JPH042709A - Instrument for continuously measuring temperature of molten iron - Google Patents

Instrument for continuously measuring temperature of molten iron

Info

Publication number
JPH042709A
JPH042709A JP2101672A JP10167290A JPH042709A JP H042709 A JPH042709 A JP H042709A JP 2101672 A JP2101672 A JP 2101672A JP 10167290 A JP10167290 A JP 10167290A JP H042709 A JPH042709 A JP H042709A
Authority
JP
Japan
Prior art keywords
hot metal
temp
molten iron
radiation thermometer
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2101672A
Other languages
Japanese (ja)
Inventor
Masaaki Sakurai
桜井 雅昭
Takashi Sumikama
隆志 炭竃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2101672A priority Critical patent/JPH042709A/en
Publication of JPH042709A publication Critical patent/JPH042709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To automatically detect variation of emissivity and to measure temp. of molten iron with high accuracy by measuring temp. at tip part in a protecting tube submerged into the molten iron with a radiation thermometer and correcting this output with the measured temp. with a consumable type R thermocouple. CONSTITUTION:The hemisphere-shaped tip part of radiation thermometer composed of a detecting head 5, connecting tube 6 and the protecting tube 7 is submerged into the molten iron 2 flowing down in an iron tapping trough 1. This radiation thermometer detects the temp. at the tip part in the above protecting tube 7 and this is processed with a signal processing circuit 10 to output the temp. signal. This temp. signal is recorded with a recorder 11 and also, the molten iron temp. is calculated with a computer 12 based on the above output and the prescribed correction factor. In the above molten iron temp. continuously measuring instrument, based on the output of the above radiation thermometer and the molten iron temp. measured with the consumable type R thermocouple 13, the above correction factor is corrected and the corrected correction factor is used to execute calculation of the molten iron temp. By this method, regardless of the variation of emissivity of the molten iron 2 and the protecting tube 7, the temp. of molten iron 2 can be measured with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は溶銑温度連続測定装置、特に放射率の変動の
影響の排除に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a continuous measurement device for hot metal temperature, and in particular to eliminating the influence of emissivity fluctuations.

[従来の技術] 第6図は従来の溶銑温度連続測定装置の構成を示す説明
図である。図において、(1)は出銑樋、(2)は出銑
樋(1)内を流れる溶銑であり、(3)は溶銑(2)上
に浮遊するスラグである。(4)は出銑樋(1)を覆う
ようにして取り付けられたカバーである。(5)は放射
温度計の検出ヘッドであり、(6)は接続管、(7)は
先端部が閉塞された保護管である。この放射温度計(5
〉、接続管(8)及び保護管(7)は一体に構成されて
おり、カバー(4)の開口部を介して出銑樋(1)の底
部側に突出し、その保護管(7)が溶銑(2)内に浸漬
している。
[Prior Art] FIG. 6 is an explanatory diagram showing the configuration of a conventional continuous hot metal temperature measuring device. In the figure, (1) is the tap water, (2) is the hot metal flowing in the tap water (1), and (3) is the slag floating on the hot metal (2). (4) is a cover attached to cover the tap trough (1). (5) is a detection head of the radiation thermometer, (6) is a connecting tube, and (7) is a protective tube with a closed tip. This radiation thermometer (5
〉, the connecting pipe (8) and the protective pipe (7) are integrally constructed, and protrude to the bottom side of the tap trough (1) through the opening of the cover (4), and the protective pipe (7) Immersed in hot metal (2).

従来の溶銑温度連続測定装置は以上のように構成されて
おり、放射温度計の検出ヘッド(5)は出銑樋(1)を
流れる溶銑(2)の温度を連続的に測定している。この
とき、保護管(7)は溶銑(2)内に浸漬した状態であ
り、従って、スラグ(3)の影響を受けずに、溶銑(2
)のエネルギーを受けて溶銑(2)の温度を測定してい
る。
The conventional hot metal continuous temperature measurement device is configured as described above, and the detection head (5) of the radiation thermometer continuously measures the temperature of the hot metal (2) flowing through the tap pipe (1). At this time, the protective tube (7) is immersed in the hot metal (2), and therefore is not affected by the slag (3).
) is used to measure the temperature of hot metal (2).

