JPS6345527B2 - - Google Patents

Info

Publication number
JPS6345527B2
JPS6345527B2 JP9935182A JP9935182A JPS6345527B2 JP S6345527 B2 JPS6345527 B2 JP S6345527B2 JP 9935182 A JP9935182 A JP 9935182A JP 9935182 A JP9935182 A JP 9935182A JP S6345527 B2 JPS6345527 B2 JP S6345527B2
Authority
JP
Japan
Prior art keywords
temperature
preheating
time
probe
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9935182A
Other languages
Japanese (ja)
Other versions
JPS58216922A (en
Inventor
Isami Okuda
Hirohiko Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOSHIN PURODAKUTSU KK
Original Assignee
TOSHIN PURODAKUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOSHIN PURODAKUTSU KK filed Critical TOSHIN PURODAKUTSU KK
Priority to JP9935182A priority Critical patent/JPS58216922A/en
Publication of JPS58216922A publication Critical patent/JPS58216922A/en
Publication of JPS6345527B2 publication Critical patent/JPS6345527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は測温プローブ部に予熱手段をそなえた
電子体温計の測温方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a temperature measuring method of an electronic thermometer in which a temperature measuring probe section is provided with a preheating means.

〔発明の技術的背景及びその問題点〕[Technical background of the invention and its problems]

一般にダイオード或いはサーミスタなどを温度
センサとする電子体温計においては、温度センサ
を含む測温プローブ部を予熱することにより、プ
ローブ部の温度が被測温体の温度と平衡するまで
の時間を短縮し、検温時間を短くすることができ
る。この場合予熱によりプローブ部の温度をでき
るだけ速く、できるだけ体温に近い温度になるよ
うに加熱することが重要である。そのための方法
として、体温に応じて一定時間加熱する方法や、
体温にかかわらず一定温度まで加熱する方法など
が提案されているが、これらの方法では被測定温
度により予熱効果に差異が大きく、常に適正な予
熱が行なわれるとは限らないものであつた。
Generally, in electronic thermometers that use a diode or thermistor as a temperature sensor, by preheating the temperature measuring probe section including the temperature sensor, the time required for the temperature of the probe section to equilibrate with the temperature of the body to be measured is shortened. Temperature measurement time can be shortened. In this case, it is important to preheat the probe part as quickly as possible to a temperature as close to body temperature as possible. Methods for this include heating for a certain period of time depending on body temperature,
Methods have been proposed that heat the body to a constant temperature regardless of the body temperature, but these methods have large differences in preheating effect depending on the temperature being measured, and are not always able to perform proper preheating.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に鑑みてなされたもので、体
温とプローブ部の温度差に応じて極めて効率的な
予熱を行なうことにより、全測定範囲にわたつて
検温時間を短縮し、しかも測温プローブと被測定
温度の平衡状態を検出判定することにより、極め
て短い検温時間で高精度の温度表示が行なえる測
温方法を提供しようとするものである。
The present invention was made in view of the above circumstances, and by performing extremely efficient preheating according to the temperature difference between the body temperature and the probe part, it shortens the temperature measurement time over the entire measurement range, and moreover, it can be used as a thermometer probe. The present invention aims to provide a temperature measurement method that can display temperature with high accuracy in an extremely short temperature measurement time by detecting and determining the equilibrium state of the temperature to be measured.

〔発明の概要〕[Summary of the invention]

