JPH056576B2 - - Google Patents

Info

Publication number
JPH056576B2
JPH056576B2 JP59274064A JP27406484A JPH056576B2 JP H056576 B2 JPH056576 B2 JP H056576B2 JP 59274064 A JP59274064 A JP 59274064A JP 27406484 A JP27406484 A JP 27406484A JP H056576 B2 JPH056576 B2 JP H056576B2
Authority
JP
Japan
Prior art keywords
polypropylene
weight
ethylene
copolymer
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59274064A
Other languages
Japanese (ja)
Other versions
JPS61152752A (en
Inventor
Hiroshi Tanaka
Keiichi Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI SEKYU KAGAKU KOGYO KK
OOTSUKA SEIYAKU KOJO KK
Original Assignee
MITSUI SEKYU KAGAKU KOGYO KK
OOTSUKA SEIYAKU KOJO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI SEKYU KAGAKU KOGYO KK, OOTSUKA SEIYAKU KOJO KK filed Critical MITSUI SEKYU KAGAKU KOGYO KK
Priority to JP27406484A priority Critical patent/JPS61152752A/en
Publication of JPS61152752A publication Critical patent/JPS61152752A/en
Publication of JPH056576B2 publication Critical patent/JPH056576B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はポリプロピレン、エチレン・α−オレ
フイン共重合体及び特定のブロツク共重合体から
なるポリプロピレン組成物に関する。更に詳しく
は、耐熱性、透明性に優れたポリプロピレンとの
熱融着性及び引千切りが容易なポリプロピレン製
容器の中栓として好適なポリプロピレン組成物に
関する。 〔従来の技術〕 ポリプロピレンは、衛生性、耐熱性、透明性、
光沢、表面硬度等に優れており、フイルム、コン
テナ、容器を初め種々の用途に使用されている。
中でも中空成形容器、とくに二軸延伸中空成形容
器は、更に前記特性が改良されるととも耐衝撃性
にも優れるので醤油、ソース等の液状調味料用容
器、医薬品容器等に特に好適である。かかる容器
の中栓は通常ポリエチレン製、あるいはポリプロ
ピレン製のものが螺合あるいは嵌合されており、
使用時に取り外したり、一部を引き千切つたりし
ている。ところが容器の用途によつては、容器に
中栓を熱融着後加熱処理する必要があり、その場
合は、中栓に容器との熱融着性とともに内容物を
取り出す必要があることから、引き千切り易さも
要求される。しかしながらポリプロピレン製容器
の中栓として好適な組成物はないのが現状であつ
た。すなわちポリプロピレン製中栓は熱融着性に
は優れるが、引き千切りは極めて困難であり、ポ
リエチレン製中栓は引き千切りは容易であるが、
ポリプロピレンとは全く熱融着しない。またポリ
プロピレンとポリエチレンとを混合しても熱融着
性と引き千切り易さとのバランスに優れたものは
得られ難い。 一方ポリオレフインにポリスチレン−ポリブタ
ジエン−ポリスチレンブロツク共重合体のポリブ
タジエン部を水添したブロツク共重合体を混合し
た組成物がポリオレフインの折り曲げ時の白化が
抑制されること(特公昭41−2909号公報、特公昭
55−18739号公報)、あるいは耐熱性及び透明性に
優れていること(特開昭58−215446号公報)は公
知である。しかしながらこれらの公報に記載され
ているような、ポリプロピレン単味あるいはポリ
エチレン単味あるいはポリエチレン単味に水添し
たブロツク共重合体を添加した組成物をポリプロ
ピレン容器の中栓として用いても前記同様熱融着
性と引き千切り易さとのバランスに優れたものは
得られない。又、結晶性ポリプロピレンに線状低
密度ポリエチレンと熱可塑性エラストマーを添加
した組成物も知られている(特開昭58−101135号
公報)が、該公報に記載されているようなエチレ
ン−プロピレン共重合体やエチレン・プロピレ
ン・ジエン共重合体等の熱可塑性エストラマーを
添加した組成物を用いても引き千切り易さは全く
改良されず、いずれもポリプロピレン製容器の中
栓の材料としては使用出来ないのが現状であつ
た。 〔発明が解決しようとする問題点〕 かかる状況に鑑み、本発明者らは耐熱性を有
し、且つポリプロピレンとの融着性及び引き千切
り易さとのバランスのとれたポリプロピレン製容
器のシール材、特に中栓として好適な材料を開発
すべく種々検討した結果、ポリプロピレン、特定
のエチレン・α−オレフイン共重合体及び特定の
ブロツク共重合体とからなるポリプロピレン組成
物が上記特性を備えていることが分かり、本発明
を完成するに至つた。 〔問題点を解決するための手段〕 すなわち本発明は、 ポリプロピレン(A):20ないし90重量部、密度:
0.890ないし0.940g/cm3、X線による結晶化度:
10ないし64%及び融点:110ないし127℃のエチレ
ンと炭素数4ないし20のα−オレフインとの共重
