JPH0571710B2 - - Google Patents

Info

Publication number
JPH0571710B2
JPH0571710B2 JP6844790A JP6844790A JPH0571710B2 JP H0571710 B2 JPH0571710 B2 JP H0571710B2 JP 6844790 A JP6844790 A JP 6844790A JP 6844790 A JP6844790 A JP 6844790A JP H0571710 B2 JPH0571710 B2 JP H0571710B2
Authority
JP
Japan
Prior art keywords
rubber
liquid
latex
isocyanate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6844790A
Other languages
Japanese (ja)
Other versions
JPH03269177A (en
Inventor
Koji Hatsutori
Chiharu Ito
Hiroaki Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP2068447A priority Critical patent/JPH03269177A/en
Publication of JPH03269177A publication Critical patent/JPH03269177A/en
Publication of JPH0571710B2 publication Critical patent/JPH0571710B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明はゎム補匷甚繊維に関する。 埓来の技術 ゎムベルト、タむダ等のゎム補品の匷床を増倧
させる為、ガラス繊維ダヌン等の補匷繊維が広く
甚いられる。 ゎムベルト等のゎム補品は繰返し屈曲応力を受
けるため屈曲疲劎を生じお性胜が䜎䞋し、補匷材
ずゎムマトリクスの間に剥離が生じ易い。 このような剥離或は性胜の劣化を防止し、充分
な補匷効果を埗るためには、補匷繊維ずゎムずの
銎染み、接着力を倧きくする必芁があり、このた
め補匷繊維衚面に凊理剀が塗垃される。 凊理剀ずしおは各皮組成のものが提案されおい
る。 䟋えばビニルピリゞン−スチレン−ブタゞ゚ン
のタヌポリマヌラテツクス及びレゟルシンずホル
マリンの氎溶性瞮合物を䜵甚した凊理剀、或はゎ
ムラテツクスを添加した凊理剀等各皮凊理剀が提
案されおいる特開昭55−114551号参照。 又、ポリむ゜シアネヌト、ポリニトロ゜芳銙族
化合物、酞性のハロゲン含有ポリマヌを含む凊理
液も提案されおいる特開昭49−14546号参照。 又、ポリむ゜シアネヌト、ポリニトロ゜芳銙族
化合物、酞性のハロゲン含有ポリマヌを含む凊理
液も提案されおいる特開昭49−14546号参照。 又、ゎム補匷甚繊維にレゟルシンホルムアルデ
ヒドの氎溶性瞮合物及びゎムラテツクスを含む第
液RFL液を塗垃しお該繊維䞊にレゟルシ
ンホルムアルデヒド瞮合物及びゎムを含む第局
を圢成させ、次いでゎムラテツクス及びむ゜シア
ネヌトを含むオヌバヌコヌト液で凊理し、む゜シ
アネヌト及びゎムを含む第局を圢成させるこず
も知られおいる特開昭49−14546号公報参照。 曎に又、RFL䞭に含有せしむべきゎムラテツ
クスずしお−NBRラテツクスを䜿甚するこず
も提案されおいる特開昭63−270877号公報参
照。 発明が解決しようずする課題 埓来のゎム補匷繊維甚凊理液䞊びにゎム補匷甚
繊維の凊理方法は次のような問題点を有する。 (1) 充分な接着力が埗られない。 (2) 充分な屈曲匷床を有するゎム補品が埗難い。 (3) 高枩で䜿甚するず接着性が䜎䞋する。即ち、
耐熱性が䞍充分である。 近時、自動車の゚ンゞン付近の枩床䞊昇に䌎
い、タむミングベルト甚のゎムずしお、クロロス
ルフオン化ポリ゚チレン、氎玠化ニトリルゎムの
ような耐熱性のゎムが䜿甚されるようにな぀お来
たが、このような耐熱性のゎムは接着性が䞀般の
ゎムに比しお小さいため䞊述の欠点は䞀般のゎム
に比し倧きくなり易く、長距離走行に耐えるタむ
ミングベルトは埗られおいない。 RFL液でゎム補匷甚繊維を凊理し、次いで、
ゎムラテツクス及びむ゜シアネヌトを含むオヌバ
ヌコヌト液で凊理するこずにより、䞊述の問題点
を或る皋床解消するこずはできるが、この方法は
次のような問題点を有する。 (1) 接着力が時間経過ずずもに䜎䞋する。 (2) 充分な効果をうるためには倚量のむ゜シアネ
ヌトを䜿甚する必芁があり、む゜シアネヌトの
量を増倧させるず液の安定性が悪化し、オヌバ
ヌコヌト液を䜿甚の郜床少量づ぀調合する必芁
がある。 (3) RFL局第局ずオヌバヌコヌト液第
局の間の界面接着性が悪く、第、局間
に剥離が生じ易い。 −NBRラテツクスを含むRFL液を䜿甚する
方法は、マトリクスゎムが−NBRの堎合特に
有効な方法であるが、この方法も次のような難点
を有する。 即ち、RFL液䞭に含有せしむべきゎムラテツ
クスずしおは氎性゚マルゞペンを䜿甚する必芁が
ある。−NBRを含む氎性マ゚ルゞペンの補造
は技術的には可胜であるが、その補造工皋が耇雑
であるためコストが倧幅に䞊昇する。 本発明は、䞊述の埓来技術の問題点を解消し、
繰返し屈曲応力を受けるような高枩の条件䞋で䜿
甚しおいおも、時間の経過ずずもに接着力が䜎䞋
するこずなく、耐熱性も倧きく、しかも補造コス
トも䜎いゎム補匷甚繊維を提䟛するこずを目的ず
しおいる。 課題を解決するための手段 䞊蚘目的を達成するために本発明においおは、
マトリクスゎムを補匷するためのゎム補匷甚繊維
ずしお、該繊維䞊に圢成されたレゟルシンホルム
アルデヒドの氎溶性瞮合物及びゎムを含む第局
の䞊に、ハロゲン含有ポリマヌ、む゜シアネヌト
を含む第局を、第局の䞊に曎にマトリクスゎ
ムず同䞀のゎムを含む第局を圢成させた繊維を
䜿甚する。 本発明の奜たしい態様においお、ハロゲン含有
ポリマヌ、む゜シアネヌト、加硫剀を含む第
局、或はハロゲン含有ポリマヌ、む゜シアネヌ
ト、加硫剀、カヌボンブラツク、又はシリカ等の
䞍掻性埮粉末を含む第局を䜿甚し、又マトリク
スゎムず同䞀のゎム、加硫剀、カヌボンブラツク
又はシリカ等の䞍掻性埮粉末を含む第局を圢成
させた補匷甚繊維を䜿甚する。 次に、本発明を曎に具䜓的に説明する。 本発明においおは、ゎム補匷甚繊維䞊に、レゟ
ルシンホルムアルデヒド瞮合物及びゎムラテツク
スを含む液RFL液を塗垃するこずにより第
局を圢成させる。 レゟルシンホルムアルデヒドの氎溶性瞮合物
以䞋単に瞮合物ずいうずしおは、レゟルシン
ずホルムアルデヒドを氎酞化アルカリ、アンモニ
ア、アミンなどのアルカリ性觊媒の存圚䞋で反応
させお埗られるレゟルシンずホルムアルデヒドの
オキシメチル基に富んだ氎溶性の初期の付加瞮合
物レゟヌルが奜適に䜿甚できる。特にレゟル
シンずホルムアルデヒドをモル比で0.3〜2.5
の割合で反応させたものが奜たしい。 RFL液第液においお䜿甚されるゎムラ
テツクスずしおは、ゎム補匷甚繊維甚凊理剀ずし
お䜿甚される比范的䜎重合床のラテツクスが奜適
に䜿甚でき、限定はないが、特にブタゞ゚ンゎム
ラテツクス、ビニルピリゞン−スチレン−ブタゞ
゚ンのタヌポリマヌラテツクス以䞋タヌポリマ
ヌラテツクスずいう就䞭、タヌポリマヌラテツ
クスが奜たしい。 タヌポリマヌラテツクスずしおは、ビニルピリ
ゞン、スチレン、ブタゞ゚ンの重量割合が10〜
2010〜2060〜80のものが特に適圓であり、
Pyratex商品名、䜏友ノヌガタツク瀟補、0650
商品名、日本合成ゎム補、Nipol2518FS商品
名、日本れオン補等が奜適に䜿甚できる。 又ブタゞ゚ン系ラテツクスずしおは、ブタゞ゚
ンラテツクス、ブタゞ゚ン−スチレンの共重合䜓
ラテツクス、ブタゞ゚ン−ニトリルの共重合䜓ラ
テツクス等が適圓であり、0700商品名、日本合
成ゎム補、Nipol LX111Nipol 1562商品名、
日本れオン補等が奜適に䜿甚できる。 䞊蚘タヌポリマヌラテツクス、ブタゞ゚ン系ラ
テツクスは単独で䜿甚するこずもできるが、䞡者
を䜵甚し䞔぀以䞋述べるクロロスルフオン化ポリ
゚チンCSMラテツクスず混合しお甚いるの
が奜たしい。 CSMラテツクスずしおは、塩玠含有量20〜
40wt、奜たしくは25〜35wt、スルフオン基
䞭の含有量は0.5〜2.0wt、奜たしくは1.1〜
1.4wtのものが適圓であり、生ゎムのムヌニヌ
粘床が30〜95のものが奜適に䜿甚できる。 なお、CSMラテツクスの䞀郚50wt以䞋、
奜たしくは25wt以䞋をクロロプレンCR
又は氎玠化ニトリルゎム−NBRのラテツ
クスで眮換するこずもできる。 䞊述の各成分を含むゎム補匷繊維凊理甚液第
液䞭のタヌポリマヌラテツクス、又はブタゞ゚ン
系ラテツクス、CSMラテツクス、瞮合物の濃床
は倫々10〜30wt、〜25wt、0.5〜6wt、
奜たしくは15〜25wt、〜15wt、〜3wt
、ずしおこれらの合蚈量は10〜50wt、奜た
しくは20〜40wtずし、又補匷繊維に察する第
液の付䞎量は固型分ずしお繊維重量の12〜
25wt、奜たしくは16〜22wtずするのが適圓
である。 なお、第液䞭には、必芁に応じラテツクスの
安定剀、老化防止剀等を添加するこずも出来る。 本発明においお䜿甚する補匷繊維に特に限定は
ないが、ガラス繊維を甚いるのが実際的である。
䟋えば、倪さ9Όのガラス繊維に集束剀を付䞎し
お200本皋床集束したガラス繊維が奜適に䜿甚で
きる。 このような補匷繊維を本匕揃え、これに第
液を12〜25wt、望たしくは16〜22wt垞法に
埓い塗垃する。 第液を付䞎也燥させお埌、第液を垞法に埓
い塗垃する。第液の也燥は200〜350℃で行うの
が望たしい。 本発明においおは、このようにしお圢成された
第局の䞊に、ハロゲン含有ポリマヌ、む゜シア
ネヌトを含む第局を圢成させる。 第局は以䞋述べるような第液を塗垃するこ
ずによ぀お奜適に圢成するこずができる。 第液の塗垃量は補匷繊維に察し、0.5〜5wt
、望たしくは〜4wtずするのが適圓であ
る。第液を塗垃した埌、奜たしくは100〜200℃
においお也燥する。 なお、䞊述の第液を塗垃した補匷繊維に2.54
cmむンチ圓り0.5〜4.0皋床の、又は撚
り䞋撚りを䞎えたものを曎に〜13本皋床匕
揃えお2.54cm圓り0.5〜3.0皋床の、䞋撚りず逆方
向の撚り䞊撚りを䞎えおダヌンずし、これに
第液を塗垃するのが望たしい。 第液ずしお、ハロゲン含有ポリマヌ、む゜シ
アネヌトを含むものを䜿甚する。ハロゲン含有ポ
リマヌ、む゜シアネヌト及び加硫剀、奜たしくは
ハロゲン含有ポリマヌ、む゜シアネヌト、加硫
剀、カヌボンブラツク、シリカ等の䞍掻性埮粉末
を含む液特に以䞋述べる液が奜適に甚いられる。 ハロゲン含有ポリマヌずしおは塩玠化ゎム、ク
ロロプレン、塩玠化ポリ゚チレン、塩玠化゚チレ
ン−プロピレン共重合䜓、塩玠化ポリ塩化ビニ
ル、クロロスルフオン化ポリ゚チレン等が䜿甚で
きるが、クロロスルフオン化ポリ゚チレンが特に
奜適な結果を䞎える。 クロロスルフオン化ポリ゚チレンCSMラ
テツクスずしおは、塩玠含有量20〜40wt、奜
たしくは25〜35wt、スルフオン基䞭の含有
量は0.5〜2.0wt、奜たしくは1.1〜1.4wtのも
のが適圓であり、生ゎムのムヌニヌ粘床が30〜95