本発明の上記目的を達成するため、予熱直後の
温度変化に対する勾配を検出し、その正負を判定
しながら間欠的に予熱することで、予熱による温
度が測定温度に最も近づいた点で予熱を停止し、
測温プロセスに移る方法である。この測温プロセ
スでは、一定時間間隔で検出した温度データを記
憶部に記憶し、前記時間間隔の整数倍の時間間隔
毎の温度データの差を求め、該差が一定値以下と
なつた時点での温度データを、一番体温に近い温
度として表示するようにしたものである。
In order to achieve the above object of the present invention, by detecting the gradient of temperature change immediately after preheating and preheating intermittently while determining whether it is positive or negative, preheating is stopped when the temperature due to preheating approaches the measured temperature. death,
This method moves on to the temperature measurement process. In this temperature measurement process, temperature data detected at fixed time intervals is stored in a storage unit, and the difference between the temperature data at each time interval that is an integral multiple of the time interval is determined. temperature data is displayed as the temperature closest to body temperature.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の一実施例を説明す
る。本方法を実施する構成のブロツクダイヤグラ
ムを第1図に示し、これによるプロセスを示す信
号波形図を第2図に、同フローチヤートを第3図
に示す。第1図において1は半導体温度検出器を
そなえたプローブであり、このプローブ1から
は、温度を電圧に変換した信号を出力する。増幅
器2はプローブ1の出力信号を増幅する。A/D
変換器3は増幅器2の出力をA/D(アナログ/
デジタル)変換する。制御回路(実際はマイクロ
コンピユータが適当である)4は第3図のフロー
チヤートの制御を行なう。プローブ1のプレヒー
ト電流源としての予熱回路5は、制御回路4から
のプレヒート信号で駆動される。ブザー等よりな
る測温完了信号音源6、LED、LCD等よりなる
温度表示器7、プリンタ等よりなる温度記録器8
はそれぞれ制御回路4と結合される。
An embodiment of the present invention will be described below with reference to the drawings. A block diagram of a configuration for carrying out this method is shown in FIG. 1, a signal waveform diagram showing the process thereof is shown in FIG. 2, and a flowchart of the same is shown in FIG. In FIG. 1, 1 is a probe equipped with a semiconductor temperature detector, and this probe 1 outputs a signal obtained by converting temperature into voltage. Amplifier 2 amplifies the output signal of probe 1. A/D
Converter 3 converts the output of amplifier 2 into an A/D (analog/
digital) convert. A control circuit (actually, a microcomputer is appropriate) 4 performs the control shown in the flowchart of FIG. A preheating circuit 5 serving as a preheating current source for the probe 1 is driven by a preheating signal from a control circuit 4. Temperature measurement completion signal sound source 6 consisting of a buzzer etc., temperature display 7 consisting of LED, LCD etc., temperature recorder 8 consisting of a printer etc.
are respectively coupled to the control circuit 4.

第2図のタイミングチヤートは、予熱(プレヒ
ート)時間th1が1sec(秒)、プレヒート直後の効
果をさけるための待ち時間th2が1sec、判定時間
が1.6secの例である。
The timing chart in FIG. 2 is an example in which the preheating time t h1 is 1 sec (seconds), the waiting time t h2 to avoid the effect immediately after preheating is 1 sec, and the determination time is 1.6 sec.

第1図ないし第3図に示されるものにあつて
は、測温開始と同時に測温開始の信号を出す。次
にプローブ1、増幅器2、A/D変換器3、制御
回路4により、或る時間間隔t1における温度差
(Tb−Ta)を測定し、温度差が正の勾配の場合は
まだセンサ温度が測定温度を超えていないわけで
あるから、制御回路4により予熱回路5を駆動し
予熱を続ける。一方温度差が負の勾配の場合は、
センサ温度が測定温度を超えているわけであるか
ら、予熱を停止して次の測温完了判定プロセスに
移る。
In the case of those shown in FIGS. 1 to 3, a signal to start temperature measurement is issued at the same time as the temperature measurement starts. Next, the probe 1, amplifier 2, A/D converter 3, and control circuit 4 measure the temperature difference (T b - T a ) at a certain time interval t 1 , and if the temperature difference has a positive slope, it is still Since the sensor temperature does not exceed the measured temperature, the control circuit 4 drives the preheating circuit 5 to continue preheating. On the other hand, if the temperature difference has a negative slope,
Since the sensor temperature exceeds the measured temperature, preheating is stopped and the process moves to the next temperature measurement completion determination process.