合体(C):80ないし10重量部、及び ポリプロピレン(A)+エチレン・α−オレフイン
共重合体(C)=100重量部に対して、末端モノビニ
ル置換芳香族炭化水素重合体ブロツクSがブロツ
ク共重合体(D)の8ないし55重量%を構成し、少な
くとも2つの末端モノビニル置換芳香族炭化水素
重量体ブロツクS及び少なくとも1つの中間共役
ジオレフイン重合体ブロツクBよりなり、且つ重
合体ブロツクSの芳香族二重結合の25%以下及び
共役ジオレフイン重合体ブロツクBの脂肪族二重
結合の少なくとも80%が水素添加によつて還元さ
れている部分水添ブロツク共重合体(D):1ないし
100重量部とからなることを特徴とする耐熱性及
び引き千切り易さを有し、且つポリプロピレンと
の熱融着性を有するポリプロピレン組成物を提供
するものである。 〔作用〕 本発明を用いるポリプロピレン(A)は、プロピレ
ンの単独重合体もしくはプロピレンと40モル%以
下の他のα−オレフイン、例えばエチレン、1−
ブテン、1−ヘキセン、4−メチル−1−ペンテ
ン、1−オクテン等とのランダムあるいはブロツ
ク共重合体で結晶性のものである。これらのうち
ではプロピレンの単独重合体、好ましくはアイソ
タツクチツク指数が90以上、更に好ましくは95以
上のプロピレンの単独重合体、及びエチレン含有
量が5ないし40モル%、好ましくは10ないし35モ
ル%のプロピレン・エチレンブロツク共重合体が
好ましい。ポリプロピレン(A)は、通常メルトフロ
ーレート(MFR(L);ASTM D 1238、L)が
1ないし100g/10min、好ましくは10ないし50
g/10minの範囲のものである。MFR(L)が1
g/10min未満では引き千切り易さが損なわれる
虞れがあり、一方100g/10minを越えるものは
機械的強度が低くなる傾向にある。 ポリプロピレン(A)のエチレン含有量は13C−
NMR法により測定した値であり、アイソタクチ
ツク指数()は、沸騰n−ヘプタン不溶分を重
量%で表わしたものである。 本発明に用いるエチレン・α−オレフイン共重
合体(C)は密度(ASTM D 1505):0.890ないし
0.940g/cm3、好ましくは0.910ないし0.930g/
cm3、X線による結晶化度:10ないし64%、好まし
くは45ないし57%及び融点110ないし127℃、好ま
しくは115ないし125℃のエチレンと炭素数4ない
し20、好ましくは5ないし18のα−オレフインと
の共重合体である。密度が0.890g/cm3未満及び
結晶化度が10%未満のものは耐熱性が低下する。 一方、0.940g/cm3及び結晶化度が64%を越え
るものは引き千切り難く、本発明の目的を達成し
得ない。また融点が110℃未満のものは耐熱性が
低下し、127℃を越えるものは引き千切り難くな
る。エチレン・α−オレフイン共重合体(C)は、通
常メルトフローレート(MFR(E):ASTM D
1238、E)が1ないし50g/10min、好ましくは
10ないし30g/10minの範囲のものである。 MFR(E)が1g/10min未満のものは成形性に
劣る傾向にあり、一方50g/10minを越えるもの
は機械的強度に劣る傾向にある。 エチレン・α−オレフイン共重合体(C)における
融点とは、示差走査型熱量計(DSC)の昇温速
度10℃/minの吸熱曲線から求めた1個ないし複
数個、多くの場合2個ないし3個存在する吸熱ピ
ークの内の最高温度である。 エチレン・α−オレフイン共重合体(C)におい
て、エチレンと共重合される炭素数4ないし20の
α−オレフインの例としては、1−ブテン、1−
ペンテン、1−ヘキセン、4−メチル−1−ペン
テン、1−オクテン、1−デセン、1−テトラデ
セン、1−オクタデセンあるいはこれらの少なく
とも二種の混合物を挙げることができる。 本発明の前記性状のエチレン・α−オレフイン
共重合体(C)は遷移金属触媒、例えばマグネシウム
化合物とチタン化合物とから形成される高活性チ
タン触媒を用い、所謂中、低圧法によつてエチレ
ンとα−オレフインとを所要密度となるような割
合で重合させることによつて得られる。その際所
望のメルトフローレートのものを得るには、水素
の如き分子量調節剤を用いればよい。重合はスラ
リー重合、気相重合、高温溶解重合などの種々の
方法によつて行いうる。 本発明の部分水添ブロツク共重合体(D)は、末端
モノビニル置換芳香族炭化水素重合体ブロツクS
がブロツク共重合体(D)の8ないし55重量%、好ま
しくは10ないし30重量%を構成し、少なくとも2
つの、好ましくは平均分子量5000ないし125000、
更に好ましくは10000ないし50000の末端モノビニ
ル置換芳香族炭化水素重合体ブロツクS、及び少
なくとも1つの、好ましくは平均分子量10000な
いし300000、更に好ましくは30000ないし150000
の中間共役ジオレフイン重合体ブロツクBよりな
り且つ重合体ブロツクSの芳香族二重結合の25%
以下、好ましくは5%以下及び共役ジオレフイン
重合体ブロツクBの脂肪族二重結合の少なくとも
80%、好ましくは99%が水素添加によつて還元さ
れているブロツク共重合体である。 本発明の部分水添ブロツク共重合体(D)は線状、
ラジアルまたは分岐状のいずれのものでもよい。
そのようなポリマーの製法はこの技術分野で周知
である。ブロツク共重合体(D)の構造は重合の方法
で決まる。たとえば、線状ポリマーは、リチウム
−アルキルまたはジリチオスチルベンのような開
始剤を使用するときその後に所望のモノマーを反
応容器に導入することによつて、あるいは三つま
たはそれ以上の先駆体ポリマーに対する官能基を
有するカツプリング剤によつて生じる。カツプリ
ングは多官能カツプリング剤、例えばジハロアル
カンまたはアルケン並びにある種の極性化合物た
とえばシリコンハライド、シロキサンまたは一価
アルコールとカルボン酸とのエステルで行う。ポ
リマー中のカツプリング残留物の存在は本発明の
組成物の一部を形成するポリマーの適当な種類に
対して無視しうる。同様に、一般的な意味で、特