のものが奜適に䜿甚できる。 又、第液䞭のハロゲン含有ポリマヌの量は、
固型分ずしお〜10wt、奜たしくは〜5wt
ずするのが適圓である。この量があたり少ない
ず、その効果が充分ではなく、この量があたり倚
いず接着力が䜎䞋する。 第液䞭には、む゜シアネヌトを添加する。 む゜シアネヌトの量は、0.5〜2.0wt、奜たし
くは〜15wtずするのが適圓であり、接着性
を向䞊させるこずができる。 む゜シアネヌトの量は、埓来技術の玄50皋床
で充分であり、む゜シアネヌトを過剰に甚いた堎
合に生ずる屈曲疲劎性、䞊びに耐熱性の悪化が生
ずるこずもなく、又オヌバヌコヌト液の安定性が
増倧する。 第液䞭のむ゜シアネヌトずハロゲン含有ポリ
マヌの合蚈量の重量は、〜15wt、奜たし
くは〜10wtずするのが適圓であり、この濃
床があたり倧きいず液の粘床が倧ずなり、ムラが
出来易くなり、この濃床があたり小さいず付着量
が枛少し、充分な効果が埗られなくなる。 曎に又、第液䞭には加硫剀を含有せしめるこ
ずにより、曎に接着性を向䞊させ、䞀局奜適な結
果をうるこずができる。 加硫剀ずしおはポリニトロ゜芳銙族化合物
䟋えば−ゞニトロ゜ベンれン、テトラクロロ
ベンゟキノン、ポリ−ゞニトロ゜ベンれン、
p′−ゞベンゟむル、ベンゟキノンゞオキシ
ム、−ベンゟキノンオキシムが䟋瀺されるが、
テトラクロロベンゟキノン、ポリ−ゞニトロ゜
ベンれン、p′−ゞベンゟむルベンゟキノンゞ
オキシム、−ベンゟキノンゞオキシムが特に奜
たしい。 第液䞭の加硫剀の量は0.3〜3wt、望たしく
は0.6〜2.5wt皋床ずするのが適圓であり、この
量があたり少ないず効果が充分でなく、第局ず
第局ずの間に剥離が生じ易くなる。 第液䞭には曎に、リサヌゞ、マレむン酞鉛、
フタル酞鉛のような鉛化合物を加えるこずもで
き、耐氎性を向䞊させる効果を有する。 第液䞭の鉛化合物の量は0.5〜5wt、奜たし
くは〜3wtずするのが適圓である。 曎に、第液䞭に加硫助剀ずしおメタクリル酞
塩又はアクリル酞塩を添加するこずにより䞀局良
奜な結果をうるこずができる。 メタクリル酞塩、アクリル酞塩ずしおはメタク
リル酞鉛、メタクリル酞亜鉛、メタクリル酞アル
ミニりム、メタクリル酞銀及び、アクリル酞の同
様な金属塩を奜適に甚いるこずができる。 第液䞭に懞濁せしむべきメタクリル酞塩又は
アクリル酞塩の量は〜0.001wt、望たしくは
1.5〜0.05wtずするのが適圓である。 カヌボンブラツク又はシリカ、チタン等の䞍掻
性埮粉末ずしおは粒埄10〜200mΌ、望たしくは20
〜100mΌのものが奜適に䜿甚できる。カヌボンブ
ラツク、シリカ等の䞍掻性埮粉末は予めゎム䞭に
混緎しおおくのが実際的である。 カヌボンブラツク又はシリカ等の䞍掻性埮粉末
の量はゎムに察し10〜50wt、望たしくは20〜
40wtずするのが適圓である。 カヌボンブラツク、又はシリカ等の䞍掻性埮粉
末を添加するこずにより第局の匷床を増倧させ
るこずができる。 なお、第液の塗垃量は補匷繊維に察し、固型
分ずしお0.5〜5wt、望たしくは〜4wtずす
るのが適圓である。 本発明においおは、このように圢成した第局
を也燥した埌、その䞊にマトリクスゎムず同䞀の
ゎムを含む第局を圢成させる。 ゎムずしおは、クロロスルフオン化ポリ゚チ
ン、ニトリルゎム、氎玠化ニトリルゎム−
NBR、゚チレン−プロピレンゎムEPDM
が䟋瀺される。 第局の圢成は、以䞋述べる第液の塗垃によ
り奜適に行なうこずができる。以䞋第液に぀い
お説明する。 第液ずしおはマトリクスゎムず同䞀のゎムの
有機溶媒溶液を甚いるのが適圓である。 有機溶媒ずしおは、トル゚ン、MEK、キシレ
ン、トリクロル゚タン、トリクロル゚チレン等を
奜適に甚いるこずができる。又濃床は〜20wt
、望たしくは〜15wtずするのが奜たしい。 第液䞭には、曎にカヌボンブラツク、又はシ
リカ等の䞍掻性埮粉末、加硫剀を含有せしめるの
が望たしい。 カヌボンブラツク、シリカ、チタン等の䞍掻性
埮粉末は、粒埄10〜200mΌ、望たしくは20〜
100mΌのものを甚い、第液䞭に懞濁させる。カ
ヌボンブラツク、シリカ等の䞍掻性埮粉末の量は
ゎムに察し10〜50wt、望たしくは20〜40wt
ずするのが適圓であり、又予めゎム䞭に混緎しお
おくのが実際的である。これらを添加するこずに
より、第局の匷床を増倧させるこずができる。 加硫剀ずしおは、第液においお述べた加硫剀
又はむオり、ゞクミヌルパヌオキサむド等の過酞
化物を奜適に䜿甚するこずができ、又第液にお
いお述べた加硫助剀を䜵甚するこずもでき、䞀局
良奜な結果をうるこずができる。 なお、加硫剀及び加硫助剀の量は、倫々ゎムに
察し0.5〜15wt、0.1〜1.5wt、望たしくは
〜10wt、0.2〜1wtずし、又第液の塗垃量
は補匷繊維に察し、固型分ずしお0.5〜5wt、望
たしくは〜4wtずするのが適圓である。 䜜甚 マトリクスゎムを補匷するためのゎム補匷甚繊
維䞊に圢成されたレゟルシンホルムアルデヒドの
氎溶性瞮合物及びゎムを含む第局の䞊に、ハロ
ゲン含有ポリマヌ、む゜シアネヌトを含む第局
を、第局の䞊に曎にマトリクスゎムず同䞀のゎ
ムを含む第局を、圢成させるこずにより、マト
リクスゎムず補匷繊維の接着力を増倧させ、ゎム
ず補匷繊維ずの接着力が、繰返し応力を受けるよ
うな条件䞋で䜿甚した堎合においおも、時間の経
過ずずもに䜎䞋するのを防止し、補匷繊維、第
局、第局、第局、マトリクスゎムずの界面接
着力を増倧させお剥離を防止する。 又ハロゲン含有ポリマヌ、む゜シアネヌト、加
硫剀を含む第局を甚いるこずにより、む゜シア
ネヌトの䜿甚量を枛少させ、む゜シアネヌトを過
剰に甚いた堎合の屈曲疲劎性䞊びに耐熱性の悪化
を防止する。 又、第液自身の経時倉化による性胜䜎䞋を防
止する。 曎に又、第局にカヌボンブラツク、シリカ等
の䞍掻性埮粉末を含有させ、第局に加硫剀、カ
ヌボンブラツク、シリカ等の䞍掻性埮粉末を含有
させるこずにより、本発明の効果を䞀局増倧させ
る。 実斜䟋 ビニルピリゞン、スチレン及びブタゞ゚ンを
151570の割合で含有するビニルピリゞン−ス
チレン−ブタゞ゚ンのタヌポリマヌラテツクス
Pyratex、商品名、䜏友ノヌガタツク瀟補、タ
ヌポリマヌの含有量41wt65重量郚、ブタゞ
゚ンラテツクス0700、商品名、日本合成ゎム
補、ブタゞ゚ンの含有量57wt重量郚、レ
ゟルシンずホルムアルデヒドの付加瞮合物レゟ
ヌルを20wt含む氎溶液を15重量郚、氎12重
量郚の混合物に、曎に老化防止剀ずしお鉱油の乳
化物鉱油の含有量55wt重量郚、アンモ
ニア氎濃床18wtを重量郚加えお第液
RFL液を埗た。 メタクリル酞亜鉛0.8重量郚、クロロスルフオ
ン化ポリ゚チレンハむパロン40、商品名、昭和
電工デナポン瀟補重量郚、ポリむ゜シアネヌ
トMR−200、商品名、日本ポリりレタン瀟補
1.1重量郚、p′−ゞベンゟむルベンゟキノン
ゞオキシム加硫剀1.5重量郚、トル゚ンを加
えお、濃床10wtの第液を埗た。 ゚チレン−プロピレンゎムのトル゚ン溶液濃
床7.5wtに、粒埄50mΌのカヌボンブラツクを
ゎムに察し50wt懞濁させ、曎にむオりを1.0wt
加えお第液を埗た。 第液を、9Όのガラス繊維を200本集束しおな
るガラス繊維束本を匕揃え、垞法に埓぀お付䞎
した固型分17wt。250℃で分間也燥埌、
このガラス繊維束に2.54cm圓り4.0回の撚り
䞋撚りを䞎え、曎にこの䞋撚りを䞎えた繊維
束を13本匕揃えお2.54cm圓り2.1回の撚り䞊
撚りを斜したものに第液を固型分ずしお
付䞎した埌、140℃で分間也燥し、曎に第液
を固型分ずしお2wt付䞎し、140℃で分間加
熱、也燥したものを、補匷繊維ずしお、又䞋蚘組
成のシヌトをマトリクスゎムずしお䜿甚し、詊隓
片を䜜成した。 マトリクスゎムの組成 ゚チレン−プロピレンゎム100重量郚に察しカ
ヌボンブラツク50重量郚、ステアリン酞重量
郚、老化防止剀2.5重量郚、加硫剀重量郚、加
硫促進剀1.5重量郚、可塑剀重量郚を配合した
もの。 詊隓片の䜜成 䞊蚘組成を有するゎムを䜿甚し、次のような詊
隓片を䜜成した。 詊隓片  厚みmm、幅10mm、長さ500mmのゎムシヌトの
間に䞊蚘補匷繊維を本挟んでプレスし、160℃
で、30分間加硫。 詊隓片  厚みmm、幅25.4mm、長さ100mmのゎムシヌト
の間に䞊蚘補匷繊維を隙間なく䞊べ、プレスし
お、160℃で20分間加硫。 この詊隓片を甚い、宀枩で屈曲疲劎詊隓機を
䜿甚し、砎断迄の屈曲回数を枬定した。 この詊隓片をオヌトグラフを甚い、50mm
minの匕匵り速床で剥離し、接着力を枬定した。 䞊蚘テストの結果を別衚に瀺す。 比范䟋 䞊蚘実斜䟋の第液、第液のみを䜿甚し第
液を䜿甚するこずなく同䞀の実隓を行぀た比范
䟋。 又実斜䟋の第液で凊理し、第液、第液に
よる凊理を党く行わなか぀た堎合に぀いおも同様
な実隓を行぀た比范䟋。 これらの実隓の結果を別衚に瀺す。
(Industrial Application Field) The present invention relates to rubber reinforcing fibers. (Prior Art) Reinforcing fibers such as glass fiber yarn are widely used to increase the strength of rubber products such as rubber belts and tires. Rubber products such as rubber belts are subjected to repeated bending stress, resulting in bending fatigue, resulting in decreased performance, and peeling between the reinforcing material and the rubber matrix is likely to occur. In order to prevent such peeling or performance deterioration and obtain a sufficient reinforcing effect, it is necessary to increase the compatibility and adhesive strength between the reinforcing fibers and the rubber. be done. Various compositions of processing agents have been proposed. For example, various processing agents have been proposed, such as a processing agent using a combination of a vinylpyridine-styrene-butadiene terpolymer latex and a water-soluble condensate of resorcinol and formalin, or a processing agent containing rubber latex (Japanese Unexamined Patent Application Publication No. 1983-1999). (See No. 114551). Furthermore, a