[発明が解決しようとする課題] 上記のような従来の溶銑温度連続測定装置はスラグ(3
)の影響を受けずに溶銑(2)のエネルギーを受けて溶
銑の温度を測定しているが、溶銑樋(1)の溶銑(2)
の放射率や、保護管(7)自体の放射率が経時的に変化
すると、測定誤差を発生するという問題点があった。
[Problem to be solved by the invention] The conventional hot metal temperature continuous measuring device as described above is
) The temperature of the hot metal is measured by receiving the energy of the hot metal (2) without being affected by the hot metal (2) in the hot metal gutter (1).
There is a problem in that measurement errors occur if the emissivity of the protection tube (7) or the emissivity of the protective tube (7) itself changes over time.

この発明は、かかる問題点を解決するためになされたも
のであり、上述のような放射率の変化を自動的に検出し
て高精度に溶銑の温度を測定することを可能にした溶銑
温度連続測定装置を提供することを目的とする。
This invention was made in order to solve this problem, and it is possible to automatically detect the change in emissivity as described above and measure the temperature of hot metal with high precision. The purpose is to provide a measuring device.

[課題を解決するための手段] この発明に係る溶銑温度連続測定装置は、先端部が半球
状で、溶銑中に浸漬される保護管の内部先端部の温度を
測定する放射温度計と、放射温度計の出力と所定の補正
係数とに基づいて溶銑温度を演算する溶銑温度演算手段
と、放射温度計の出力と消耗型R熱電対て測定された溶
銑温度とに基づいて補正係数を校正し、校正された補正
係数を前記溶銑温度演算手段に出力する補正係数演算手
段とを有する。
[Means for Solving the Problems] A continuous hot metal temperature measuring device according to the present invention includes a radiation thermometer having a hemispherical tip and measuring the temperature at the internal tip of a protection tube immersed in hot metal; A hot metal temperature calculation means that calculates the hot metal temperature based on the output of the thermometer and a predetermined correction coefficient, and a correction coefficient that is calibrated based on the output of the radiation thermometer and the hot metal temperature measured by the consumable type R thermocouple. and correction coefficient calculation means for outputting the calibrated correction coefficient to the hot metal temperature calculation means.

また、この発明に係る溶銑温度連続測定装置は、先端部
が半球状で、溶銑中に浸漬される保護管の内部先端部の
温度を所定の放射率に基づいて測定し溶銑温度として出
力する放射温度計と、放射温度計の出力と消耗型R熱電
対で測定された溶銑温度とに基づいて放射率を校正し、
校正された放射率を前記放射温度計に出力する放射率演
算手段とを有する。
Further, the continuous hot metal temperature measuring device according to the present invention has a hemispherical tip and measures the temperature of the internal tip of the protective tube immersed in the hot metal based on a predetermined emissivity and outputs it as the hot metal temperature. calibrating the emissivity based on the thermometer and the output of the radiation thermometer and the hot metal temperature measured by the consumable R thermocouple;
and emissivity calculation means for outputting the calibrated emissivity to the radiation thermometer.

[作 用コ この発明においては、放射温度計の出力と所定の補正係
数とに基づいて溶銑温度を演算して求めるが、その補正
係数を放射温度計の出力と消耗型R熱電対で測定された
溶銑温度とに基づいて校正している。このため、放射温
度計の放射率が変化してもその変化を補正係数を校正す
ることにより吸収しているので、測定結果は高精度なも
のとなっている。
[Function] In this invention, the hot metal temperature is calculated and determined based on the output of the radiation thermometer and a predetermined correction coefficient. Calibration is based on the hot metal temperature. Therefore, even if the emissivity of the radiation thermometer changes, the change is absorbed by calibrating the correction coefficient, resulting in highly accurate measurement results.

