JPH0565089B2 - - Google Patents

Info

Publication number
JPH0565089B2
JPH0565089B2 JP63010348A JP1034888A JPH0565089B2 JP H0565089 B2 JPH0565089 B2 JP H0565089B2 JP 63010348 A JP63010348 A JP 63010348A JP 1034888 A JP1034888 A JP 1034888A JP H0565089 B2 JPH0565089 B2 JP H0565089B2
Authority
JP
Japan
Prior art keywords
temperature
hot metal
slag
value
standard deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63010348A
Other languages
Japanese (ja)
Other versions
JPH01185422A (en
Inventor
Juji Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63010348A priority Critical patent/JPH01185422A/en
Publication of JPH01185422A publication Critical patent/JPH01185422A/en
Publication of JPH0565089B2 publication Critical patent/JPH0565089B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶銑温度測定方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for measuring hot metal temperature.

より詳述すれば、本発明は、その溶銑温度を放
射温度計で測定する場合に、鉱滓(スラグ)によ
る測定誤差を自動的に補正することができる、溶
銑温度測定方法に関するものである。
More specifically, the present invention relates to a hot metal temperature measuring method that can automatically correct measurement errors due to slag when measuring the hot metal temperature with a radiation thermometer.

(従来の技術) 高炉を出た溶銑は溶銑樋を経て、まずスキンマ
ーにより鉱滓除去が行われ、次いで傾注樋を経て
トピード車などの溶銑運搬車に注入され、次工程
での処理のため所定場所に運搬される。この際、
スキンマーで鉱滓を除去してから溶銑温度の測定
が行われる。
(Conventional technology) Hot metal that leaves the blast furnace passes through a hot metal trough, where slag is first removed by a skimmer, and then through a tilting trough, it is poured into a hot metal transport vehicle such as a torpedo car, and then transported to a predetermined location for treatment in the next process. transported to. On this occasion,
The temperature of the hot metal is measured after removing the slag with a skimmer.

高炉において出銑時の溶銑温度は炉内状況を推
定するための重要な因子の一つであるが、鉱滓が
併存することから、正確な測定は難しい。
The temperature of hot metal during tapping in a blast furnace is one of the important factors for estimating the condition inside the furnace, but accurate measurement is difficult because slag coexists.

従来の放射温度計を用いた溶銑温度測定原理の
代表例を第1図に示す。
Figure 1 shows a typical example of the principle of hot metal temperature measurement using a conventional radiation thermometer.

すなわち、高炉出銑樋10で溶銑12の温度を
放射温度計14を用いて測定する場合に、放射温
度計14の出力信号を放射温度計変換器20に送
り、温度表示を行う。その場合、温度計14は黒
体(放射率=1)の温度に合わせて目盛されてい
るから、溶銑の放射率に合わせて補正値を設定す
る。溶銑の放射率はその温度によつても多少変わ
る。しかし、溶銑上を鉱滓16が浮流すると、鉱
滓の方が放射率が溶銑よりも大きいから、放射温
度計は見掛上高い温度を指示する。また冷却した
鉱滓が浮流してくれば、低温を示すこともある。
That is, when measuring the temperature of hot metal 12 in the blast furnace tap trough 10 using the radiation thermometer 14, the output signal of the radiation thermometer 14 is sent to the radiation thermometer converter 20 to display the temperature. In that case, since the thermometer 14 is calibrated in accordance with the temperature of a black body (emissivity=1), the correction value is set in accordance with the emissivity of the hot metal. The emissivity of hot metal changes somewhat depending on its temperature. However, when the slag 16 floats on the hot metal, the radiation thermometer indicates an apparently higher temperature because the emissivity of the slag is higher than that of the hot metal. Also, if cooled slag floats, it may indicate a low temperature.

溶銑の温度を測定するのが目的であるから、鉱
滓による異常温度指示はノイズ(雑音)というべ
きである。
Since the purpose is to measure the temperature of hot metal, abnormal temperature indications from slag should be considered noise.

ところで、従来の放射温度計変換器20は簡単
な処理装置で、図示したように放射率補正値設
定、ピーク値検出、および平均化(平均温度)な
どの機能を備えている。しかし、従来の放射温度
計では第1図に示す変換器の機能が鉱滓の浮流に
よつて完全には作動しない。すなわち、 (1) 放射率補正値設定機能 設定値は固定式で、溶銑と鉱滓とを識別する
機能を備えていないから、誤つた温度を指示す
ることがある。
By the way, the conventional radiation thermometer converter 20 is a simple processing device, and as shown in the figure, it has functions such as emissivity correction value setting, peak value detection, and averaging (average temperature). However, in the conventional radiation thermometer, the function of the converter shown in FIG. 1 is not fully activated due to the floating flow of slag. That is, (1) Emissivity correction value setting function Since the set value is fixed and does not have a function to distinguish between hot metal and slag, it may indicate an incorrect temperature.