定の構造も無視しうる。本発明は特に水添前に次
の代表的な種類の配列を持つ選択的に水添したポ
リマーの使用に対して適用する: ポリスチレン−ポリブタジエン−ポリスチレン
(SBS) ポリスチレン−ポリイソプレン−ポリスチレン
(SIS) ポリ(α−メチルスチレン)−ポリブタジエン
−ポリ(α−メチルスチレン)およびポリ(α−
メチルスチレン)−ポリイソプレン−ポリ(α−
メチルスチレン) ポリマーブロツクSおよびBの両者は、各ブロ
ツクがそれを特徴づけるモノマーの少なくとも一
種類を主とするかぎりそしてブロツクSが個々に
モノビニル置換芳香族炭化水素を主とするかぎ
り、単重合体またはランダム共重合体のいずれで
もよい。前記モノビニル置換芳香族炭化水素はα
−メチルスチレンおよび環置換スチレン、特に環
メチル化スチレンを含むスチレンおよび類似体お
よび同族体を含んでいる。好ましいモノビニル置
換芳香族炭化水素はスチレンおよびα−メチルス
チレンであり、スチレンが特に好ましい。ブロツ
クBは、共役ジオレフイン単位が優勢である限
り、ブタジエンまたはイソプレンのホモポリマー
およびこれらの二種の共役ジオレフインの1つと
モノビニル置換芳香族炭化水素との共重合体から
なりうる。用いたモノマーがブタジエンのとき、
ブタジエンポリマーブロツクの中の縮合ブタジエ
ン単位の35〜55モル%が1,2−配列を有してい
るのが好ましい。従つて、このようなブロツクを
水添すると、生じる生成物はエチレンとブテン−
1のレギユラー共重合体ブロツク(EB)である
かまたは類似物である。用いる共役ジエンがイソ
プレンなら、生じる水添生成物はエチレンとプロ
ピレンのレギユラー共重合体ブロツク(EP)で
あるかまたは類似物である。 先駆体ブロツク共重合体の水添は、脂肪族二重
結合の少なくとも80%を実質的に完全に水添し、
一方芳香族二重結合の約25%以下を水添するよう
な条件下で、アルミニウムアルキル化合物とニツ
ケルまたはコバルトカルボキシレートまたはアル
コキシドの反応生成物よりなる触媒を使用するこ
とによつて実施するのが好ましい。好ましいブロ
ツク共重合体は脂肪族二重結合の少なくとも99%
が水添され、一方芳香族二重結合の5%以下が水
添されているものである。 本発明のポリプロピレン組成物に用いる部分水
添ブロツク共重合体(D)は、前述の如く共役ジオレ
フイン重合体ブロツクSの脂肪族二重結合の少な
くとも80%が水添されている必要がある。該部分
が水添されていない、所謂前述のSBSブロツク共
重合体は耐熱性及びポリプロピレン(A)等との相溶
性に劣るので本発明の目的に合致しない。かかる
部分水添ブロツク共重合体(D)はシエル社(米国)
よりクレイトンGとして製造販売されている。 本発明のポリプロピレン組成物は前記ポリプロ
ピレン(A):20ないし90重量部、好ましくは30ない
し60重量部、前記エチレン・α−オレフイン共重
合体(C):80ないし10重量部、好ましくは70ないし
40重量部及びポリプロピレン(A)+エチレン・α−
オレフイン共重合体(C)=100重量部に対して前記
部分水添ブロツク共重合体(D):1ないし100重量
部、好ましくは5ないし70重量部とから構成され
る。 エチレン・α−オレフイン共重合体(C)の量が10
重量部未満では引き千切り性が改良されず、一方
80重量部を越えるとポリプロピレンとの熱融着性
が劣る。 部分水添ブロツク共重合体(D)の量が1重量部未
満では引き千切り性が改良されず、一方100重量
部を越えると(柔らかすぎて)引き千切れにくく
なる。 本発明のポリプロピレン組成物には、耐熱安定
剤、耐候安定剤、帯電防止剤、滑剤、スリツプ
剤、核剤、あるいは染料、炭化水素油等の可塑剤
等の通常熱可塑性樹脂に添加される配合剤を本発
明の目的を損わない範囲で添加しておいてもよ
い。 本発明のポリプロピレン組成物を得るには、ポ
リプロピレン(A)、エチレン・α−オレフイン共重
合体(C)及び部分水添ブロツク共重合体(D)を前記範
囲で、例えばヘンシエルミキサー、V−ブレンダ
ー、リボンブレンダー、タンブラーブレンダー等
で混合後、一軸押出機、二軸押出機、ニーダー、
バンバリーミキサー等で溶融混練し造粒あるいは
粉砕する方法を採り得る。 〔発明の効果〕 本発明のポリプロピレン組成物は、従来のポリ
プロピレンもしくはポリエチレンに部分水添ブロ
ツク共重合体を添加した組成物とは異なり、ポリ
プロピレンとの熱融着性と引き千切り易さとのバ
ランスに優れ、且つ耐熱性を有しているので、ポ
リプロピレン製容器、とくに耐熱性、透明性に優
れた二軸延伸ポリプロピレン製容器のシール材と
して好適である。 〔実施例〕 次に実施例を挙げて本発明を更に具体的に説明
するが、本発明はその要旨を越えない限り、これ
らの実施例に何ら制約されるものではない。 対照例 1 MFR(L):55g/10min、全エチレン含有量:
17モル%、プロピレン・エチレンゴム量(エチレ
ン含有量:40モル%、デカリン溶媒135℃におけ
る極限粘度〔η〕:2.2dl/g):21重量%、ポリ
エチレン量:2重量%のポリプロピレンブロツク
共重合体(以下PPB−と略す)及びMFR(E):
18g/10min、密度:0.920g/10min、4−メチ
ル−1−ペンテン含有量:3.2モル%、X線によ
る結晶化度:51%、融点:121.8℃(他に116.6℃
及び103.0℃に副ピーフ有り)のエチレン・4−
メチル−1−ペンテン共重合体(以下EMP−
と略す)とを各々第1表に示す割合でヘンシエル
ミキサーで混合後、40mmφ押出機(成形温度:
200℃)で溶融混練造粒して試料1〜5を得た。
次いでかかる試料1〜5を用いて5オンスの射出
成形機(成形温度:200℃)を用いて直径30mmφ
厚さ1.5mmtの円板に直径15mmφの円周上に厚さ
0.25mmtとなるように薄膜部をもちその円周上の
一ケ所に直径15mmφのリングを直径2.5mmφの柱
を介してとりつけた形状のプルオフ型のキヤツプ