また、この発明においては、放射温度計の放射率を放射
温度計の出力と消耗型R熱電対で測定された溶銑温度と
に基づいて校正している。このため、放射温度計の放射
率が変化してもその変化を検出して測定しているので、
測定結果は高精度なものとなっている。
Further, in this invention, the emissivity of the radiation thermometer is calibrated based on the output of the radiation thermometer and the hot metal temperature measured by the consumable type R thermocouple. For this reason, even if the emissivity of the radiation thermometer changes, the change is detected and measured.
The measurement results are highly accurate.

[実施例〕 第1図はこの発明の一実施例に係る溶銑温度連続測定装
置の構成を示すブロック図、第2図はこの溶銑温度連続
測定装置と測定部分との関係を示した説明図である。
[Example] Fig. 1 is a block diagram showing the configuration of a continuous hot metal temperature measuring device according to an embodiment of the present invention, and Fig. 2 is an explanatory diagram showing the relationship between the continuous hot metal temperature measuring device and measurement parts. be.

第2図において第6図と同一符号のものは同−又は相当
部分であり、その説明は省略する。(10)は放射温度
計の検出ヘッド(5)の検出した信号を処理して温度信
号を出力する信号処理回路である。
In FIG. 2, the same reference numerals as in FIG. 6 are the same or corresponding parts, and the explanation thereof will be omitted. (10) is a signal processing circuit that processes the signal detected by the detection head (5) of the radiation thermometer and outputs a temperature signal.

(11)は記録計であり、信号処理回路(10)の出力
である温度信号を記録する。(12)は電子計算機であ
り、信号処理回路(10)の出力を信号処理して放射率
の変化を考慮した溶銑温度を求める。(18)は消耗型
R熱電対(13)であり、これは常時設置されるのはな
く、例えば1日に1回程度の割合で設置され、溶銑(2
)の温度を測定する。
(11) is a recorder that records the temperature signal that is the output of the signal processing circuit (10). (12) is an electronic computer which performs signal processing on the output of the signal processing circuit (10) to obtain the hot metal temperature taking into account changes in emissivity. (18) is a consumable R thermocouple (13), which is not installed all the time, but is installed, for example, once a day.
) to measure the temperature.

次に、第1図において(20)は第2図の検出ヘッド(
5)及び信号処理回路(lO)から構成される放射温度
計てあり、この放射温度計(20)においては放射率は
一定であるものとして測定する。
Next, in FIG. 1, (20) is the detection head (20) in FIG.
5) and a signal processing circuit (lO), and this radiation thermometer (20) measures the emissivity assuming that it is constant.

(21)〜(24)は電子計算機(12)の機能をそれ
ぞれ図示したものであり、(21)は放射温度計(20
)の出力と補正計数とに基づいて放射率を考慮した溶銑
温度を演算する溶銑温度演算手段である。(22)は温
度演算手段(21)の出力を送出する出力手段である。
(21) to (24) respectively illustrate the functions of the electronic computer (12), and (21) is the radiation thermometer (20).
) is a hot metal temperature calculation means that calculates the hot metal temperature in consideration of emissivity based on the output of 1 and the correction coefficient. (22) is an output means for sending out the output of the temperature calculation means (21).

(23)は消耗型R熱電対(13)の検出温度と温度演
算手段(21)で演算した溶銑温度とに基づいて補正計
数を校正する補正係数校正手段である。(24)は記憶
手段であり、所定の値の初期値が当初書き込まれ、その
後補正係数校正手段(24)により補正係数が校正され
ると順次書き換えられる。
(23) is a correction coefficient calibration means for calibrating a correction coefficient based on the temperature detected by the consumable type R thermocouple (13) and the hot metal temperature calculated by the temperature calculation means (21). (24) is a storage means, in which an initial value of a predetermined value is initially written, and then sequentially rewritten when the correction coefficient is calibrated by the correction coefficient calibrating means (24).

第3図は以上の構成からなる溶銑温度連続測定装置の動
作を示すフローチャートであり、以下このフローチャー
トに基づいてその動作説明をする。
FIG. 3 is a flowchart showing the operation of the hot metal temperature continuous measuring device having the above configuration, and the operation will be explained below based on this flowchart.

