに耐熱性が悪化する。又む゜シアネヌトの割合
があたり小さいず接着性が䜎䞋する。 第液の濃床む゜シアネヌトずハロゲン含有
ポリマヌの合蚈量の重量は〜15wt、奜
たしくは〜10wtずするのが適圓であり、こ
の濃床があたり倧きいず、液の粘床が倧ずなり、
ムラが出来易くなり、又この濃床があたり小さい
ず、附着量が枛少し、充分な効果が埗られなくな
る。 なお、第液には曎に鉛化合物を含有させるこ
ずもでき、耐氎性を向䞊させうる。 鉛化合物ずしおは、リサヌゞ、マレむン酞鉛、
フタル酞鉛が特に奜たしい。 第液䞭の鉛化合物の量は、0.5〜5wt、奜た
しくは〜3wtずするのが適圓である。 本発明の方法によ぀お凊理すべき補匷ガラス繊
維に特に限定はないが、䟋えば、倪さ9Όのガラ
ス繊維に集束剀を附䞎しお200本皋床集束したガ
ラス繊維が奜適に䜿甚できる。 このような補匷甚ガラス繊維を本匕揃え、こ
れに第液を12〜22wt、望たしくは16〜20wt
垞法に埓い塗垃する。 第液を附䞎埌、奜たしくは充分也燥させた
埌、第液を垞法に埓い塗垃する。第液の也燥
は200〜350℃で行うのが望たしい。 第液の塗垃量は、補匷甚ガラス繊維に察し
0.5〜5wt、望たしくは〜4wtずするのが適
圓である。第液を塗垃した埌奜たしくは120〜
200℃においお也燥する。 なお、䞊述の第液を塗垃した補匷甚ガラス繊
維に、2.54cmむンチ圓り0.5〜4.0皋床の、
又は撚り䞋撚りを䞎えたものを、曎に〜
13本皋床匕揃えお、2.54cm圓り0.5〜3.0皋床の、
䞋撚りず逆方向の撚り䞊撚りを䞎えおダヌン
ずし、これに第液を塗垃するのが奜たしい。 本発明の方法で凊理した補匷甚ガラス繊維で補
匷すべきゎムの皮類に特に限定はないが、ハむバ
ロン、ニトリルゎム、氎玠添加ニトリルゎム等が
䟋瀺でき、極めお奜適な結果をうるこずができ、
耐熱性、耐久性の良奜なタむミングベルト等の補
匷ゎム補品が埗られる。 又、ゎムずしお氎玠添加ニトリルゎムを䜿甚し
た堎合でも、接着性は極めお良奜で、高枩で繰返
し屈曲応力を受けおも、屈曲疲劎を生じお性胜が
䜎䞋したり、剥離を生ずるこずがない。 次に、特蚱請求の範囲第項蚘茉の発明第
発明を曎に具䜓的に説明する。 第発明においおは、第発明で埗られたゎム
補匷甚繊維本補匷繊維ず呌ぶで氎玠化ニトリ
ルゎムを補匷するこずにより補匷ゎム補品を補造
する。氎玠化ニトリルゎムずしおは、公知のもの
䟋えばZetpole2020商品名、日本れオン補、
Tornacc3830商品名、NOVA瀟補を奜適に䜿
甚するこずができる。 補匷ゎム補品の補造法に特に限定はなく、垞法
を䜿甚しうる。 䟋えば、氎玠化ニトリルゎムに、カヌボンブラ
ツク、亜鉛華、老化防止剀、加硫促進剀、可塑剀
等を配合した氎玠化ニトリルゎム配合物をシヌト
状に成圢し、このシヌトの間に本補匷繊維を挟ん
で、加熱し぀぀プレスするこずによりシヌト状の
補匷ゎム補品をうるこずができる。 なお、垞法に埓い有機繊維織垃歯垃を円筒
状の型に巻き付け、この䞊に本補匷繊維を螺線状
に巻き付け、曎に䞊述したシヌトを巻き付け、二
぀割にした型を被せ、加熱し぀぀プレスしお円筒
状の補匷ゎム補品を補造し、円筒軞に垂盎に、所
定幅で切断するこずにより無端ベルトを補造する
こずもできる。 䜜甚 本発明第液は、補匷甚ガラス繊維に察する銎
染みが良奜であり、補匷甚ガラス繊維に匷固に接
着された第局が圢成される。 第液は、補匷甚ガラス繊維ずの接着性は䞍充
分であるが、第液ず反応性を有し、第液によ
り圢成された第局は第局ず䞀䜓化され、第
局は第局を介しお補匷甚ガラス繊維に匷固に接
着される。そしお第局はゎムマトリツクスず盞
溶性を有し、ゎムマトリツクスず匷固に結合し、
奜適な結果が埗られるものず思われる。 そきメカニズムは定かではないが、第局䞭に
若干残存する氎分ず、第液䞭のむ゜シアネヌト
ずの反応も寄䞎するものず考えられる。 実斜䟋  ビニルピリゞン、スチレン及びブタゞ゚ンを
151570の割合で共重合させたビニルピリゞン
−スチレン−ブタゞ゚ンのタヌポリマヌラテツク
スPyratex、商品名、䜏友ノヌガタツク瀟補、
タヌポリマヌの含有量41wt、65重量郚、ブタ
ゞ゚ンラテツクス0700、商品名、日本合成ゎム
補、ブタゞ゚ンの含有量57wt、重量郚、レ
ゟルシンずホルムアルデヒドの附加瞮合物レゟ
ヌルを20wt含む氎溶液、15重量郚、氎、12
重量郚の混合物に、曎に老化防止剀ずしお鉱油の
乳化物鉱油の含有量55wt、重量郚、アン
モニア氎濃床18wt、重量郚を加えお第
液を埗た。 クロロスルフオン化ポリ゚チレンハむパロン
40、商品名、昭和ネオプレン瀟補10重量郚、ポ
リむ゜シアネヌトMR−200、商品名、日本ポ
リりレタン瀟補重量郚にトル゚ンを加えお、
濃床10wtの第液を埗た。 9Όのガラス繊維を200本集束しおなるガラス繊
維束本を匕揃え、第液を垞法に埓぀お附䞎し
た。固圢分17wt。250℃で分間也燥埌、こ
のガラス繊維束を2.54cm圓り4.0回の撚り䞋
撚りを䞎え、曎にこの䞋撚りを䞎えた繊維束を
13本匕揃えお、2.54cm圓り2.1回の撚り䞊撚
りを斜こしたものに第液を附䞎した。固圢
分3wtこれを130℃で分間也燥したものを、
補匷甚ガラス繊維ずしお䜿甚し、詊隓片を䜜成し
た。 ゎムの皮類 氎玠添加ニトリルゎム100重量郚に察しカヌボ
ンブラツク、40重量郚、亜鉛華、重量郚、ステ
アリン酞、重量郚、老化防止剀、重量郚、加
硫促進剀、重量郚、可塑剀、重量郚を配合し
たもの。 詊隓片  厚みmm、幅mm、長さ300mmのゎムシヌトの
間に䞊蚘補匷繊維を本挟んでプレスし、150℃
で20分間加硫 詊隓片  厚みmm、幅25.4mm、長さ100mmのゎムシヌト
の間に䞊蚘補匷甚ガラス繊維を隙間なく䞊べ、プ
レスしお、150℃で、20分間加硫 この詊隓片の匕匵り匷床、䞊びにこの詊隓片
を120℃のオヌブン䞭に24時間攟眮埌MITè©Šéš“
機を䜿甚し、屈曲応力を3000回䞎えた埌の詊隓片
の匕匵り匷床を枬定した。 この詊隓片、䞊びに100℃の熱氎䞭に時間
攟眮した埌の詊隓片を、オヌトグラフを甚い、
50mmminの匕匵り速床で剥離し、接着力を枬定
した。 䞊蚘テスト結果を別衚に瀺す。 実斜䟋  実斜䟋のゎムに代え、ハむパロン、100重量
郚に察し、カヌボンブラツク、50重量郚、MgO、
10重量郚、可塑剀、10重量郚、老化防止剀、重
量郚、加硫促進剀、重量郚を配合したものを䜿
甚し、実斜䟋ず同様なテストを行぀た結果を別
衚に瀺す。 比范䟋 実斜䟋ず同じ第液を20wt塗垃した補匷
甚ガラス繊維を甚いお、以䞋実斜䟋ず同様
な詊隓片を䜜成し、同䞀のテストを行぀た。結果
を別衚に瀺す。 比范䟋 比范䟋の第液に代え、実斜䟋ず同じ
第液を甚い、実斜䟋ず同様な詊隓片を䜜
成し、同䞀のテストを行぀た。結果を別衚に瀺
す。 発明の効果 本発明の方法で凊理された補匷甚ガラス繊維
は、ハむパロン、氎玠化ニトリルゎム等の耐熱ゎ
ム、特に氎玠化ニトリルゎムに察する接着力が倧
きく、又、屈曲匷床の倧きいゎム補品が埗られ、
高枩、倚湿の条件で䜿甚しおも性胜の䜎䞋が少
い。又、本発明の凊理液はポツトラむフも30日皋
床ず極めお倧きい。
[Object of the Invention] (Industrial Application Field) The present invention relates to a method for processing rubber reinforcing glass fibers used for reinforcing rubber products such as rubber belts and tires, and a method for producing reinforced rubber products. (Prior Art) Reinforcing glass fibers such as glass fiber yarns are widely used to increase the strength of rubber products such as rubber belts and tires. Rubber products such as rubber belts are subjected to repeated bending stress, resulting in bending fatigue, resulting in a decrease in performance, and peeling between the reinforcing material and the rubber matrix is likely to occur. In order to prevent such peeling or deterioration of performance and obtain a sufficient reinforcing effect, it is necessary to increase the compatibility between the reinforcing glass fiber and the rubber and increase the adhesive