を成形した。得られたキヤツプの性能を以下の方
法で評価した。 引き千切り力(Kg):引張試験機を用い、200mm/
minの引張速度で引張試験を行い薄膜部の破断
に要した応力(Kg)を引き千切り力とした。 融着強度(Kg):キヤツプを温度200℃で9秒間、
圧力5Kg/cm2でポリプロピレンシートに融着さ
せ(融着面積1.2cm2)、冷却後200mm/minの剥
離速度で剥離試験を行い、剥離に要した応力
(Kg)を融着強度とした。 結果を第1表に示す。 第1表において、引き千切り力が7Kg以上では
実使用、即ち指で引き千切るのは不可能であり、
6Kg以上では引き千切れるものの指が痛く実使用
に向かない。又、融着強度が40Kg以下では輸送時
等に融着部から液漏れする虞れがあり、実用上問
題となる場合がある。その結果PPB−とEMP
−との組合せではいずれの配合割合においても
引き千切り力と融着強度とのバランスにとれたも
のが得られないことが分かる。 実施例 1 対照例1で用いたPPB−、EMP−及びポ
リスチレン含有量:29重量%のポリスチレン−ポ
リブタジエン−ポリスチレンブロツク共重合体部
分水添物(商品名 クレイトンG1652、シエル社
製:以下SEBS−と略す)とを第2表に示す割
合でヘンシエルミキサーで混合後、対照例1と同
様な方法で試料6〜11を得た。次いで対照例1に
記載の方法でキヤツプを成形後その性能を評価し
た。結果を第2表に示す。その結果試料7〜10が
引き千切り力と融着強度とのバランスにとれた組
成物であることが分かる。 比較例 1 実施例1で用いたSEBS−の代わりに、
MFR(L):2.9g/10min、エチレン含有量:81モ
ル%、融点:48℃、X線による結晶化度:3%の
エチレン・プロピレンランダム共重合体(以下
EPR−と略す)又はMFR(L):0.4g/10min、
エチレン含有量:40モル%、(X線による結晶化
度3%のプロピレン・エチレンランダム共重合体
(以下PER−と略す)を用いて第2表に示す割
合で各々配合する(試料12及び13)以外は実施例
1と同様に行つた。結果を第2表に示す。その結
果、SEBS−の代わりに、EPR−あるいは
PER−を用いたものは融着強度は大きいが、
引き千切り力も大き過ぎて実使用に向かないこと
が分かる。 比較例 2 実施例1で用いたEMP−の代わりに、MFR
(E):0.8g/10min、密度0.954g/10min、X線
による結晶化度:70%、融点:131℃の高密度ポ
リエチレン(以下HDPE−と略す)、又はMFR
(E):6.5g/10min、密度:0.917g/10min、X
線による結晶化度:48%、融点:106℃の高圧法
低密度ポリエチレン(以下HPPE−と略す)を
用い、第3表に示す割合で各々配合する(試料14
及び15)以外は実施例1と同様に行つた。結果を
第3表に示す。その結果、EMP−の代わりに、
HDPE−あるいはHPPE−を用いたものは、
引き千切り力が大きく実使用に向かないことが分
かる。 実施例 2 実施例1で用いたSEBS−の代わりにポリス
チレン−ポリブタジエン−ポリスチレンブロツク
共重合体部分水添物のコンパウンド(商品名 エ
ラストマーコンパウンド AR 800C、アロン化
成製:以下SEBS−と略す)を用い、第3表に
示す割合で各々配合する(試料)以外は実施例1
と同様に行つた。結果を第4表に示す。第4表か
らいずれも引き千切り力と融着強度とのバランス
にとれた組成物であることが分かる。
[Industrial Field of Application] The present invention relates to a polypropylene composition comprising polypropylene, an ethylene/α-olefin copolymer, and a specific block copolymer. More specifically, the present invention relates to a polypropylene composition suitable for use as an inner stopper of a polypropylene container, which has excellent heat resistance and transparency, has heat-sealability with polypropylene, and is easy to tear into pieces. [Conventional technology] Polypropylene has good hygiene, heat resistance, transparency,
It has excellent gloss and surface hardness, and is used in a variety of applications including films, containers, and containers.
Among these, blow-molded containers, especially biaxially stretched blow-molded containers, have further improved properties and excellent impact resistance, and are therefore particularly suitable for containers for liquid seasonings such as soy sauce and sauces, containers for pharmaceuticals, and the like. The inner stopper of such a container is usually made of polyethylene or polypropylene and is screwed or fitted.