treatment liquid containing a polyisocyanate, a polynitroso aromatic compound, and an acidic halogen-containing polymer has also been proposed (see Japanese Patent Application Laid-Open No. 14546/1983). Furthermore, a treatment liquid containing a polyisocyanate, a polynitroso aromatic compound, and an acidic halogen-containing polymer has also been proposed (see Japanese Patent Application Laid-Open No. 14546/1983). Further, a first liquid (RFL liquid) containing a water-soluble condensate of resorcin formaldehyde and rubber latex is applied to the rubber reinforcing fibers to form a first layer containing the resorcin formaldehyde condensate and rubber on the fibers, and then the rubber latex is coated with a first layer containing the resorcin formaldehyde condensate and rubber. It is also known to form a second layer containing isocyanate and rubber by treating with an overcoat liquid containing isocyanate (see JP-A-49-14546). Furthermore, it has been proposed to use H-NBR latex as the rubber latex to be contained in RFL (see Japanese Patent Laid-Open No. 270877/1983). (Problems to be Solved by the Invention) Conventional treatment liquids for rubber reinforcing fibers and conventional methods for treating rubber reinforcing fibers have the following problems. (1) Sufficient adhesive strength cannot be obtained. (2) It is difficult to obtain rubber products with sufficient bending strength. (3) Adhesiveness decreases when used at high temperatures. That is,
Heat resistance is insufficient. Recently, with the rise in temperature near automobile engines, heat-resistant rubbers such as chlorosulfonated polyethylene and hydrogenated nitrile rubber have come to be used as rubber for timing belts. Since such heat-resistant rubber has lower adhesion than ordinary rubber, the above-mentioned drawbacks tend to be greater than that of ordinary rubber, and a timing belt that can withstand long-distance running has not been obtained. Treat the rubber reinforcing fibers with RFL liquid, then
Although the above-mentioned problems can be solved to some extent by treating with an overcoat liquid containing rubber latex and isocyanate, this method has the following problems. (1) Adhesive strength decreases over time. (2) In order to obtain sufficient effects, it is necessary to use a large amount of isocyanate; increasing the amount of isocyanate deteriorates the stability of the solution, and it is necessary to prepare a small amount of overcoat solution each time it is used. . (3) The interfacial adhesion between the RFL layer (first layer) and the overcoat liquid (second layer) is poor, and peeling easily occurs between the first and second layers. Although the method of using an RFL liquid containing H-NBR latex is particularly effective when the matrix rubber is H-NBR, this method also has the following drawbacks. That is, it is necessary to use an aqueous emulsion as the rubber latex to be contained in the RFL liquid. Although it is technically possible to produce an aqueous solution containing H-NBR, the complexity of the production process significantly increases costs. The present invention solves the problems of the prior art described above,
The purpose is to provide rubber reinforcing fibers that do not lose adhesive strength over time even when used under high temperature conditions such as being subjected to repeated bending stress, have high heat resistance, and have low manufacturing costs. It is said that (Means for solving the problem) In order to achieve the above object, the present invention includes:
As a rubber reinforcing fiber for reinforcing the matrix rubber, a second layer containing a halogen-containing polymer and an isocyanate is formed on the first layer containing a water-soluble condensate of resorcin formaldehyde and rubber formed on the fiber, A fiber is used in which a third layer containing the same rubber as the matrix rubber is further formed on the second layer. In a preferred embodiment of the present invention, a second compound containing a halogen-containing polymer, an isocyanate, and a vulcanizing agent is used.
layer, or a second layer containing an inert fine powder such as a halogen-containing polymer, isocyanate, vulcanizing agent, carbon black, or silica, or the same rubber, vulcanizing agent, carbon black, or silica as the matrix rubber. A reinforcing fiber formed with a third layer containing an inert fine powder such as the following is used. Next, the present invention will be explained in more detail. In the present invention, the first layer is formed by applying a liquid containing a resorcin formaldehyde condensate and rubber latex (RFL liquid) onto the rubber reinforcing fibers. A water-soluble condensate of resorcin formaldehyde (hereinafter simply referred to as a condensate) is a resorcin and formaldehyde rich in oxymethyl groups obtained by reacting resorcin and formaldehyde in the presence of an alkaline catalyst such as an alkali hydroxide, ammonia, or an amine. Water-soluble initial addition condensates (resols) can be preferably used. In particular, the molar ratio of resorcinol and formaldehyde is 1:0.3 to 2.5.