strength. is applied. Various compositions of treatment materials have been proposed. For example, various processing agents have been proposed, such as a processing agent using a combination of a vinylpyridine-styrene-butadiene terpolymer latex and a water-soluble condensate of resorcinol and formalin, or a processing agent containing rubber latex. (See JP-A No. 55-114551.) Treatment liquids containing polyisocyanates, polynitrone aromatic compounds, and acidic halogen-containing polymers have also been proposed. (Refer to JP-A-49-14546) However, when the treatment methods using these treatment liquids are applied to glass fibers, (1) Sufficient adhesive strength cannot be obtained. (2) It is difficult to obtain rubber products with sufficient bending strength. It had the following drawbacks. Recently, with the rise in temperature near automatic engines, heat-resistant rubbers such as chloroprene rubber, chlorosulfonated polyethylene, and hydrogenated nitrile rubber have come to be used as rubber for timing belts. However, since the adhesion of such heat-resistant rubber, especially hydrogenated nitrile rubber, is lower than that of ordinary rubber, the above-mentioned drawbacks tend to be greater than that of ordinary rubber, and it is difficult to achieve industrially satisfactory rubber reinforcement. There was no known method for processing glass fiber for industrial use or for manufacturing reinforced rubber products. For example, glass fibers treated with the treatment agent described in JP-A-55-114551 have extremely low adhesion to hydrogenated nitrile rubber. Furthermore, the treatment liquid described in JP-A-49-14546 adheres well to organic fibers, but has extremely low adhesion to glass fibers and has a short pot life. (Problems to be Solved by the Invention) The present invention aims to solve the above-mentioned drawbacks of the prior art. [Structure of the Invention] (Means for Solving the Problems) The present invention has been made to solve the above-mentioned problems, and is intended to solve the above-mentioned problems. A method for treating glass fibers for rubber reinforcement, which comprises treating with a first liquid containing a water-soluble condensate and then a second liquid containing a halogen-containing polymer and an isocyanate, and a vinyl pyridine-styrene-butadiene terpolymer. The hydrogenated nitrile rubber is reinforced with glass fibers treated with a first liquid containing latex, rubber latex, and a water-soluble condensate of resordin-formaldehyde, and then treated with a second liquid containing a halogen-containing polymer and an isocyanate. The present invention provides a method for manufacturing reinforced rubber products. Next, the invention described in claim 1 (the first
invention) will be explained in more detail. First, the first liquid will be explained. Vinylpyridine-styrene-butadiene terpolymer latex (hereinafter referred to as terpolymer latex) is one in which vinylpyridine, styrene, and butadiene are copolymerized in a weight ratio of 10 to 20:10 to 20:60 to 80. It is particularly appropriate to use Examples of such terpolymer latexes include pyratex (trade name, manufactured by Sumitomo Naugatatsu Co., Ltd.), 0650 (trade name, manufactured by Japan Synthetic Rubber Co., Ltd.), and Nipol.
2518FS (trade name, manufactured by Nippon Zeon) etc. can be suitably used. As the rubber latex, a latex with a relatively low degree of polymerization used as a treatment agent for rubber reinforcing fibers, particularly a butadiene rubber latex, is suitable. 0700 (Product name, Japan Synthetic Rubber, Nipol LX111
(manufactured by Nippon Zeon) etc. can be suitably used. A water-soluble condensate of resorcinol-formaldehyde (hereinafter simply referred to as a condensate) is obtained by reacting resorcinol and formaldehyde in the presence of an alkaline catalyst such as an alkali hydroxide, ammonia, or an amine. Water-soluble initial addition condensates of resorcinol and formaldehyde (resols) rich in oxymethyl groups can be preferably used. In particular, the molar ratio of resorcin and formaldehyde is 1:0.3.