When used, it is removed or parts are torn off. However, depending on the use of the container, it is necessary to heat-treat the inner stopper after heat-sealing it to the container, and in that case, it is necessary to make the inner stopper heat-sealable to the container and to take out the contents. Ease of tearing is also required. However, at present, there is no composition suitable for use as an inner stopper for polypropylene containers. In other words, polypropylene inner plugs have excellent heat-sealability, but are extremely difficult to tear into strips, while polyethylene inner plugs are easy to tear into strips, but
It does not heat-seal with polypropylene at all. Furthermore, even if polypropylene and polyethylene are mixed, it is difficult to obtain a material with an excellent balance between heat-sealing properties and ease of tearing into pieces. On the other hand, a composition obtained by mixing a polyolefin with a block copolymer obtained by hydrogenating the polybutadiene portion of a polystyrene-polybutadiene-polystyrene block copolymer suppresses whitening of the polyolefin when folded (Japanese Patent Publication No. 41-2909, Kimiaki
55-18739), or that it has excellent heat resistance and transparency (Japanese Patent Application Laid-Open No. 58-215446). However, even if the compositions described in these publications, in which polypropylene alone, polyethylene alone, or a hydrogenated block copolymer added to polyethylene alone, are used as the inner stopper of a polypropylene container, the same thermal melting effect as described above is obtained. It is not possible to obtain a product with an excellent balance between adhesion and ease of tearing. Furthermore, a composition in which linear low-density polyethylene and a thermoplastic elastomer are added to crystalline polypropylene is also known (Japanese Unexamined Patent Publication No. 101135/1982), Even if a composition containing a thermoplastic elastomer such as a polymer or an ethylene-propylene-diene copolymer is used, the ease of tearing into pieces is not improved at all, and neither can be used as a material for the inner stopper of polypropylene containers. That was the current situation. [Problems to be Solved by the Invention] In view of this situation, the present inventors have developed a sealing material for polypropylene containers that is heat resistant and has a good balance between fusion properties with polypropylene and ease of tearing into pieces. As a result of various studies to develop materials particularly suitable for the inner plug, it was found that a polypropylene composition consisting of polypropylene, a specific ethylene/α-olefin copolymer, and a specific block copolymer has the above characteristics. I understand this and have completed the present invention. [Means for solving the problems] That is, the present invention provides polypropylene (A): 20 to 90 parts by weight, density:
0.890 to 0.940g/cm 3 , crystallinity by X-ray:
Copolymer (C) of ethylene and α-olefin having 4 to 20 carbon atoms and 10 to 64% and melting point: 110 to 127°C: 80 to 10 parts by weight, and polypropylene (A) + ethylene/α-olefin copolymer Based on 100 parts by weight of polymer (C), the monovinyl-terminated aromatic hydrocarbon polymer block S constitutes 8 to 55% by weight of the block copolymer (D), and at least two monovinyl-terminated aromatic hydrocarbon polymers Consisting of a heavy hydrocarbon block S and at least one intermediate conjugated diolefin polymer block B, and 25% or less of the aromatic double bonds of the polymer block S and at least 25% of the aliphatic double bonds of the conjugated diolefin polymer block B. Partially hydrogenated block copolymer (D) in which 80% is reduced by hydrogenation: 1 or
100 parts by weight of the polypropylene composition, which has heat resistance and ease of tearing into pieces, and has heat fusion properties with polypropylene. [Function] The polypropylene (A) used in the present invention is a homopolymer of propylene or propylene and 40 mol% or less of other α-olefins, such as ethylene, 1-
It is a crystalline random or block copolymer with butene, 1-hexene, 4-methyl-1-pentene, 1-octene, etc. Among these, a propylene homopolymer, preferably a propylene homopolymer having an isotactic index of 90 or more, more preferably 95 or more, and an ethylene content of 5 to 40 mol%, preferably 10 to 35 mol% A propylene/ethylene block copolymer is preferred. Polypropylene (A) usually has a melt flow rate (MFR(L); ASTM D 1238, L) of 1 to 100 g/10 min, preferably 10 to 50.
g/10min range. MFR(L) is 1
If it is less than 100 g/10 min, there is a risk that the ease of tearing into pieces will be impaired, while if it exceeds 100 g/10 min, the mechanical strength will tend to be low. The ethylene content of polypropylene (A) is 13 C−
This is a value measured by NMR method, and the isotactic index () is expressed as a percentage by weight of boiling n-heptane insoluble matter. The ethylene/α-olefin copolymer (C) used in the present invention has a density (ASTM D 1505): 0.890 to
0.940g/cm 3 , preferably 0.910 to 0.930g/
cm 3 , X-ray crystallinity: 10 to 64%, preferably 45 to 57% and a melting point of 110 to 127°C, preferably 115 to 125°C, and ethylene with a carbon number of 4 to 20, preferably 5 to 18 - It is a copolymer with olefin. If the density is less than 0.890 g/cm 3 and the crystallinity is less than 10%, the heat resistance will decrease. On the other hand, those with a crystallinity of more than 0.940 g/cm 3 and 64% are difficult to tear and cannot achieve the purpose of the present invention. Also, those with a melting point of less than 110°C will have poor heat resistance, and those with a melting point of over 127°C will be difficult to tear into pieces. Ethylene/α-olefin copolymer (C) usually has a melt flow rate (MFR(E): ASTM D
1238, E) is 1 to 50g/10min, preferably
It is in the range of 10 to 30g/10min. Those with MFR(E) of less than 1 g/10 min tend to have poor moldability, while those with MFR(E) of more than 50 g/10 min tend to have poor mechanical strength. The melting point of the ethylene/α-olefin copolymer (C) is one or more, often two or more, determined from the endothermic curve of a differential scanning calorimeter (DSC) at a heating rate of 10°C/min This is the highest temperature among the three endothermic peaks. In the ethylene/α-olefin copolymer (C), examples of α-olefins having 4 to 20 carbon atoms copolymerized with ethylene include 1-butene, 1-
Mention may be made of pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-tetradecene, 1-octadecene, or a mixture of at least two thereof. The ethylene/α-olefin copolymer (C) of the present invention having the above properties is produced by using a transition metal catalyst, such as a highly active titanium catalyst formed from a magnesium compound and a titanium compound, by a so-called medium-low pressure method. It can be obtained by polymerizing α-olefin in a proportion that provides the required density. In order to obtain the desired melt flow rate, a molecular weight regulator such as hydrogen may be used. Polymerization can be carried out by various methods such as slurry polymerization, gas phase polymerization, and high temperature solution polymerization. The partially hydrogenated block copolymer (D) of the present invention is a monovinyl-terminated aromatic hydrocarbon polymer block S.