まず、補正係数の初期値k。を記憶手段(24)に記憶
する(811)。その後、温度演算手段(21)は放射
温度計(20)の出力と記憶手段(24)に設定されて
いる補正係数の初期値k。と基づいて溶銑温度を演算す
る(S12)。例えば、放射温度計(20)の出力をT
1とすると、溶銑温度T2は次式により得られる。
First, the initial value k of the correction coefficient. is stored in the storage means (24) (811). Thereafter, the temperature calculation means (21) calculates the output of the radiation thermometer (20) and the initial value k of the correction coefficient set in the storage means (24). The hot metal temperature is calculated based on (S12). For example, the output of the radiation thermometer (20) is T
1, the hot metal temperature T2 is obtained by the following equation.

T2−koTl ここで求められた溶銑温度T2は出力手段(22)によ
り出力される(813)。例えばCRTに表示したり、
或いは高炉を制御するためのエキスパートシステムの制
御データとして蓄積する。
T2-koTl The hot metal temperature T2 determined here is outputted by the output means (22) (813). For example, display it on a CRT,
Alternatively, it may be accumulated as control data for an expert system for controlling a blast furnace.

その後、補正係数校正手段(23)は消耗型R熱電対(
13)の測定結果が入力したかどうかを判断しく514
)、ここでは入力されていないものとすると、次に終了
の指示があるかどうかを判断しく5lB)、終了の指示
がない場合には上記の放射温度計(20)による測定値
に初期値k。の補正係数を乗算して溶銑温度T2を求め
ていく演算を繰り返していく(S12) 、  (S1
3)。
Thereafter, the correction coefficient calibration means (23) uses the consumable type R thermocouple (
514 to determine whether the measurement result of 13) has been input.
), and if it is not entered here, then it is necessary to judge whether there is an instruction to terminate or not (5lB), and if there is no instruction to terminate, the value measured by the radiation thermometer (20) above is set to the initial value k. . (S12), (S1
3).

次に、消耗型R熱電対(13)が設置されて溶銑樋(1
)の溶銑(2)中に浸漬され、その出力が補正係数校正
手段(23)に出力されると、補正係数校正手段(23
)は消耗型R熱電対(13)の入力があったことを判断
する(Si2)  そして、補正係数校正手段(23)
は消耗型R熱電対(13)で測定された溶銑温度と、そ
のとき溶銑温度演算手段(21)で演算された溶銑温度
T2とを比較して一致しているかどうかを判断する(8
15)。一致していると判断された場合には、補正係数
を校正する必要がないので、そのまま次の測定に進む(
S12)。
Next, the consumable type R thermocouple (13) is installed and the hot metal sluice (1
) and its output is output to the correction coefficient calibration means (23).
) determines that there is an input from the consumable type R thermocouple (13) (Si2) and the correction coefficient calibration means (23)
compares the hot metal temperature measured by the consumable R thermocouple (13) and the hot metal temperature T2 calculated by the hot metal temperature calculating means (21) to determine whether they match (8
15). If it is determined that they match, there is no need to calibrate the correction coefficient, and you can proceed to the next measurement (
S12).

一致していないと判断された場合には、次に補正係数の
校正演算をする(S17)。例えば、このときの消耗型
R熱電対(13)により測定された溶銑温度をTOとし
、放射温度計(20)で測定された溶銑温度T1との関
係で次式により補正係数に1を求める。
If it is determined that they do not match, then a correction calculation of the correction coefficient is performed (S17). For example, let the hot metal temperature measured by the consumable R thermocouple (13) at this time be TO, and calculate 1 as the correction coefficient in relation to the hot metal temperature T1 measured by the radiation thermometer (20) using the following equation.

kl−TL /TO そして、この校正された補正係数に1は記憶手段(24
)に記憶され、この補正係数に1が次に校正されるまで
温度演算手段(21)の演算において用いられる。
kl-TL /TO Then, 1 is set to this calibrated correction coefficient by the storage means (24
), and this correction coefficient is set to 1 and is used in calculations by the temperature calculation means (21) until the next calibration.