It is preferable to react at a ratio of ~2.5. In the first liquid, the three components are mixed so that the ratio of latex to the total amount of terpolymer latex and latex (referred to as total latex) is between 2.5 and 50 wt%, and the ratio of condensate to the total latex is between 2.5 and 25 wt%. Mix uniformly according to the usual method. Note that the above ratios are all based on solid content. If the ratio of latex to total latex is too large, the adhesive strength of reinforcing glass fibers treated with the treatment agent of the present invention becomes excessive, which tends to cause trouble in the yarn twisting process, and also reduces heat resistance. If the above ratio is too small, the effect of preventing peeling when subjected to repeated stress will be insufficient, and peeling will easily occur especially when used in a high temperature and humid environment. If the ratio of the condensate to the total latex is too large, the reinforcing glass fibers treated with the treatment agent of the present invention will become hard and prone to bending fatigue. In addition, if this value is too small, the adhesive force with the rubber matrix tends to decrease. The concentration of the first liquid mixture, ie, the weight percent of the total amount of the terpolymer latex, latex, and condensate in the processing agent, is suitably from 10 to 50%, preferably from 20 to 40%. If the concentration is too low, adhesion to reinforcing glass fibers will be insufficient, and if the concentration is too high, stability will deteriorate and gelation will occur easily. The first liquid contains the above-mentioned terpolymer latex, latex, and condensate as essential components, but a latex stabilizer, anti-aging agent, etc. may be added as necessary. Next, the second liquid will be explained. As the isocyanate, methylene di(phenyl isocyanate) (MDI), toluene diisocyanate (TDI), triphenylmethane triisocyanate, naphthalene diisocyanate, etc. can be suitably used. Since the isocyanate monomer has high volatility, polyisocyanate such as a dimer having a relatively small molecular weight and high reactivity can be suitably used. The preferred degree of polymerization is 2-10. Examples of halogen-containing polymers include chlorinated rubber,
Chloroprene, chlorinated polyethylene, chlorinated ethylene-propylene copolymer, chlorinated polyvinyl chloride, chlorosulfonated polyethylene, etc. can be used, but chlorosulfonated polyethylene gives particularly favorable results. It is appropriate that the ratio of isocyanate to halogen-containing polymer is 10 to 100:100; if the ratio of isocyanate is too large, bending fatigue resistance and heat resistance will deteriorate. Furthermore, if the proportion of isocyanate is too small, the adhesiveness will decrease. The concentration of the second liquid (wt% of the total amount of isocyanate and halogen-containing polymer) is suitably 3 to 15 wt%, preferably 5 to 10 wt%; if this concentration is too large, the viscosity of the liquid will increase. Then,
Unevenness tends to occur, and if this concentration is too low, the amount of adhesion decreases, making it impossible to obtain sufficient effects. Note that the second liquid can further contain a lead compound to improve water resistance. Lead compounds include litharge, lead maleate,
Particularly preferred is lead phthalate. The amount of lead compound in the second liquid is suitably 0.5 to 5 wt%, preferably 1 to 3 wt%. Although there are no particular limitations on the reinforcing glass fibers to be treated by the method of the present invention, for example, glass fibers with a thickness of 9 ÎŒm added with a sizing agent and bundled in about 200 glass fibers can be suitably used. Arrange three such reinforcing glass fibers and add 12 to 22 wt% of the first liquid, preferably 16 to 20 wt%.