constitutes 8 to 55% by weight, preferably 10 to 30% by weight of the block copolymer (D), and at least 2
preferably an average molecular weight of 5,000 to 125,000,
More preferably, a terminal monovinyl-substituted aromatic hydrocarbon polymer block S having a molecular weight of 10,000 to 50,000, and at least one, preferably an average molecular weight of 10,000 to 300,000, more preferably 30,000 to 150,000.
consisting of an intermediate conjugated diolefin polymer block B and 25% of the aromatic double bonds of the polymer block S.
Preferably 5% or less and at least 5% of the aliphatic double bonds of the conjugated diolefin polymer block B.
It is a block copolymer which is 80%, preferably 99% reduced by hydrogenation. The partially hydrogenated block copolymer (D) of the present invention is linear,
It may be either radial or branched.
Methods for making such polymers are well known in the art. The structure of the block copolymer (D) is determined by the polymerization method. For example, linear polymers can be prepared by subsequent introduction of the desired monomers into the reaction vessel when using an initiator such as lithium-alkyl or dilithiostilbene, or for three or more precursor polymers. produced by coupling agents with functional groups. Coupling takes place with polyfunctional coupling agents such as dihaloalkanes or alkenes, as well as certain polar compounds such as silicon halides, siloxanes or esters of monohydric alcohols and carboxylic acids. The presence of coupling residues in the polymer is negligible for suitable types of polymers forming part of the compositions of this invention. Similarly, in a general sense, specific structures may also be ignored. The invention applies in particular to the use of selectively hydrogenated polymers with the following typical types of sequences before hydrogenation: Polystyrene-polybutadiene-polystyrene (SBS) Polystyrene-polyisoprene-polystyrene (SIS) Poly(α-methylstyrene)-polybutadiene-poly(α-methylstyrene) and poly(α-
methylstyrene)-polyisoprene-poly(α-
(methylstyrene) Both polymer blocks S and B are monopolymers insofar as each block is based on at least one monomer characterizing it and insofar as the blocks S are individually based on monovinyl-substituted aromatic hydrocarbons. Alternatively, it may be a random copolymer. The monovinyl-substituted aromatic hydrocarbon is α
- includes methylstyrene and ring-substituted styrenes, especially styrene and analogs and congeners, including ring-methylated styrenes. Preferred monovinyl-substituted aromatic hydrocarbons are styrene and alpha-methylstyrene, with styrene being particularly preferred. Block B may consist of a homopolymer of butadiene or isoprene and a copolymer of one of these two conjugated diolefins with a monovinyl-substituted aromatic hydrocarbon, so long as conjugated diolefin units predominate. When the monomer used is butadiene,
Preferably, 35 to 55 mole percent of the condensed butadiene units in the butadiene polymer block have a 1,2-configuration. Therefore, when such a block is hydrogenated, the resulting products are ethylene and butene.
1 regular copolymer block (EB) or similar. If the conjugated diene used is isoprene, the resulting hydrogenation product is a regular copolymer block of ethylene and propylene (EP) or the like. Hydrogenation of the precursor block copolymer substantially completely hydrogenates at least 80% of the aliphatic double bonds;
On the other hand, it is carried out by using a catalyst consisting of a reaction product of an aluminum alkyl compound and a nickel or cobalt carboxylate or alkoxide under conditions such that about 25% or less of the aromatic double bonds are hydrogenated. preferable. Preferred block copolymers have at least 99% aliphatic double bonds.
is hydrogenated, while 5% or less of the aromatic double bonds are hydrogenated. In the partially hydrogenated block copolymer (D) used in the polypropylene composition of the present invention, at least 80% of the aliphatic double bonds of the conjugated diolefin polymer block S must be hydrogenated as described above. The so-called SBS block copolymer described above, in which the portion is not hydrogenated, has poor heat resistance and compatibility with polypropylene (A), etc., and therefore does not meet the purpose of the present invention. This partially hydrogenated block copolymer (D) is manufactured by Shell Co. (USA).
It is manufactured and sold as Clayton G. The polypropylene composition of the present invention includes the polypropylene (A): 20 to 90 parts by weight, preferably 30 to 60 parts by weight, and the ethylene/α-olefin copolymer (C): 80 to 10 parts by weight, preferably 70 to 60 parts by weight.
40 parts by weight and polypropylene (A) + ethylene α-
The partially hydrogenated block copolymer (D) is comprised of 1 to 100 parts by weight, preferably 5 to 70 parts by weight, per 100 parts by weight of the olefin copolymer (C). The amount of ethylene/α-olefin copolymer (C) is 10
If it is less than part by weight, the tearing property will not be improved;
If it exceeds 80 parts by weight, the heat fusion properties with polypropylene will be poor. If the amount of the partially hydrogenated block copolymer (D) is less than 1 part by weight, tearability will not be improved, while if it exceeds 100 parts by weight, it will be difficult to tear (too soft). The polypropylene composition of the present invention contains additives that are usually added to thermoplastic resins, such as heat stabilizers, weather stabilizers, antistatic agents, lubricants, slip agents, nucleating agents, and plasticizers such as dyes and hydrocarbon oils. Agents may be added to the extent that the purpose of the present invention is not impaired. In order to obtain the polypropylene composition of the present invention, the polypropylene (A), the ethylene/α-olefin copolymer (C) and the partially hydrogenated block copolymer (D) are mixed in the above ranges, for example, using a Henschel mixer, V- After mixing with a blender, ribbon blender, tumbler blender, etc., use a single screw extruder, twin screw extruder, kneader, etc.