(2) ピーク値検出機能 鉱滓による温度指示のブレがあるので、ピー
ク値が信用できない。
(2) Peak value detection function The peak value is unreliable because the temperature indication is fluctuated by slag.

(3) 平均化機能 ある時間帯の平均温度も鉱滓による温度指示
のブレのために信用できない。
(3) Averaging function The average temperature during a certain time period is also unreliable due to fluctuations in the temperature indication due to slag.

例えば、従来方式にあつては、放射率補正値は
固定方式なので約1500℃の溶銑ならば補正値を
0.40〜0.45程度に設定する。そこへ鉱滓が浮流し
て来ると鉱滓の放射率は0.70〜0.75程度なので、
約60℃高い温度として測定されることになる。こ
の際必要なのは溶銑の温度であるから、多量に流
出する鉱滓は温度にブレを生じ、ピーク値、平均
温度の測定をも困難にしている。スキンマーによ
る鉱滓除去は必ずしも完全には行われず、鉱滓流
出は避けられず、したがつてそれに起因する測定
温度の誤差も不可避である。
For example, in the conventional method, the emissivity correction value is fixed, so if the temperature of hot metal is about 1500℃, the correction value is
Set it to about 0.40 to 0.45. When the slag floats there, the emissivity of the slag is about 0.70 to 0.75, so
The temperature will be measured as approximately 60°C higher. At this time, what is needed is the temperature of the hot metal, so the large amount of slag that flows out causes fluctuations in temperature, making it difficult to measure the peak value and average temperature. Removal of slag by the skinmer is not necessarily complete, and flow of slag is unavoidable, and errors in measured temperatures due to this are also unavoidable.

(発明が解決しようとする課題) かくして、本発明の一つの目的は、鉱滓の影響
を実質上除去した正確でかつ安価な溶銑温度を測
定する方法を提供することである。
(Problems to be Solved by the Invention) Thus, one object of the present invention is to provide an accurate and inexpensive method of measuring hot metal temperature that substantially eliminates the influence of slag.

本発明の別の目的は、正確な溶銑温度を測定す
ることにより、高炉状況の正確な把握を可能と
し、安定した操業を行う方法を提供することであ
る。
Another object of the present invention is to provide a method that enables accurate grasping of blast furnace conditions and stable operation by measuring accurate hot metal temperature.

(課題を解決するための手段) すでに述べたように、溶銑には鉱滓が混入して
流れることが不可避であつて、このことが従来の
放射温度計による溶銑温度測定上の問題点の原因
であつた。したがつて、この原因を解決するため
にパターン認識など放射温度計のデータ以外の識
別手段を併用するならば可能であろうが、それは
高価なセンサーと処理装置を追加しなければなら
ない。
(Means for solving the problem) As already mentioned, it is inevitable that hot metal flows mixed with slag, and this is the cause of problems in measuring hot metal temperature using conventional radiation thermometers. It was hot. Therefore, it would be possible to solve this problem by using identification methods other than radiation thermometer data, such as pattern recognition, but this would require adding expensive sensors and processing equipment.

そこで、さらに検討したところ、鉱滓による温
度測定の誤差を測定データの乱れとして処理する
ことにより温度測定誤差の自動的補正が可能とな
り、極めて容易に正確な温度測定が可能となるこ
とを知り、本発明を完成した。
After further investigation, we learned that by treating temperature measurement errors caused by slag as disturbances in the measurement data, it is possible to automatically correct temperature measurement errors, making it extremely easy to accurately measure temperature. Completed the invention.

すなわち、本発明者は、高炉出銑樋を流れる溶
銑の温度を放射温度計で測定する方法において、
溶銑表面に溶銑と放射率の異なる鉱滓が存在する
場合、測定データ上、溶銑と鉱滓とを区別するこ
とによつて、鉱滓による測定誤差を自動的に補正
し、精度よく溶銑温度を測定することを特徴とす
ることができることを見い出した。
That is, the present inventor has proposed a method for measuring the temperature of hot metal flowing through a blast furnace tap pipe using a radiation thermometer.
To accurately measure the hot metal temperature by automatically correcting measurement errors caused by the slag by distinguishing between the hot metal and the slag in the measurement data when there is slag with a different emissivity from the hot metal on the surface of the hot metal. We have discovered that it can be characterized by