It is preferable to react at a ratio of . As the rubber latex used in the RFL liquid (first liquid), a latex with a relatively low degree of polymerization that is used as a treatment agent for rubber reinforcing fibers can be suitably used, and there is no limitation, but in particular, butadiene rubber latex, Among vinylpyridine-styrene-butadiene terpolymer latexes (hereinafter referred to as terpolymer latexes), terpolymer latexes are preferred. As a terpolymer latex, the weight ratio of vinylpyridine, styrene, and butadiene is 10 to 10.
20:10~20:60~80 is particularly suitable,
Pyratex (product name, manufactured by Sumitomo Nogatatsuku Co., Ltd.), 0650
(trade name, Nippon Synthetic Rubber Co., Ltd.), Nipol2518FS (trade name, Nippon Zeon Co., Ltd.), etc. can be suitably used. As the butadiene latex, butadiene latex, butadiene-styrene copolymer latex, butadiene-nitrile copolymer latex, etc. are suitable, such as 0700 (trade name, manufactured by Japan Synthetic Rubber Co., Ltd.), Nipol LX111, Nipol 1562. (Product name,
(manufactured by Nippon Zeon) etc. can be suitably used. Although the above-mentioned terpolymer latex and butadiene latex can be used alone, it is preferable to use both in combination and in a mixture with chlorosulfonated polyethine (CSM) latex described below. As CSM latex, the chlorine content is 20~
40wt%, preferably 25-35wt%, S content in the sulfon group is 0.5-2.0wt%, preferably 1.1-35wt%
A raw rubber having a Mooney viscosity of 30 to 95 is suitably used. In addition, some of the CSM latex (50wt% or less,
Chloroprene (CR) (preferably 25wt% or less)
Alternatively, it can also be replaced with a latex of hydrogenated nitrile rubber (H-NBR). Rubber reinforcing fiber treatment liquid 1 containing each of the above-mentioned components
The concentrations of terpolymer latex, butadiene latex, CSM latex, and condensate in the liquid are 10 to 30 wt%, 3 to 25 wt%, and 0.5 to 6 wt%, respectively.
Preferably 15-25wt%, 5-15wt%, 1-3wt
%, the total amount of these is 10 to 50 wt%, preferably 20 to 40 wt%, and the amount of the first liquid applied to the reinforcing fibers is 12 to 50 wt% of the fiber weight as solid content.
A suitable amount is 25 wt%, preferably 16 to 22 wt%. Incidentally, a latex stabilizer, an anti-aging agent, etc. may be added to the first liquid if necessary. Although there are no particular limitations on the reinforcing fibers used in the present invention, it is practical to use glass fibers.
For example, glass fibers with a thickness of 9 ÎŒm that are bundled with a sizing agent and about 200 glass fibers can be suitably used. Arrange three such reinforcing fibers and add the first
The liquid is applied in an amount of 12 to 25 wt%, preferably 16 to 22 wt%, according to a conventional method. After the first liquid is applied and dried, the second liquid is applied according to a conventional method. It is desirable to dry the first liquid at a temperature of 200 to 350°C. In the present invention, a second layer containing a halogen-containing polymer and an isocyanate is formed on the first layer thus formed. The second layer can be suitably formed by applying a second liquid as described below. The amount of second liquid applied is 0.5 to 5wt to the reinforcing fiber.
%, preferably 1 to 4 wt%. Preferably at 100-200℃ after applying the second liquid
Dry in . In addition, 2.54
After applying S or Z twist (pre-twist) of about 0.5 to 4.0 per cm (1 inch), pull together about 2 to 13 more strands and twist in the opposite direction to the pre-twist, about 0.5 to 3.0 per 2.54 cm. It is desirable to apply the second liquid to the yarn by giving it a ply twist. As the second liquid, one containing a halogen-containing polymer and an isocyanate is used. A liquid containing a halogen-containing polymer, an isocyanate, and a vulcanizing agent, preferably a halogen-containing polymer, an isocyanate, a vulcanizing agent, and an inert fine powder such as carbon black or silica, particularly the liquid described below, is suitably used. As the halogen-containing polymer, chlorinated rubber, chloroprene, chlorinated polyethylene, chlorinated ethylene-propylene copolymer, chlorinated polyvinyl chloride, chlorosulfonated polyethylene, etc. can be used, but chlorosulfonated polyethylene is particularly preferred. Give results. The chlorosulfonated polyethylene (CSM) latex has a chlorine content of 20 to 40 wt%, preferably 25 to 35 wt%, and an S content of 0.5 to 2.0 wt%, preferably 1.1 to 1.4 wt% in the sulfon group. is appropriate, and the Mooney viscosity of raw rubber is 30 to 95.
Those can be suitably used. Also, the amount of halogen-containing polymer in the second liquid is
1 to 10 wt% as solid content, preferably 2 to 5 wt%