A method of melt-kneading and granulating or pulverizing the mixture using a Banbury mixer or the like can be adopted. [Effects of the Invention] The polypropylene composition of the present invention differs from conventional compositions in which a partially hydrogenated block copolymer is added to polypropylene or polyethylene. Since it has excellent heat resistance, it is suitable as a sealing material for polypropylene containers, particularly biaxially oriented polypropylene containers that have excellent heat resistance and transparency. [Examples] Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples as long as the gist thereof is not exceeded. Control example 1 MFR(L): 55g/10min, total ethylene content:
Polypropylene block copolymer with 17 mol%, propylene/ethylene rubber content (ethylene content: 40 mol%, decalin solvent intrinsic viscosity [η] at 135°C: 2.2 dl/g): 21% by weight, polyethylene content: 2% by weight. Combined (hereinafter abbreviated as PPB-) and MFR(E):
18g/10min, density: 0.920g/10min, 4-methyl-1-pentene content: 3.2 mol%, crystallinity by X-ray: 51%, melting point: 121.8℃ (other than 116.6℃
Ethylene 4-
Methyl-1-pentene copolymer (hereinafter referred to as EMP-
) in the proportions shown in Table 1 using a Henschel mixer, and then using a 40 mmφ extruder (molding temperature:
Samples 1 to 5 were obtained by melt-kneading and granulation at 200°C.
Next, using such samples 1 to 5, a 5-ounce injection molding machine (molding temperature: 200°C) was used to mold the samples to a diameter of 30 mmφ.
Thickness on the circumference of 15mmφ diameter on a 1.5mm thick disk
A pull-off type cap having a thin film portion with a thickness of 0.25 mm and a ring with a diameter of 15 mmφ attached to one place on the circumference via a pillar with a diameter of 2.5 mmφ was molded. The performance of the obtained cap was evaluated by the following method. Pulling force (Kg): 200mm/ using a tensile tester
A tensile test was conducted at a tensile speed of min, and the stress (Kg) required to break the thin film portion was defined as the tearing force. Fusion strength (Kg): Cap is heated to 200℃ for 9 seconds.
It was fused to a polypropylene sheet at a pressure of 5 Kg/cm 2 (fused area 1.2 cm 2 ), and after cooling, a peel test was conducted at a peeling rate of 200 mm/min, and the stress (Kg) required for peeling was taken as the fusion strength. The results are shown in Table 1. In Table 1, if the shredding force is 7 kg or more, it is impossible to use it in actual use, that is, to shred it with your fingers.
If it weighs more than 6 kg, it can be torn into pieces, but it will hurt your fingers and is not suitable for actual use. Furthermore, if the welding strength is less than 40 kg, there is a risk of liquid leaking from the welded portion during transportation, which may pose a practical problem. As a result, PPB− and EMP
It can be seen that in combination with -, a well-balanced tearing force and fusion strength cannot be obtained at any blending ratio. Example 1 Partially hydrogenated polystyrene-polybutadiene-polystyrene block copolymer with PPB-, EMP- and polystyrene content: 29% by weight used in Control Example 1 (trade name: Kraton G1652, manufactured by Siel Corporation: hereinafter referred to as SEBS-) Samples 6 to 11 were obtained in the same manner as in Control Example 1 after mixing with a Henschel mixer in the proportions shown in Table 2. Next, a cap was molded by the method described in Comparative Example 1, and its performance was evaluated. The results are shown in Table 2. As a result, it can be seen that Samples 7 to 10 have compositions with a good balance between tearing force and fusion strength. Comparative Example 1 Instead of SEBS- used in Example 1,
MFR(L): 2.9g/10min, ethylene content: 81 mol%, melting point: 48℃, crystallinity by
(abbreviated as EPR-) or MFR(L): 0.4g/10min,
Propylene-ethylene random copolymer (hereinafter abbreviated as PER-) with ethylene content: 40 mol% (X-ray crystallinity 3%) was used to blend each in the proportions shown in Table 2 (Samples 12 and 13). ) except for Example 1.The results are shown in Table 2.As a result, instead of SEBS-, EPR- or
The one using PER- has a high fusion strength, but
It can be seen that the tearing force is too large and is not suitable for actual use. Comparative Example 2 Instead of EMP- used in Example 1, MFR
(E): 0.8g/10min, density 0.954g/10min, X-ray crystallinity: 70%, melting point: 131℃ high-density polyethylene (hereinafter abbreviated as HDPE-), or MFR
(E): 6.5g/10min, density: 0.917g/10min, X
Using high-pressure low density polyethylene (hereinafter abbreviated as HPPE-) with linear crystallinity: 48% and melting point: 106°C, each was blended in the proportions shown in Table 3 (Sample 14
and 15) were carried out in the same manner as in Example 1. The results are shown in Table 3. As a result, instead of EMP−,
Those using HDPE- or HPPE-
It can be seen that the tearing force is large and it is not suitable for actual use. Example 2 Instead of SEBS- used in Example 1, a partially hydrogenated polystyrene-polybutadiene-polystyrene block copolymer compound (trade name: Elastomer Compound AR 800C, manufactured by Aron Kasei Co., Ltd., hereinafter abbreviated as SEBS-) was used, Example 1 except for (sample) where each is blended in the proportions shown in Table 3