ここに、本発明は、高炉出銑樋を流れる溶銑の
温度を放射温度計で測定する方法において、連続
的に測定したデータを記録し、所定周期で演算を
行い平均値と標準偏差を求め、その標準偏差と予
め設定したしきい値とを比較し、該しきい値より
標準偏差が大きい場合には前回出力値を保持し、
一方、該しきい値より標準偏差が小さい場合に
は、次いで前記平均値と予め設定した温度しきい
値と比較し、それよりも該平均値が小さい場合に
はそのまま出力し、一方それよりも該平均値が大
きい場合には鉱滓の輻射率を補正して温度補正を
行つてから出力することを特徴とする、鉱滓によ
る測定誤差を自動的に補正し、精度よく溶銑温度
を測定することを特徴とする溶銑温度測定方法で
ある。
Here, the present invention provides a method for measuring the temperature of hot metal flowing through a blast furnace tap pipe with a radiation thermometer, in which continuously measured data is recorded, calculations are performed at predetermined intervals, and the average value and standard deviation are determined. Compare the standard deviation with a preset threshold, and if the standard deviation is larger than the threshold, hold the previous output value,
On the other hand, if the standard deviation is smaller than the threshold, then the average value is compared with a preset temperature threshold, and if the average value is smaller than that, it is output as is; If the average value is large, the emissivity of the slag is corrected and the temperature is corrected before being outputted.The measurement error due to the slag is automatically corrected and the hot metal temperature is accurately measured. This is a unique method for measuring hot metal temperature.

すなわち、本発明によれば上記測定誤差の自動
的補正手段としてその標準偏差および平均値をあ
るしきい値によつて整理するのであつて、例えば
標準偏差が余り大きくなる場合には前回のデータ
(出力値)をそのまゝ使用し、一方、平均値があ
るしきい値を越える場合には鉱滓の放射率を変更
して測定値の補正を行うのである。いずれもかか
る操作はコンピユータの計算上行い得る事項であ
る。
That is, according to the present invention, as an automatic correction means for the measurement error, the standard deviation and average value are sorted by a certain threshold value. For example, when the standard deviation becomes too large, the previous data ( On the other hand, if the average value exceeds a certain threshold value, the emissivity of the slag is changed to correct the measured value. All of these operations can be performed by computer calculations.

このように、本発明は、従来の装置に溶銑温度
補正装置と名付ける比較的安価な処理装置(主体
はマイクロコンピユータ)を放射温度計変換器に
追加するだけで、あくまで放射温度計による温度
記録だけを用いて処理する方法である。
In this way, the present invention merely adds a relatively inexpensive processing device (mainly a microcomputer) called a hot metal temperature correction device to the radiation thermometer converter to the conventional device, and the temperature can only be recorded by the radiation thermometer. This is a method of processing using

(作用) ここで、本発明にかかる方法による処理以前の
従来の方法による温度記録の一例を第2図にグラ
フで示した。
(Function) Here, an example of temperature recording by the conventional method before processing by the method according to the present invention is shown graphically in FIG.

図示グラフから明らかなように、高炉からの出
銑が開始してから測定温度は上昇するが、当初
100分間程度までは比較的安定した温度を示すが、
鉱滓の流出が多くなるにつれ、計測温度は大幅に
変動するようになる。しかし、ある時間経過後、
例えば、180分経過後は鉱滓の流出はみられなく
なり、再び安定した測定温度を呈するようにな
る。このときの最大測定温度差は61℃もあるとい
われている。
As is clear from the illustrated graph, the measured temperature rises after the start of tapping from the blast furnace, but initially
The temperature remains relatively stable for about 100 minutes, but
As more slag flows out, the measured temperature begins to fluctuate significantly. However, after a certain period of time,
For example, after 180 minutes, no slag is seen flowing out, and the measured temperature becomes stable again. The maximum measured temperature difference at this time is said to be as much as 61 degrees Celsius.

ここに、本発明によれば、図中、100分経過後
の出力変動が自動的に補正される。溶銑温度補正
装置にはマイクロコンピユータを使用する。その
場合の入力信号処理(演算処理)を第3図に詳細
に説明する。
Here, according to the present invention, the output fluctuation after 100 minutes in the figure is automatically corrected. A microcomputer is used for the hot metal temperature correction device. The input signal processing (arithmetic processing) in that case will be explained in detail with reference to FIG.