測温完了判定プロセスでは、まず一定(例えば
0.2sec)間隔で測温プローブ1の出力をA/D変
換し、そのデータをn回ストアしておく(但しこ
の場合n=8)。“n+1”回目の測定温度データ
Toと1回目の測定温度データT0を比較し、その
差が予め定められた範囲(Tp)内であれば測温
完了とする。温度データの差が範囲(Tp)外で
あれば、次の温度測定を行ない“n+2”回目の
データTo+1とし、2回目のデータT1と比較して、
その差を判別する。以下測温完了(温度差≦Tp
となるまで逐次判定をくり返す。そして測温完了
した測定温度が一定温度(Tmax)より高ければ
“HI”表示をし、この場合は測定温度が体温とし
て測定領域を超えているとして温度表示を行なわ
ない。また一定温度(Tmin)未満なら“LO”
表示をし、この温度は測定温度が体温としての測
定領域に満たないとして温度表示を行なわない。
測定温度がTmin〜Tmaxの範囲内であれば、測
定データを温度に換算し表示する。そして測温完
了の信号を出すものである。
In the temperature measurement completion determination process, first the temperature measurement is constant (e.g.
The output of the temperature measuring probe 1 is A/D converted at intervals of 0.2 sec), and the data is stored n times (in this case, n=8). “n+1”th measured temperature data
T o and the first measured temperature data T 0 are compared, and if the difference is within a predetermined range (T p ), the temperature measurement is completed. If the difference in temperature data is outside the range (T p ), perform the next temperature measurement and set it as the "n+2" time data T o+1 , and compare it with the second data T 1 .
Determine the difference. Temperature measurement completed below (temperature difference ≦T p )
Repeat the judgment sequentially until . If the measured temperature that has been completed is higher than a certain temperature (Tmax), "HI" is displayed, and in this case, the measured temperature exceeds the measurement range as a body temperature, and the temperature is not displayed. Also, if it is below a certain temperature (Tmin), “LO”
The temperature is not displayed because the measured temperature is below the measurement range for body temperature.
If the measured temperature is within the range of Tmin to Tmax, the measured data is converted into temperature and displayed. It then issues a signal indicating the completion of temperature measurement.

次に測温完了の判定法の詳細を説明する。一般
に時間dtに流れる熱量dQは温度差に比例し、 dQ=K(TB−T)dt ………(1) と表わされる。ここにKは定数、TBは周囲温度
(体温)、Tはプローブ温度である。またdQによ
る温度上昇分dTは次式で表わされる。
Next, details of the method for determining whether temperature measurement has been completed will be explained. Generally, the amount of heat dQ flowing during time dt is proportional to the temperature difference, and is expressed as dQ=K(T B −T) dt (1). Here, K is a constant, T B is the ambient temperature (body temperature), and T is the probe temperature. Also, the temperature increase dT due to dQ is expressed by the following equation.

dT=1/CdQ(Cは定数) ………(2) (1)、(2)式より次の方程式が成り立つ。 dT=1/CdQ (C is a constant) ......(2) The following equation holds from equations (1) and (2).

dT/dt+T/τ=TB/τ ………(3) ここにτ=C/K(定数)である。(3)式を解い
て次式を得る。
dT/dt+T/τ=T B /τ (3) Here, τ=C/K (constant). Solve equation (3) to obtain the following equation.

ここでt=0でT=Thの初期条件により定数
Aを求めると、 A=TB−Th ………(5) となり、時間tにおける温度は次式のようにな
る。
Here, when the constant A is determined based on the initial condition of T=T h at t=0, A=T B −T h (5), and the temperature at time t is as shown in the following equation.