It is appropriate to If this amount is too small, the effect will not be sufficient, and if this amount is too large, the adhesive force will decrease. Isocyanate is added to the second liquid. The amount of isocyanate is suitably 0.5 to 2.0 wt%, preferably 1 to 15 wt%, and can improve adhesion. The amount of isocyanate is sufficient to be about 50% of that of conventional technology, and there is no deterioration in bending fatigue or heat resistance that would occur if too much isocyanate is used, and the stability of the overcoat liquid is increased. do. The weight percent of the total amount of isocyanate and halogen-containing polymer in the second liquid is suitably 3 to 15 wt%, preferably 5 to 10 wt%; if this concentration is too large, the viscosity of the liquid will increase; Unevenness tends to occur, and if this concentration is too low, the amount of adhesion decreases, making it impossible to obtain a sufficient effect. Furthermore, by containing a vulcanizing agent in the second liquid, the adhesion can be further improved and more suitable results can be obtained. Polynitroso aromatic compound A as a vulcanizing agent
(e.g. p-dinitrosobenzene), tetrachlorobenzoquinone, poly p-dinitrosobenzene,
Examples include p,p'-dibenzoyl, benzoquinone dioxime, and p-benzoquinone oxime,
Particularly preferred are tetrachlorobenzoquinone, polyp-dinitrosobenzene, p,p'-dibenzoylbenzoquinone dioxime, and p-benzoquinone dioxime. It is appropriate that the amount of the vulcanizing agent in the second liquid be 0.3 to 3 wt%, preferably about 0.6 to 2.5 wt%.If this amount is too small, the effect will not be sufficient, and the Peeling between the layers is likely to occur. The second liquid further contains litharge, lead maleate,
A lead compound such as lead phthalate can also be added, which has the effect of improving water resistance. The amount of lead compound in the second liquid is suitably 0.5 to 5 wt%, preferably 1 to 3 wt%. Furthermore, even better results can be obtained by adding methacrylate or acrylate as a vulcanization aid to the second liquid. As the methacrylate and acrylate, lead methacrylate, zinc methacrylate, aluminum methacrylate, silver methacrylate, and similar metal salts of acrylic acid can be suitably used. The amount of methacrylate or acrylate to be suspended in the second liquid is 3 to 0.001 wt%, preferably
It is appropriate to set it as 1.5-0.05wt%. Inert fine powder of carbon black, silica, titanium, etc. has a particle size of 10 to 200 mΌ, preferably 20 mΌ.
~100 mΌ can be suitably used. It is practical to knead inert fine powders such as carbon black and silica into the rubber in advance. The amount of inert fine powder such as carbon black or silica is 10 to 50 wt%, preferably 20 to 50 wt%, based on the rubber.
It is appropriate to set it at 40wt%. The strength of the second layer can be increased by adding carbon black or an inert fine powder such as silica. The amount of the second liquid to be applied is suitably 0.5 to 5 wt%, preferably 2 to 4 wt%, based on the solid content, based on the reinforcing fibers. In the present invention, after drying the second layer thus formed, a third layer containing the same rubber as the matrix rubber is formed thereon. Rubbers include chlorosulfonated polyethine, nitrile rubber, and hydrogenated nitrile rubber (H-
NBR), ethylene-propylene rubber (EPDM)
is exemplified. The third layer can be suitably formed by applying the third liquid as described below. The third liquid will be explained below. As the third liquid, it is appropriate to use an organic solvent solution of the same rubber as the matrix rubber. As the organic solvent, toluene, MEK, xylene, trichloroethane, trichloroethylene, etc. can be suitably used. Also, the concentration is 3~20wt
%, preferably 5 to 15 wt%. It is desirable that the third liquid further contains carbon black, inert fine powder such as silica, and a vulcanizing agent. Inert fine powder such as carbon black, silica, titanium, etc. has a particle size of 10 to 200 mΌ, preferably 20 to 200 mΌ.
Use a 100 mΌ sample and suspend it in the third liquid. The amount of inert fine powder such as carbon black and silica is 10 to 50 wt%, preferably 20 to 40 wt% of the rubber.
It is appropriate to do this, and it is practical to knead it into the rubber in advance. By adding these, the strength of the third layer can be increased. As the vulcanizing agent, the vulcanizing agents mentioned in the second liquid or peroxides such as sulfur and dicumyl peroxide can be suitably used, and the vulcanizing aids mentioned in the second liquid are used together. You can also obtain better results. The amounts of the vulcanizing agent and the vulcanizing aid are 0.5 to 15 wt%, 0.1 to 1.5 wt%, preferably 1 to 1.5 wt%, respectively, based on the rubber.