%Apply according to the usual method. After applying the first liquid, preferably after sufficiently drying, the second liquid is applied according to a conventional method. It is desirable to dry the first liquid at a temperature of 200 to 350°C. The amount of the second liquid applied is based on the reinforcing glass fiber.
A suitable content is 0.5 to 5 wt%, preferably 2 to 4 wt%. After applying the second liquid, preferably 120~
Dry at 200°C. In addition, about 0.5 to 4.0 S per 2.54 cm (1 inch) was added to the reinforcing glass fiber coated with the above-mentioned first liquid.
Or, add Z-twist (pre-twist) and add 2~
About 13 pieces lined up, about 0.5 to 3.0 per 2.54cm,
It is preferable to give a twist in the opposite direction to the first twist (first twist) to form a yarn, and then apply the second liquid to the yarn. There is no particular limitation on the type of rubber to be reinforced with the reinforcing glass fibers treated by the method of the present invention, but Hybaron, nitrile rubber, hydrogenated nitrile rubber, etc. can be exemplified, and very suitable results can be obtained.
Reinforced rubber products such as timing belts with good heat resistance and durability can be obtained. Furthermore, even when hydrogenated nitrile rubber is used as the rubber, the adhesion is extremely good, and even when subjected to repeated bending stress at high temperatures, bending fatigue will not occur and performance will not deteriorate or peeling will occur. Next, the invention described in claim 3 (second claim)
invention) will be explained in more detail. In the second invention, a reinforced rubber product is manufactured by reinforcing hydrogenated nitrile rubber with the rubber reinforcing fibers obtained in the first invention (referred to as main reinforcing fibers). As the hydrogenated nitrile rubber, there are known ones such as Zetpole2020 (trade name, manufactured by Nippon Zeon),
Tornacc3830 (trade name, manufactured by NOVA) can be suitably used. There are no particular limitations on the manufacturing method of the reinforced rubber product, and conventional methods can be used. For example, a hydrogenated nitrile rubber compound containing carbon black, zinc white, anti-aging agents, vulcanization accelerators, plasticizers, etc. is formed into a sheet, and the reinforcing fibers are placed between the sheets. A sheet-shaped reinforced rubber product can be obtained by sandwiching and pressing while heating. In addition, according to the usual method, an organic fiber woven fabric (teeth cloth) is wound around a cylindrical mold, the reinforcing fiber is wound on top of this in a spiral shape, the above-mentioned sheet is further wrapped, and the mold cut in half is covered. It is also possible to manufacture an endless belt by manufacturing a cylindrical reinforcing rubber product by pressing while heating and cutting the product into a predetermined width perpendicular to the cylindrical axis. (Function) The first liquid of the present invention has good affinity with the reinforcing glass fibers, and forms a first layer firmly adhered to the reinforcing glass fibers. The second liquid has insufficient adhesion to the reinforcing glass fibers, but is reactive with the first liquid, and the second layer formed by the second liquid is integrated with the first layer, 2
The layers are firmly bonded to the reinforcing glass fibers via the first layer. The second layer is compatible with the rubber matrix and is strongly bonded to the rubber matrix.
It seems that suitable results can be obtained. Although the mechanism of this is not clear, it is thought that the reaction between some moisture remaining in the first layer and isocyanate in the second liquid also contributes. Example 1 Vinylpyridine, styrene and butadiene
Vinylpyridine-styrene-butadiene terpolymer latex copolymerized in a ratio of 15:15:70 (Pyratex, trade name, manufactured by Sumitomo Naugatatsu Co., Ltd.)