これを図示すると第4図のようになる。ここに
Thは予熱温度である。第4図より時刻tnにおけ
る温度Tnと周囲(被測定)温度TBとの差ΔTBnとなり、測定精度をTpaとすると、ΔT≦Tpaでな
ければならないから、 となる。一方、(6)式より温度の時間に対する変化
率は となる。従つて(8)、(9)式より dT/dt(t=tn)≦Tpa/τ ………(10) という関係が成立する。すなわちdT/dtが(10)式
を満足するような時刻tnでの温度Tnは、TBを精
度Tpa以内で示していることになる。数値例とし
てセンサの時定数τ=1secの場合、Tpa=0.05℃
とすると(10)式より dT/dt≦0.05/1〔℃/sec〕 ………(11) となるので、dT/dt=0.05〔℃/sec〕を測温完
了の判定条件とすればよいことになる。ここで温
度勾配を求める時間間隔Δtを1.6sec間隔とする
と、 Tp=dT/dt×Δt=0.05×1.6=0.08〔℃〕 となり、 |Tr−To+r|≦0.08 であれば、0.05℃の精度でプローブ温度が体温に
一致したことになる。
This is illustrated in Figure 4. Here
T h is the preheating temperature. From Figure 4, the difference ΔT Bn between the temperature T n and the ambient (measured) temperature T B at time t n is So, if the measurement accuracy is T pa , then ΔT≦T pa must be satisfied, so becomes. On the other hand, from equation (6), the rate of change of temperature with respect to time is becomes. Therefore, from equations (8) and (9), the relationship dT/dt (t=t n )≦T pa /τ (10) holds true. That is, the temperature T n at time t n such that dT/dt satisfies equation (10) indicates T B within the accuracy T pa . As a numerical example, if the sensor time constant τ = 1sec, T pa = 0.05℃
Then, from equation (10), dT/dt≦0.05/1 [℃/sec] ......(11) Therefore, dT/dt=0.05 [℃/sec] can be used as the criterion for temperature measurement completion. It turns out. Here, if the time interval Δt for calculating the temperature gradient is 1.6 seconds, then T p = dT/dt×Δt=0.05×1.6=0.08 [℃], and if |T r −T o+r |≦0.08, This means that the probe temperature matched body temperature with an accuracy of 0.05°C.

以上説明した如く本実施例によれば、体温とプ
ローブ1の温度差に応じて極めて効率的な予熱を
行ない、またデータは0.2sec間隔でとつて判断間
隔の分解能を小さくすることにより早く判断でき
るようにし、また測温精度を出すため勾配は1.6
秒間隔と長くしたため、測温の高速化と高精度化
が両立し得るものである。
As explained above, according to this embodiment, extremely efficient preheating is performed according to the temperature difference between the body temperature and the probe 1, and data is collected at 0.2 second intervals, making it possible to make decisions quickly by reducing the resolution of the decision interval. The slope is 1.6 to ensure temperature measurement accuracy.
Since the interval is set to a second, it is possible to achieve both high-speed and high-accuracy temperature measurement.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、効率的な予
熱を行ない、また判断間隔の分解能を小さくし、
また長時間間隔で時間と温度の勾配をとるため該
勾配が高精度で得られ、従つて高速化、高精度化
が可能となる測温方法が提供できるものである。
As explained above, according to the present invention, efficient preheating is performed, the resolution of the judgment interval is reduced,
Furthermore, since the gradient of time and temperature is determined at long intervals, the gradient can be obtained with high precision, and therefore a temperature measuring method can be provided that can be performed at high speed and with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を得る構成のブロツ
ク図、第2図は同構成の動作を示すタイミングチ
ヤート、第3図は同構成の動作を示すフローチヤ
ート、第4図は測温時のプローブ応答曲線であ
る。 1……プローブ、2……増幅器、3……A/D
変換器、4……制御回路、5……予熱回路、6…
…測温完了信号音源、7……温度表示器、8……
温度記録器。
FIG. 1 is a block diagram of a configuration for obtaining an embodiment of the present invention, FIG. 2 is a timing chart showing the operation of the same configuration, FIG. 3 is a flow chart showing the operation of the same configuration, and FIG. 4 is a temperature measurement time is the probe response curve of 1...Probe, 2...Amplifier, 3...A/D
Converter, 4... Control circuit, 5... Preheating circuit, 6...
...Temperature measurement completion signal sound source, 7...Temperature display, 8...
Temperature recorder.