なお、この実施例においては、保護管(7)の放射率を
「1」に近付けるために、保護管(7)の浸漬深さLと
保護管(7)の半径rとが、L / r > 5となる
ように構成している。また、保護管(7)の材質として
はZ r B 2系セラミツクを使用している。
In this embodiment, in order to bring the emissivity of the protection tube (7) close to "1", the immersion depth L of the protection tube (7) and the radius r of the protection tube (7) are L/r. > 5. Furthermore, Z r B 2 series ceramic is used as the material for the protective tube (7).

第4図はこの他の実施例に係る溶銑温度連続測定装置の
構成を示ブロック図である。この実施例は放射温度計(
20)の放射率を消耗型R熱電対(13)の測定結果に
基づいて校正するようにしたものであり、第1図の実施
例の温度演算手段(21〉及び記憶手段(24)に相当
する構成がない。
FIG. 4 is a block diagram showing the configuration of a continuous hot metal temperature measuring device according to another embodiment. This example uses a radiation thermometer (
The emissivity of 20) is calibrated based on the measurement results of the consumable type R thermocouple (13), and corresponds to the temperature calculation means (21> and storage means (24)) in the embodiment shown in FIG. There is no configuration to do so.

第5図は以上の構成からなる溶銑温度連続測定装置の動
作を示すフローチャートであり、以下このフローチャー
トに基づいてその動作説明をする。
FIG. 5 is a flowchart showing the operation of the hot metal temperature continuous measuring device having the above configuration, and the operation will be explained below based on this flowchart.

まず、放射率の初期値ε。を放射温度計(20)に設定
する(S2L)。その後、放射温度計(20)は設定さ
れている放射率の初期値ε0に基づいて溶銑温度を測定
する(S22)。例えば、放射温度計(20)の検出ヘ
ッド(5)の検出データをT1とすると、溶銑温度T2
は次式により得られる。
First, the initial value ε of emissivity. is set on the radiation thermometer (20) (S2L). After that, the radiation thermometer (20) measures the hot metal temperature based on the set initial value ε0 of emissivity (S22). For example, if the detection data of the detection head (5) of the radiation thermometer (20) is T1, then the hot metal temperature T2
is obtained by the following equation.

T2−Tl /ε0 ここで測定された溶銑温度T2は出力手段(22)によ
り出力される(S23)。例えばCRTに表示したり、
或いは高炉を制御するためのエキスパートシステムの制
御データとして蓄積する。
T2-Tl/ε0 The hot metal temperature T2 measured here is outputted by the output means (22) (S23). For example, display it on a CRT,
Alternatively, it may be accumulated as control data for an expert system for controlling a blast furnace.

その後、放射率校正手段(23)は消耗型R熱電対(1
3)の測定結果が入力したかどうかを判断しく524)
 、ここでは入力されていないものとすると、終了の指
示があるかどうかを判断しく826)、終了の指示がな
い場合には上記の放射温度計(20)による測定を初期
値ε。の放射率に基づいて繰り返してい< (S22)
 、  (S23)。
Thereafter, the emissivity calibration means (23) uses the consumable type R thermocouple (1
524) to determine whether the measurement results of 3) have been input.
, here, it is assumed that there is no instruction to terminate or not (826), and if there is no instruction to terminate, the measurement by the radiation thermometer (20) is set to the initial value ε. It is repeated based on the emissivity of < (S22)
, (S23).