terpolymer content: 41 wt%), 65 parts by weight, butadiene latex (0700, trade name, made by Japan Synthetic Rubber, butadiene content: 57 wt%), 8 parts by weight, addition condensate of resorcinol and formaldehyde (resol). Aqueous solution containing 20wt%, 15 parts by weight, water, 12
To the mixture of parts by weight, 1 part by weight of an emulsion of mineral oil (mineral oil content 55 wt%) and 1 part by weight of aqueous ammonia (concentration 18 wt%) as anti-aging agents were added.
I got the liquid. Chlorosulfonated polyethylene (Hypalon)
Toluene was added to 10 parts by weight of polyisocyanate (MR-200, trade name, manufactured by Nippon Polyurethane Co., Ltd.) and 5 parts by weight of polyisocyanate (MR-200, manufactured by Nippon Polyurethane Co., Ltd.).
A second solution with a concentration of 10 wt% was obtained. Three glass fiber bundles made of 200 9Ό glass fibers were arranged and the first liquid was applied in accordance with a conventional method. (Solid content 17wt%). After drying at 250°C for 1 minute, this glass fiber bundle was given 4.0 Z twists (first twist) per 2.54 cm, and the fiber bundle that had been given this first twist was further
The second liquid was applied to the 13 fibers that had been twisted 2.1 times per 2.54 cm (first twist). (solid content 3wt%) This was dried at 130℃ for 1 minute,
A test piece was created using it as a reinforcing glass fiber. Rubber type Carbon black, 40 parts by weight, zinc white, 5 parts by weight, stearic acid, 1 part by weight, anti-aging agent, 2 parts by weight, vulcanization accelerator, 3 parts by weight, per 100 parts by weight of hydrogenated nitrile rubber. Contains 5 parts by weight of plasticizer. Test piece 1 Two of the above reinforcing fibers were sandwiched between rubber sheets with a thickness of 1 mm, a width of 5 mm, and a length of 300 mm, pressed, and heated at 150°C.
Test piece 2 Vulcanized for 20 minutes at 150℃ Test piece 2 The reinforcing glass fibers were lined up without gaps between rubber sheets with a thickness of 3 mm, width of 25.4 mm, and length of 100 mm, pressed, and vulcanized for 20 minutes at 150°C. The tensile strength of the test piece 1 was measured, as well as the tensile strength of the test piece 1 after being left in an oven at 120° C. for 24 hours and subjected to bending stress 3000 times using an MIT tester. Using an autograph, this test piece 2 and the test piece 2 after being left in hot water at 100°C for 1 hour,
The adhesive force was measured by peeling at a tensile speed of 50 mm/min. The above test results are shown in the attached table. Example 2 Instead of the rubber in Example 1, 100 parts by weight of Hypalon, 50 parts by weight of carbon black, MgO,
The results of a test similar to Example 1 using a mixture of 10 parts by weight, 10 parts by weight of plasticizer, 1 part by weight of anti-aging agent, and 2 parts by weight of vulcanization accelerator are shown in the attached table. . Comparative Examples 1 and 2 Using reinforcing glass fibers coated with 20wt% of the same first liquid as in Example 1, test pieces similar to those in Examples 1 and 2 were prepared and the same tests were conducted. The results are shown in the attached table. Comparative Examples 3 and 4 In place of the first liquid in Comparative Examples 1 and 2, the same second liquid as in Example 1 was used, test pieces similar to those in Examples 1 and 2 were prepared, and the same tests were conducted. The results are shown in the attached table. (Effects of the Invention) The reinforcing glass fibers treated by the method of the present invention have high adhesion to heat-resistant rubbers such as Hypalon and hydrogenated nitrile rubber, especially hydrogenated nitrile rubber, and can be used as rubber products with high bending strength. obtained,
There is little loss of performance even when used in high temperature and high humidity conditions. Furthermore, the treatment solution of the present invention has an extremely long pot life of about 30 days.