~10wt%, 0.2~1wt%, and the amount of the third liquid applied is suitably 0.5~5wt%, preferably 1~4wt% as a solid content, based on the reinforcing fibers. (Function) A second layer containing a halogen-containing polymer and an isocyanate is formed on the first layer containing a water-soluble condensate of resorcin formaldehyde and rubber formed on a rubber reinforcing fiber for reinforcing the matrix rubber. By forming a third layer containing the same rubber as the matrix rubber on top of the two layers, the adhesive force between the matrix rubber and the reinforcing fibers is increased, and the adhesive force between the rubber and the reinforcing fibers is subjected to repeated stress. Even when used under such conditions, it prevents deterioration over time, reinforcing fibers,
The interfacial adhesion between the second layer, the third layer, and the matrix rubber is increased to prevent peeling. Further, by using a second layer containing a halogen-containing polymer, an isocyanate, and a vulcanizing agent, the amount of isocyanate used can be reduced, and deterioration of flex fatigue resistance and heat resistance that would occur if too much isocyanate is used can be prevented. Further, performance deterioration due to aging of the second liquid itself is prevented. Furthermore, the effects of the present invention can be obtained by containing inert fine powder such as carbon black or silica in the second layer and by containing inert fine powder such as a vulcanizing agent or carbon black or silica in the third layer. Increase it further. (Example) Vinylpyridine, styrene and butadiene
65 parts by weight of vinylpyridine-styrene-butadiene terpolymer latex (Pyratex, trade name, manufactured by Sumitomo Naugatatsu Co., Ltd., terpolymer content 41wt%) containing a ratio of 15:15:70, butadiene latex (0700, Product name, Japan Synthetic Rubber Co., Ltd., 8 parts by weight of butadiene content (57 wt%), 20 wt% of an addition condensate of resorcinol and formaldehyde (resol) is added to a mixture of 15 parts by weight and 12 parts by weight of water, and further anti-aging. As agents, 1 part by weight of a mineral oil emulsion (mineral oil content: 55 wt%) and 1 part by weight of aqueous ammonia (concentration: 18 wt%) were added to obtain a first liquid (RFL liquid). 0.8 parts by weight of zinc methacrylate, 6 parts by weight of chlorosulfonated polyethylene (Hypalon 40, trade name, manufactured by Showa Denko DuPont), polyisocyanate (MR-200, trade name, manufactured by Nippon Polyurethane Co., Ltd.)
1.1 parts by weight, 1.5 parts by weight of p,p'-dibenzoylbenzoquinone dioxime (vulcanizing agent), and toluene were added to obtain a second liquid having a concentration of 10 wt%. In a toluene solution of ethylene-propylene rubber (concentration 7.5 wt%), carbon black with a particle size of 50 mΌ was suspended at 50 wt% relative to the rubber, and 1.0 wt% of sulfur was added.
% was added to obtain a third solution. The first liquid was applied to three glass fiber bundles made of 200 9ÎŒ glass fibers in a conventional manner (solid content: 17 wt%). After drying at 250℃ for 1 minute,
This glass fiber bundle was given 4.0 Z twists (pre-twist) per 2.54 cm, and 13 of the fiber bundles that had been given this pre-twist were then aligned and subjected to S twists (pre-twist) 2.1 times per 2.54 cm. 2% solids content of the second liquid
After application, it was dried at 140°C for 1 minute, and 2wt% of the third liquid was added as a solid content, heated at 140°C for 1 minute, and dried. A test piece was prepared using the same method. Composition of matrix rubber: 100 parts by weight of ethylene-propylene rubber: 50 parts by weight of carbon black, 5 parts by weight of stearic acid, 2.5 parts by weight of anti-aging agent, 1 part by weight of vulcanizing agent, 1.5 parts by weight of vulcanization accelerator, 5 parts by weight of plasticizer Contains parts by weight. Preparation of test piece The following test piece was prepared using rubber having the above composition. Test piece 1 One of the above reinforcing fibers was sandwiched between rubber sheets with a thickness of 1 mm, a width of 10 mm, and a length of 500 mm, pressed, and heated at 160°C.
Vulcanize for 30 minutes. Test piece 2 The above reinforcing fibers were arranged without gaps between rubber sheets with a thickness of 3 mm, width of 25.4 mm, and length of 100 mm, pressed, and vulcanized at 160°C for 20 minutes. Using this test piece 1, the number of times it was bent until it broke was measured using a bending fatigue tester at room temperature. This test piece 2 was measured at 50mm/
The adhesive force was measured by peeling at a pulling speed of min. The results of the above tests are shown in the attached table. (Comparative example) Using only the first and second liquids of the above example, the third liquid
The same experiment was conducted without using the liquid (Comparative Example 1). A similar experiment was also conducted in the case where the first liquid of the example was used and the second and third liquids were not used at all (Comparative Example 2). The results of these experiments are shown in the attached table.