次に、消耗型R熱電対(13)が設置されて溶銑樋(1
)の溶銑(2)中に浸漬され、その出力が放射率校正手
段(23)に出力されると、放射率校正手段(23)は
消耗型R熱電対(13)の入力があったことを判断する
(S24)。そして、放射率校正手段(23)は消耗型
R熱電対(13)により測定された溶銑温度TOと、そ
のとき放射温度計(20)により測定された溶銑温度T
2とを比較して一致しているかどうかを判断する(S2
5)。一致していると判断された場合には、放射率を校
正する必要がないので、そのまま次の測定に進む(S2
2)。
Next, the consumable type R thermocouple (13) is installed and the hot metal sluice (1
) and its output is output to the emissivity calibration means (23). A judgment is made (S24). The emissivity calibration means (23) calculates the hot metal temperature TO measured by the consumable type R thermocouple (13) and the hot metal temperature T measured by the radiation thermometer (20) at that time.
2 and determine whether they match (S2
5). If it is determined that they match, there is no need to calibrate the emissivity, so proceed to the next measurement (S2
2).

一致していないと判断された場合には、次に放射率の校
正演算をする(S27)。例えば、このときの消耗型R
熱電対(13)により測定された溶銑温度TOと、放射
温度計(20)の検出ヘッド(5)の検出データT1と
により、校正後の放射率ε1を次式により求める。
If it is determined that they do not match, then a calibration calculation of emissivity is performed (S27). For example, in this case, the consumable type R
Based on the hot metal temperature TO measured by the thermocouple (13) and the detection data T1 of the detection head (5) of the radiation thermometer (20), the emissivity ε1 after calibration is determined by the following equation.

ε1−Tl /T。ε1-Tl/T.

そして、この校正された放射率ε1は放射温度計(20
)に設定され、次にこの放射率が校正されるまでこの放
射率ε1が用いられる。
Then, this calibrated emissivity ε1 is determined by the radiation thermometer (20
), and then this emissivity ε1 is used until this emissivity is calibrated.

なお、第3図及び第5図のフローチャートのスチップ(
S14) 、 (S24)の一致・不一致の判断に際し
ては、両者の差異が所定の範囲に入る場合も一致してい
るものとして扱ってもよいことはいうまでもない。
Note that the steps in the flowcharts in Figures 3 and 5 (
It goes without saying that when determining whether they match or do not match in S14) and (S24), even if the difference between the two falls within a predetermined range, it may be treated as a match.