【衚】 々氎玠添加ニトリルゎム、ハむパロンを瀺
す。
[Table] Shows hydrogenated nitrile rubber, Hypalon.

Claims (1)

【特蚱請求の範囲】  ビニヌルピリゞン−スチレン−ブタゞ゚ンの
タヌポリマヌラテツクス、ゎムラテツクス及びレ
ゟルゞン−ホルムアルデヒドの氎溶性瞮合物を含
む第液で凊理した埌、ハロゲン含有ポリマヌ及
びむ゜シアネヌトを含む第液で凊理するこずを
特城ずするゎム補匷甚ガラス繊維の凊理方法。  ゎムラテツクスはブタゞ゚ンラテツクスであ
るこずを特城ずする特蚱請求の範囲第項蚘茉の
ゎム補匷甚ガラス繊維の凊理方法。  ビニヌルピリゞン−スチレン−ブタゞ゚ンの
タヌポリマヌラテツクス、ゎムラテツス及びレゟ
ルゞン−ホルムアルデヒドの氎溶性瞮合物を含む
第液で凊理した埌、ハロゲン含有ポリマヌ及び
む゜シアネヌトを含む第液で凊理したガラス繊
維で氎玠化ニトリルゎムを補匷するこずを特城ず
する補匷ゎム補品の補造法。  ゎムラテツクスはブタゞ゚ンラテツクスであ
るこずを特城ずする特蚱請求の範囲第項蚘茉の
補匷ゎム補品の補造法。
[Scope of Claims] 1. After being treated with a first liquid containing a terpolymer latex of vinyl pyridine-styrene-butadiene, a rubber latex and a water-soluble condensate of resordine-formaldehyde, a second liquid containing a halogen-containing polymer and an isocyanate is treated. 1. A method of processing glass fiber for rubber reinforcement, the method comprising: processing. 2. The method for treating glass fibers for rubber reinforcement according to claim 1, wherein the rubber latex is butadiene latex. 3. After treatment with a first liquid containing a terpolymer latex of vinyl pyridine-styrene-butadiene, a rubber latex and a water-soluble condensate of resordine-formaldehyde, hydrogen is applied to glass fibers treated with a second liquid containing a halogen-containing polymer and an isocyanate. A method for producing a reinforced rubber product characterized by reinforcing nitrile rubber. 4. The method for producing a reinforced rubber product according to claim 3, wherein the rubber latex is butadiene latex.
JP2308568A 1986-11-14 1990-11-16 Method for treating glass fiber for reinforcing rubber, and preparation of reinforced rubber product Granted JPH03170534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2308568A JPH03170534A (en) 1986-11-14 1990-11-16 Method for treating glass fiber for reinforcing rubber, and preparation of reinforced rubber product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26979786A JPS63126975A (en) 1986-11-14 1986-11-14 Treatment of rubber reinforcing fiber
JP2308568A JPH03170534A (en) 1986-11-14 1990-11-16 Method for treating glass fiber for reinforcing rubber, and preparation of reinforced rubber product