すなわち、まず、測定データの標準偏差(σ)
を計算によつて求め、次いでその標準偏差(σ)
とあるしきい値(B)とを比較する。もし、標準偏差
(σ)が余りにも大きい場合には前回の出力値を
その出力値とし、一方、その標準偏差がある範囲
内にある場合、次に、測定データの平均値()
がこれもしきい値であるHと比較する。このとき
平均値()が十分小さい場合、それを出力値と
し、一方、それ以上の場合には温度計等のための
鉱滓の放射率(ε)を補正し、出力温度の補正を
自動的に行う。
That is, first, the standard deviation (σ) of the measurement data
is calculated, and then its standard deviation (σ)
Compare with a certain threshold (B). If the standard deviation (σ) is too large, the previous output value is used as the output value, while if the standard deviation is within a certain range, then the average value () of the measured data is used.
is compared with H, which is also a threshold value. At this time, if the average value () is small enough, it is used as the output value, and if it is larger than that, the emissivity (ε) of the slag for the thermometer etc. is corrected, and the output temperature is automatically corrected. conduct.

本発明の方法は、自動補正装置が比較的安価に
でき、しかもリアルタイムで溶銑の正確な温度を
知ることができるなど、実用上の利点は大きい。
The method of the present invention has great practical advantages, such as the automatic correction device being relatively inexpensive and the accurate temperature of the hot metal being known in real time.

(実施例) 第1図に示すと同様な構成により本発明を実施
した。
(Example) The present invention was implemented using a configuration similar to that shown in FIG.

本発明にかかる温度計測は第3図に準じて行つ
た。
Temperature measurement according to the present invention was carried out according to FIG.

本発明の放射温度計と従来の熱電対(消耗形)
とで同一溶銑を同時に高炉出銑樋における同一点
で温度測定した。
Radiation thermometer of the present invention and conventional thermocouple (consumable type)
The temperature of the same hot metal was measured simultaneously at the same point in the blast furnace tap runner.

結果を第4図にまとめて示す。 The results are summarized in Figure 4.

指示値は平均値に対して±10℃の範囲に入つて
いる。熱電対の値が正しいと仮定すると放射温度
計の指示が平均で15℃低く出ているのは、放射率
ε=0.45としているからである。過去の平均値と
してε=0.45を用いたのである。
The indicated value is within ±10°C of the average value. Assuming that the thermocouple value is correct, the radiation thermometer reading is 15°C lower on average because the emissivity ε = 0.45. ε=0.45 was used as the past average value.

なお、本実施例においてB=0.9、H=1550℃
とした。サンプリング周期は50msec、サンプリ
ング時間は3秒間隔であり、演算周期は60秒であ
つた。
In addition, in this example, B=0.9, H=1550°C
And so. The sampling period was 50 msec, the sampling time was at 3 second intervals, and the calculation period was 60 seconds.

(発明の効果) 以上詳述したように、放射温度計で溶銑の温度
を測定する場合に、従来の方法では約60℃高く出
ることがあつたが、本発明の方法では±10℃の誤
差範囲で精度よく測定できる。
(Effects of the invention) As detailed above, when measuring the temperature of hot metal with a radiation thermometer, the temperature of hot metal may be about 60°C higher using the conventional method, but the method of the present invention has an error of ±10°C. Can measure accurately within a range.

また、例えば、前述の実施例に用いた熱電対は
Pt−Pt(90)+Rh(10)の高価なもので、溶銑に浸漬
して使うと保護管を用いても数回の実験で使用で
きなくなり実用にはならないなど、熱電対を用い
ると温度測定が高価な操作となつてしまうが、本
発明によれば単なるデータ処理で精度良い温度測
定が可能となり、その実用上の意義は大きい。
Also, for example, the thermocouple used in the above example is
It is an expensive Pt-Pt (90) + Rh (10) type, and if it is immersed in hot metal, it will become unusable after a few experiments even if a protective tube is used, making it unusable. However, according to the present invention, it is possible to measure temperature with high accuracy through simple data processing, which has great practical significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の放射温度計の測定法の概略説
明図;第2図は、出銑開始後の従来方法による温
度測定記録を例示するグラフ;第3図は、本発明
にかかる溶銑温度補正方法の原理の概略説明図;
および第4図は、本発明にかかる方法において使
用する放射温度計と消耗形熱電対とで同一箇所の
溶銑を同時に測定した実施例のデータを示すグラ
フである。 10:出銑樋、12:溶銑、14:放射温度
計、16:鉱滓。
Fig. 1 is a schematic explanatory diagram of a conventional measurement method using a radiation thermometer; Fig. 2 is a graph illustrating a temperature measurement record by the conventional method after the start of tapping; Fig. 3 is a graph showing the temperature of hot metal according to the present invention. A schematic illustration of the principle of the correction method;
and FIG. 4 is a graph showing data of an example in which hot metal at the same location was simultaneously measured using a radiation thermometer and a consumable thermocouple used in the method according to the present invention. 10: Tapping trough, 12: Hot metal, 14: Radiation thermometer, 16: Slag.