【衚】 発明の効果 繰返し屈曲匷床を䞎える条件䞋で長時間䜿甚し
た堎合でも接着匷床の䜎䞋は小さく、マトリクス
ゎムずしおクロロスルフオン化ポリ゚チレン、氎
玠化ニトリルゎム等を䜿甚した堎合でも倧きな接
着力を有し、屈曲疲劎性が倧幅に向䞊する。
[Table] (Effects of the invention) Even when used for a long time under conditions that provide repeated bending strength, the decrease in adhesive strength is small, and even when chlorosulfonated polyethylene, hydrogenated nitrile rubber, etc. are used as the matrix rubber, the adhesive strength is large. It has great strength and greatly improves bending fatigue resistance.

Claims (1)

【特蚱請求の範囲】  マトリクスゎムを補匷するためのゎム補匷甚
繊維においお、該繊維䞊に圢成されたレゟルシン
ホルムアルデヒドの氎溶性瞮合物及びゎムを含む
第局の䞊に、ハロゲン含有ポリマヌ、む゜シア
ネヌトを含む第局を、第局の䞊に曎にマトリ
クスゎムず同䞀のゎムを含む第局を圢成させた
ゎム補匷甚繊維。  第局はハロゲン含有ポリマヌ、む゜シアネ
ヌト、加硫剀を含む請求項蚘茉のゎム補匷甚繊
維。  第局はハロゲン含有ポリマヌ、む゜シアネ
ヌト、加硫剀、カヌボンブラツク又はシリカ等の
䞍掻性埮粉末を含む請求項蚘茉のゎム補匷甚繊
維。  第局はマトリクスゎムず同䞀のゎム、加硫
剀、カヌボンブラツク又はシリカ等の䞍掻性埮粉
末を含む請求項又は蚘茉のゎム補匷甚繊
維。
[Scope of Claims] 1. In a rubber reinforcing fiber for reinforcing matrix rubber, a halogen-containing polymer, an isocyanate, etc. A rubber reinforcing fiber comprising: a second layer containing the same rubber as the matrix rubber; and a third layer containing the same rubber as the matrix rubber formed on the second layer. 2. The rubber reinforcing fiber according to claim 1, wherein the second layer contains a halogen-containing polymer, an isocyanate, and a vulcanizing agent. 3. The rubber reinforcing fiber according to claim 1, wherein the second layer contains a halogen-containing polymer, an isocyanate, a vulcanizing agent, carbon black, or an inert fine powder such as silica. 4. The rubber reinforcing fiber according to claim 1, 2 or 3, wherein the third layer contains the same rubber as the matrix rubber, a vulcanizing agent, carbon black, or inert fine powder such as silica.
JP2068447A 1990-03-20 1990-03-20 Rubber reinforcing fiber Granted JPH03269177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2068447A JPH03269177A (en) 1990-03-20 1990-03-20 Rubber reinforcing fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2068447A JPH03269177A (en) 1990-03-20 1990-03-20 Rubber reinforcing fiber