I went in the same way. The results are shown in Table 4. It can be seen from Table 4 that all of the compositions have a good balance between tearing force and fusion strength.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリプロピレン(A):20ないし90重量部、密
度:0.890ないし0.940g/cm3、X線による結晶化
度:10ないし64%及び融点:110ないし127℃のエ
チレンと炭素数4ないし20のα−オレフインとの
共重合体(C):80ないし10重量部、及び ポリプロピレン(A)+エチレン・α−オレフイン
共重合体(C)=100重量部に対して、末端モノビニ
ル置換芳香族炭化水素重合体ブロツクSがブロツ
ク共重合体(D)の8ないし55重量%を構成し、少な
くとも2つの末端モノビニル置換芳香族炭化水素
重合体ブロツクS及び少なくとも1つの中間共役
ジオレフイン重合体ブロツクBよりなり、且つ重
合体ブロツクSの芳香族二重結合の25%以下及び
共役ジオレフイン重合体ブロツクBの脂肪族二重
結合の少なくとも80%が水素添加によつて還元さ
れている部分水添ブロツク共重合体(D):1ないし
100重量部とからなることを特徴とするポリプロ
ピレン組成物。
[Claims] 1 Polypropylene (A): 20 to 90 parts by weight, density: 0.890 to 0.940 g/cm 3 , X-ray crystallinity: 10 to 64%, and melting point: 110 to 127°C, ethylene and carbon. Copolymer (C) with α-olefin number 4 to 20: 80 to 10 parts by weight, and polypropylene (A) + ethylene/α-olefin copolymer (C) = 100 parts by weight, monovinyl terminal The substituted aromatic hydrocarbon polymer block S constitutes 8 to 55% by weight of the block copolymer (D), at least two terminal monovinyl substituted aromatic hydrocarbon polymer blocks S and at least one intermediate conjugated diolefin polymer. Partial hydrogenation consisting of block B, in which not more than 25% of the aromatic double bonds of polymer block S and at least 80% of the aliphatic double bonds of conjugated diolefin polymer block B have been reduced by hydrogenation. Block copolymer (D): 1 or
100 parts by weight of a polypropylene composition.
JP27406484A 1984-12-27 1984-12-27 Polypropylene composition Granted JPS61152752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27406484A JPS61152752A (en) 1984-12-27 1984-12-27 Polypropylene composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27406484A JPS61152752A (en) 1984-12-27 1984-12-27 Polypropylene composition

Publications (2)

Publication Number Publication Date
JPS61152752A JPS61152752A (en) 1986-07-11
JPH056576B2 true JPH056576B2 (en) 1993-01-26

Family

ID=17536462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27406484A Granted JPS61152752A (en) 1984-12-27 1984-12-27 Polypropylene composition

Country Status (1)

Country Link
JP (1) JPS61152752A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668073B2 (en) * 1987-09-30 1997-10-27 筒中プラスチック工業株式会社 Molding resin composition
JP2657295B2 (en) * 1987-09-30 1997-09-24 筒中プラスチック工業株式会社 Molding resin composition
JP2592283B2 (en) * 1988-03-23 1997-03-19 富士写真フイルム株式会社 Container cap for photographic film patrone
JP2689384B2 (en) * 1988-04-21 1997-12-10 旭化成工業株式会社 Polyolefin resin composition
JPH082671Y2 (en) * 1988-12-08 1996-01-29 富士写真フイルム株式会社 Container body for photographic film patrone
JP2500391B2 (en) * 1990-12-21 1996-05-29 旭化成工業株式会社 Flexible and heat resistant elastomer composition
CN1098306C (en) * 1999-09-24 2003-01-08 中国科学院化学研究所 High-density polyethylene composition and its pipe material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141233A (en) * 1982-02-16 1983-08-22 Asahi Chem Ind Co Ltd Thermoplastic polymer composition
JPS59109542A (en) * 1982-12-02 1984-06-25 マイルス・ラボラトリ−ス・インコ−ポレ−テツド Material for soft vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141233A (en) * 1982-02-16 1983-08-22 Asahi Chem Ind Co Ltd Thermoplastic polymer composition
JPS59109542A (en) * 1982-12-02 1984-06-25 マイルス・ラボラトリ−ス・インコ−ポレ−テツド Material for soft vessel

Also Published As

Publication number Publication date
JPS61152752A (en) 1986-07-11

Similar Documents

Publication Publication Date Title
EP0664327B1 (en) Adhesive resin composition
US5213744A (en) Process for making polyolefin films
KR100909394B1 (en) Ethylene Copolymer Composition and Easily Opened Seal Material Using the Same
JP4827082B2 (en) Olefin polymer composition and easy-open sealing material using the same
US5753755A (en) Resin composition and molded article of the same
AU602975B2 (en) Polyolefine films
JPH056576B2 (en)
JP2652507B2 (en) Resin composition and biaxially stretched film, production method thereof, and food packaging material
JP4326775B2 (en) Ethylene copolymer composition and easy-open sealing material using the same
JP5048991B2 (en) Resin composition for sealing material
JP2004131627A (en) Ethylene copolymer composition and easily openable sealing material using the same
JPH10237405A (en) Adhesive composition
JP3582389B2 (en) Stretch film for packaging
JP7006329B2 (en) Thermoplastic resin composition, easy-to-open container lid material and easy-to-open container
WO1996028507A1 (en) 4-methyl-1-pentene polymer composition
JPS58185635A (en) Polypropylene composition for use in packaging material
JP3599869B2 (en) Ethylene copolymer composition and easy-open seal material using the same
TWI770397B (en) Hydrogenated block copolymer
JPH0579697B2 (en)
JP2008095045A (en) Heat-sealing resin composition
JP3812192B2 (en) Stretch film for packaging
JP3828940B2 (en) Heat-sealable resin composition
JPS6335642A (en) Polypropylene resin composition
JPH0245362A (en) Pull-open cap with hinge
JPH11269319A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term