Claims (1)

【特許請求の範囲】[Claims] 1 高炉出銑樋を流れる溶銑の温度を放射温度計
で測定する方法において、連続的に測定したデー
タを記録し、所定周期で演算を行い平均値と標準
偏差を求め、その標準偏差と予め設定したしきい
値とを比較し、該しきい値より標準偏差が大きい
場合には前回出力値を保持し、一方、該しきい値
より標準偏差が小さい場合には、次いで前記平均
値と予め設定した温度しきい値と比較し、それよ
りも該平均値が小さい場合にはそのまま出力し、
一方それよりも該平均値が大きい場合には鉱滓の
輻射率を補正して温度補正を行つてから出力する
ことを特徴とする、鉱滓による測定誤差を自動的
に補正し、精度よく溶銑温度を測定することを特
徴とする溶銑温度測定方法。
1 In the method of measuring the temperature of hot metal flowing through the blast furnace tap trough using a radiation thermometer, the continuously measured data is recorded, calculations are performed at a predetermined period to determine the average value and standard deviation, and the standard deviation and preset value are calculated. If the standard deviation is larger than the threshold value, the previous output value is held; on the other hand, if the standard deviation is smaller than the threshold value, then the average value and the preset value are compared. Compare it with the temperature threshold value, and if the average value is smaller than that, output it as is,
On the other hand, if the average value is larger than that, the emissivity of the slag is corrected, the temperature is corrected, and then output. A method for measuring hot metal temperature.
JP63010348A 1988-01-20 1988-01-20 Method for measuring temperature of molten iron Granted JPH01185422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63010348A JPH01185422A (en) 1988-01-20 1988-01-20 Method for measuring temperature of molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63010348A JPH01185422A (en) 1988-01-20 1988-01-20 Method for measuring temperature of molten iron

Publications (2)

Publication Number Publication Date
JPH01185422A JPH01185422A (en) 1989-07-25
JPH0565089B2 true JPH0565089B2 (en) 1993-09-17

Family

ID=11747686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63010348A Granted JPH01185422A (en) 1988-01-20 1988-01-20 Method for measuring temperature of molten iron

Country Status (1)

Country Link
JP (1) JPH01185422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236898A (en) * 2008-03-04 2009-10-15 Nippon Steel Corp Radiation temperature measuring device and radiation temperature measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052238B2 (en) * 2014-05-30 2016-12-27 Jfeスチール株式会社 Correction method and determination method of time-series two-dimensional distribution data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236898A (en) * 2008-03-04 2009-10-15 Nippon Steel Corp Radiation temperature measuring device and radiation temperature measuring method

Also Published As

Publication number Publication date
JPH01185422A (en) 1989-07-25

Similar Documents

Publication Publication Date Title
EP1066501A1 (en) Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
JPH0565089B2 (en)
JPS5811821A (en) Measuring method for molten steel temperature
CN114838830A (en) Method, device and system for detecting temperature of iron-donating process section
GB2084329A (en) Electronic Thermometer
SU554474A1 (en) The method of automatic control of the temperature of the metal in the converter
JP3334528B2 (en) Method and apparatus for measuring temperature of molten metal
JPH0566160A (en) Calorimetric unit and method
JPH042709A (en) Instrument for continuously measuring temperature of molten iron
SU141662A1 (en) High-speed method for measuring high temperature of molten metal by low-temperature sensors and device for its implementation
SU1350611A1 (en) Method of determining chemical composition of pig iron
KR900002441Y1 (en) Device for measuring the temperature of molten metal for blast furnace
SU787965A1 (en) Method of detecting liquidus portion of thermogram
KR970001967B1 (en) Thermometer
JP3174478B2 (en) How to measure the temperature of the melt
CN115943220A (en) Converter blowing control method and converter blowing control system
JP2750720B2 (en) Temperature detector deterioration correction device
JPH10160578A (en) Measurement quality judging method for consumable type optical fiber thermometer
JPS62263913A (en) Detection of outflow of converter slag
SU438910A1 (en) Carbon concentration sensor in liquid metal
SU1260801A1 (en) Thermoelectrical device for checking metals and alloys
Fujieda et al. Instantaneous heat effect estimated with microcomputer-aided heat exchange calorimetry involving analog computation
JPH0321463Y2 (en)
JPH01233329A (en) Detecting method of temperature of hot metal
JPS6345527B2 (en)