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26979786A Division JPS63126975A (en) 1986-11-14 1986-11-14 Treatment of rubber reinforcing fiber

Publications (2)

Publication Number Publication Date
JPH03170534A JPH03170534A (en) 1991-07-24
JPH0567652B2 true JPH0567652B2 (en) 1993-09-27

Family

ID=26548921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2308568A Granted JPH03170534A (en) 1986-11-14 1990-11-16 Method for treating glass fiber for reinforcing rubber, and preparation of reinforced rubber product

Country Status (1)

Country Link
JP (1) JPH03170534A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69614343T2 (en) 1995-10-30 2002-05-16 Bando Chemical Ind Load-bearing element of a belt, production method therefor and belt comprising this
EP1081411B1 (en) * 1998-05-22 2007-07-11 Bando Chemical Industries, Ltd. Tension member for belt and belt manufactured using the same

Also Published As

Publication number Publication date
JPH03170534A (en) 1991-07-24

Similar Documents

Publication Publication Date Title
US20140350140A1 (en) Fiber for reinforcing rubber products
JPH024715B2 (en)
EP0937740B1 (en) Cord for reinforcing a rubber and treating material thereof
JP3754132B2 (en) Fiber treatment agent for reinforcing rubber, reinforcing fiber, and rubber reinforcement
JPH04126877A (en) Glass fiber for rubber reinforcement
JP2005009010A (en) Reinforcing fiber for rubber product
EP1371618B1 (en) Fiber for reinforcing rubber products and process for its production
JP2693592B2 (en) Impregnating agent for glass fiber
JPH0567652B2 (en)
JPH0450144A (en) Rubber-reinforcing fiber
JP2752744B2 (en) Treatment agent for fiber for rubber reinforcement
JPS6024226B2 (en) Processing method of polyester fiber material for rubber reinforcement
JPH0818854B2 (en) Glass fiber for rubber reinforcement
JPH0571710B2 (en)
JPH048545B2 (en)
JP2011241513A (en) Manufacturing method of rubber reinforcing fiber
JPH0567651B2 (en)
CN101671960B (en) RFL treating agent and application thereof
JP7303018B2 (en) Aramid fiber cord for rubber hose reinforcement
JPS649349B2 (en)
JP2848961B2 (en) Glass fiber for rubber reinforcement
KR100508225B1 (en) Rubber reinforcing fiber treatment agent, reinforcing fiber and rubber reinforcing product
JPH0480138B2 (en)
JPH02208247A (en) Liquid composition for glass fiber impregnation
JPH03269178A (en) Rubber reinforcing fiber

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term