Claims (1)

【特許請求の範囲】[Claims] 1 測温プローブ部を予熱した直後の前記プロー
ブ部の温度変化の時間に対する勾配を検出してそ
の正負を判定しながら間欠的に前記プローブ部の
予熱を行ない、該予熱による前記温度変化の勾配
が正負逆転した時点で予熱を停止し、その後の一
定時間間隔で検出した温度データを記憶部に記憶
し、前記時間間隔の整数倍の時間間隔毎の温度デ
ータの差を求め、誤差が一定値以下となつた時点
での温度データを表示するようにしたことを特徴
とする測温方法。
1. Immediately after preheating the temperature measuring probe section, detect the gradient of the temperature change of the probe section with respect to time, and intermittently preheat the probe section while determining whether it is positive or negative, and determine whether the gradient of the temperature change due to the preheating is Preheating is stopped when the polarity is reversed, and the temperature data detected at a certain time interval thereafter is stored in the storage unit, and the difference in temperature data at each time interval that is an integral multiple of the above time interval is determined, and the error is below a certain value. A temperature measurement method characterized by displaying temperature data at the time when .
JP9935182A 1982-06-11 1982-06-11 Temperature measuring method Granted JPS58216922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9935182A JPS58216922A (en) 1982-06-11 1982-06-11 Temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9935182A JPS58216922A (en) 1982-06-11 1982-06-11 Temperature measuring method

Publications (2)

Publication Number Publication Date
JPS58216922A JPS58216922A (en) 1983-12-16
JPS6345527B2 true JPS6345527B2 (en) 1988-09-09

Family

ID=14245185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9935182A Granted JPS58216922A (en) 1982-06-11 1982-06-11 Temperature measuring method

Country Status (1)

Country Link
JP (1) JPS58216922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128216U (en) * 1988-02-22 1989-09-01

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109784A (en) * 1998-10-05 2000-08-29 Micro Weiss Electronics Fast response digital thermometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128216U (en) * 1988-02-22 1989-09-01

Also Published As

Publication number Publication date
JPS58216922A (en) 1983-12-16

Similar Documents

Publication Publication Date Title
US5056047A (en) Method and device for measuring fluidic or calorimetric parameters
CN106706165B (en) A kind of method and device of temperature measurement
CN106679842A (en) Temperature measuring method and circuit adopting reference voltage compensation technology
US4276768A (en) Relates to apparatus for measuring the dew point
CN1103485A (en) Pocket size laser power meter
JPS62293126A (en) Method and device for measuring level
JPS6345527B2 (en)
CA1177277A (en) Electronic thermometer
JPH0229984B2 (en)
US6840671B2 (en) System and method for non-contact temperature sensing
JPH0648251B2 (en) Method and apparatus for evaluating cooling performance of heat treatment agent
JP3178133B2 (en) Thermal analyzer
JP2949314B2 (en) Calorimeter and method
JP2591342B2 (en) Expansion characteristic measurement method
JP2000206070A5 (en)
SE449035B (en) SET AND DEVICE FOR DETERMINING A METAL BODY ABSOLUTE TEMPERATURE
SU735979A1 (en) Device for determining thermal effects
SU1688134A1 (en) Method of graduation of thermal elements
JPS639829A (en) Electronic clinical thermometer capable of short-time measurement
SU620839A1 (en) Method of determining high temperatures
JPH0321463Y2 (en)
SU957014A1 (en) Device for automatic graduation of thermal converters in dynamic mode
RU1805305C (en) Melt temperature measuring device
SU468111A1 (en) Method for determining the constant calorimeter
SU1483287A1 (en) Method for measuring high stationary temperatures