Publications (2)

Publication Number Publication Date
JPH03269177A JPH03269177A (en) 1991-11-29
JPH0571710B2 true JPH0571710B2 (en) 1993-10-07

Family

ID=13373970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2068447A Granted JPH03269177A (en) 1990-03-20 1990-03-20 Rubber reinforcing fiber

Country Status (1)

Country Link
JP (1) JPH03269177A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864097B2 (en) 2001-03-12 2006-12-27 本田技研工業株匏䌚瀟 Fiber for reinforcing rubber products
JP4520069B2 (en) * 2001-04-18 2010-08-04 日本板硝子株匏䌚瀟 Treatment agent, rubber reinforcing cord and rubber product
JP5118299B2 (en) 2005-12-13 2013-01-16 オヌシヌノィヌ むンテレクチュアル キャピタル ゚ル゚ルシヌ Glass fiber for rubber product reinforcement
EP2151520B1 (en) * 2007-05-25 2013-09-18 Nippon Sheet Glass Company, Limited Rubber reinforcing member and rubber product utilizing the same
EP2952625B1 (en) * 2013-01-30 2019-03-27 Nippon Sheet Glass Company, Limited Carbon fiber cord for reinforcing rubber product and rubber product using same

Also Published As

Publication number Publication date
JPH03269177A (en) 1991-11-29

Similar Documents

Publication Publication Date Title
US20140350140A1 (en) Fiber for reinforcing rubber products
US5885718A (en) Rubber-reinforcing glass fiber product
US6106943A (en) Cord for reinforcing a rubber and treating material thereof
JPH0725898B2 (en) Textiles for rubber reinforcement
JP3201330B2 (en) Rubber reinforcing cord and its treating agent
JP3754132B2 (en) Fiber treatment agent for reinforcing rubber, reinforcing fiber, and rubber reinforcement
JPH024715B2 (en)
JPH0450144A (en) Rubber-reinforcing fiber
JPH0571710B2 (en)
JP3427714B2 (en) Glass fiber cord for rubber reinforcement
JP2693592B2 (en) Impregnating agent for glass fiber
WO2001061101A1 (en) Fiber-treating agent and glass fiber and rubber product both made with the fiber-treating agent
JPH01221433A (en) Liquid composition for impregnating glass fiber
JP2752744B2 (en) Treatment agent for fiber for rubber reinforcement
JP3465378B2 (en) Glass fiber for reinforcing hydrogenated nitrile rubber
JPH048545B2 (en)
JPH05311577A (en) Treating liquid for fiber for reinforcing rubber
JPH0567651B2 (en)
JPH03269178A (en) Rubber reinforcing fiber
KR20040105763A (en) Treating agent for rubber-reinforcing glass fiber, rubber-reinforcing cord made with the same, and rubber product
KR100508225B1 (en) Rubber reinforcing fiber treatment agent, reinforcing fiber and rubber reinforcing product
JPH02221466A (en) Treating solution for rubber reinforcing fiber and treatment of rubber reinforcing fiber
JP2002309484A (en) Treating agent, rubber-reinforcing cord, and rubber product
JPS643988B2 (en)
JP2848961B2 (en) Glass fiber for rubber reinforcement