[発明の効果コ 以上のようにこの発明によれば、補正係数又は放射率を
放射温度計の出力と消耗型R熱電対で測定された溶銑温
度とに基づいて校正するようにしたので、放射温度計の
放射率が変化してもその変化に対応した測定ができ、測
定結果は高精度なものとなっている。
[Effects of the Invention] As described above, according to the present invention, the correction coefficient or emissivity is calibrated based on the output of the radiation thermometer and the hot metal temperature measured by the consumable type R thermocouple. Even if the emissivity of the thermometer changes, measurements can be made that correspond to the changes, and the measurement results are highly accurate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る溶銑温度連続測定装
置の構成を示すブロック図、第2図はこの溶銑温度連続
測定装置と測定部分との関係を示した説明図である。第
3図は第1図の測定装置の動作を示すフローチャート、
第4図はこの発明の他の実施例に係る溶銑温度連続測定
装置の構成を示すブロック図、第5図は第4図の測定装
置の動作を示すフローチャート、第6図は従来の溶銑温
度連続測定装置の構成を示す説明図である。 代理人 弁理士 佐 々 木 宗 治 第11%lI 第2図 第3図 第 図
FIG. 1 is a block diagram showing the configuration of a continuous hot metal temperature measuring device according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the relationship between the continuous hot metal temperature measuring device and measurement parts. FIG. 3 is a flowchart showing the operation of the measuring device shown in FIG. 1;
Fig. 4 is a block diagram showing the configuration of a continuous hot metal temperature measuring device according to another embodiment of the present invention, Fig. 5 is a flowchart showing the operation of the measuring device of Fig. 4, and Fig. 6 is a conventional continuous hot metal temperature measuring device. FIG. 2 is an explanatory diagram showing the configuration of a measuring device. Agent Patent Attorney Muneharu Sasaki 11%lI Figure 2 Figure 3 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)先端部が半球状で、溶銑中に浸漬される保護管の
内部先端部の温度を測定する放射温度計と、放射温度計
の出力と所定の補正係数とに基づいて溶銑温度を演算す
る溶銑温度演算手段と、放射温度計の出力と消耗型R熱
電対で測定された溶銑温度とに基づいて補正係数を校正
し、校正された補正係数を前記溶銑温度演算手段に出力
する補正係数演算手段とを有することを特徴とする溶銑
温度連続測定装置。
(1) A radiation thermometer with a hemispherical tip that measures the temperature of the internal tip of the protective tube that is immersed in the hot metal, and calculates the hot metal temperature based on the output of the radiation thermometer and a predetermined correction coefficient. a correction coefficient that calibrates a correction coefficient based on the output of the radiation thermometer and the hot metal temperature measured by the consumable type R thermocouple, and outputs the calibrated correction coefficient to the hot metal temperature calculation means; 1. A continuous hot metal temperature measuring device, characterized in that it has a calculation means.
(2)先端部が半球状で、溶銑中に浸漬される保護管の
内部先端部の温度を所定の放射率に基づいて測定し溶銑
温度として出力する放射温度計と、放射温度計の出力と
消耗型R熱電対で測定された溶銑温度とに基づいて放射
率を校正し、校正された放射率を前記放射温度計に出力
する放射率演算手段とを有することを特徴とする溶銑温
度連続測定装置。
(2) A radiation thermometer with a hemispherical tip that measures the temperature of the internal tip of the protection tube immersed in hot metal based on a predetermined emissivity and outputs it as the hot metal temperature; Continuous hot metal temperature measurement characterized by having an emissivity calculation means for calibrating emissivity based on the hot metal temperature measured by the consumable type R thermocouple and outputting the calibrated emissivity to the radiation thermometer. Device.
JP2101672A 1990-04-19 1990-04-19 Instrument for continuously measuring temperature of molten iron Pending JPH042709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101672A JPH042709A (en) 1990-04-19 1990-04-19 Instrument for continuously measuring temperature of molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101672A JPH042709A (en) 1990-04-19 1990-04-19 Instrument for continuously measuring temperature of molten iron

Publications (1)

Publication Number Publication Date
JPH042709A true JPH042709A (en) 1992-01-07

Family

ID=14306859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101672A Pending JPH042709A (en) 1990-04-19 1990-04-19 Instrument for continuously measuring temperature of molten iron

Country Status (1)

Country Link
JP (1) JPH042709A (en)

Similar Documents

Publication Publication Date Title
US7168852B2 (en) Method and a device for thermal analysis of cast iron
US5259389A (en) Electronic clincal thermometer
US7637657B2 (en) Electronic thermometer
US6283629B1 (en) Method of calibrating a radiation thermometer
EP0801926A4 (en) Clinical radiation thermometer
US6035721A (en) Process for compensating for the incorrect operation of measuring devices caused by external influences
US7180054B2 (en) Methods and devices for erasing errors and compensating interference signals caused by gammagraphy in radiometric measuring systems
US20090067474A1 (en) Adjusting method and system thereof for a temperature sensing element
JPH042709A (en) Instrument for continuously measuring temperature of molten iron
EP0482562A2 (en) Electronic clinical thermometer
US6840671B2 (en) System and method for non-contact temperature sensing
GB2084329A (en) Electronic Thermometer
GB2259768A (en) Apparatus for determining the life time of a material which varies with temperature
EP0672245A1 (en) Humidity measuring instrument.
JPH0565089B2 (en)
JPH0192630A (en) Converter for radiation thermometer
JP2850481B2 (en) Residual chlorine meter
JP2584621B2 (en) Method for measuring surface temperature of steel
KR970001967B1 (en) Thermometer
JP3788327B2 (en) Electronic balance
JPH0477654A (en) Temperature correction method for thermomechanical analysis
SU1273749A1 (en) Method of measuring temperature
JPH05133927A (en) Ph measuring apparatus and method for calibrating the same
JPS6036924A (en) Device for measuring temperature change
JP2002340725A (en) Method for sensing leakage of cooling medium