JPS62263913A - Detection of outflow of converter slag - Google Patents

Detection of outflow of converter slag

Info

Publication number
JPS62263913A
JPS62263913A JP10878686A JP10878686A JPS62263913A JP S62263913 A JPS62263913 A JP S62263913A JP 10878686 A JP10878686 A JP 10878686A JP 10878686 A JP10878686 A JP 10878686A JP S62263913 A JPS62263913 A JP S62263913A
Authority
JP
Japan
Prior art keywords
molten steel
radiation thermometer
slag
steel flow
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10878686A
Other languages
Japanese (ja)
Inventor
Kyoichi Amo
天羽 協一
Kenji Murakami
賢治 村上
Tadahiro Niitate
新舘 忠博
Toru Mizukami
水上 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10878686A priority Critical patent/JPS62263913A/en
Publication of JPS62263913A publication Critical patent/JPS62263913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To effectively prevent the intrusion of molten slag into a molten steel in the final stage of tapping by measuring the surface temp. of the molten steel flow by a radiation thermometer and detecting the presence of the molten slag in the molten steel from the change of the measured value at the time of tapping the molten steel from a converter. CONSTITUTION:The molten steel flow 2 discharged from the tap hole of the converter is measured by a leans part 1a of a radiation thermometer 1. A visual field limiting pipe 3a having <=30 deg. visual field angle is attached to the radiation thermometer 1 so that the molten steel flow 2 enters the entire surface of the detecting visual field of said thermometer. The detected temp. signal voltage is differentiated with time by a calculator 6 and is then inputted to a display device 7. The output of the radiation thermometer changes when the molten slag 2b enters the molten steel 2a of the molten steel flow 2 and the intrusion of the molten slag 2b into the molten steel flow 2 is quickly and exactly detected from the change of the n-value of the measured value by the radiation thermometer proportional to the n-power of the surface temp. of the material to be measured (molten steel or molten slag).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉄鋼の転炉装置における溶鋼の出鋼時のスラグ
流出検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting slag outflow during tapping of molten steel in a steel converter apparatus.

[従来の技術] 従来、鉄鋼の転炉装置における鉄鋼の精錬が終了すると
、溶鋼がはいった炉体を傾動させ、炉体の側面に設けら
れた出鋼口から台車上の受鋼鍋へ精錬された溶鋼を流出
させる。その出鋼の末期には鉄鋼の精錬時に生成された
スラグが溶鋼とともに受鋼鍋に流出する。このスラグは
後工程で行なう溶鋼の最終成分調整あるいは清浄化とい
った各種の処理に弊害となるため、受鋼鍋への流出は極
力少なくする必要がある。このため、出鋼作業の末期に
熟練操業者が上記出鋼流を目視観察し、溶鋼とスラグの
わずかな性状の差からスラグ流出を判断し、スラグ流出
時に上述の炉体の傾動を停止させ、受鋼鍋へのスラグ流
人を最小限にしている。
[Conventional technology] Conventionally, when the refining of steel in a steel converter equipment is completed, the furnace body filled with molten steel is tilted, and the steel is refined from a tapping port provided on the side of the furnace body to a receiving ladle on a cart. Flow out the molten steel. At the end of the tapping process, slag generated during steel refining flows into the steel receiving ladle together with the molten steel. Since this slag is detrimental to various processes such as final component adjustment and cleaning of molten steel that are carried out in subsequent steps, it is necessary to minimize the amount of slag that flows into the steel receiving ladle. Therefore, at the end of the steel tapping operation, a skilled operator visually observes the tapping flow, determines whether slag has flowed out based on the slight difference in properties between molten steel and slag, and stops the tilting of the furnace body as described above when slag flows out. , slag flow into the steel receiving ladle is minimized.

[発明が解決しようとする問題点] 前述のように従来のスラグ検出は、操業者が目視によっ
てスラグの検出を行っていたためにこの種の作業を自動
化ないしは機械化ができないという問題があり、また操
業者の熟練度によって検出のタイミングが遅れたり、検
出のタイミングのバラツキがあるという問題があった。
[Problems to be Solved by the Invention] As mentioned above, in conventional slag detection, operators had to detect slag visually, and this type of work could not be automated or mechanized. There have been problems in that the timing of detection is delayed or varies depending on the skill level of the person.

[発明の目的] 本発明の目的は、操業者の目視判断によらず流出を自動
的に迅速かつ的確にスラグ流出を検出することができる
とともに、検出のタイミングのバラツキが生じない転炉
のスラグ流出検出方法を提供することにある。
[Object of the Invention] The object of the present invention is to provide a converter slag that can automatically, quickly and accurately detect slag outflow without relying on visual judgment by an operator, and that does not cause variations in detection timing. An object of the present invention is to provide a spill detection method.

「発明の構成] 本発明は、放射温度計の出力か被測定物の表面温度のn
乗に概ね比例する上記n値が小さい放射温度計を用いて
転炉における溶鋼流の表面温度を測定し、測定された表
面温度の変化に基づいて−に記溶鋼流内のスラグ流出を
検出することを特徴とする。
“Structure of the Invention” The present invention provides a method for measuring the output of a radiation thermometer or the surface temperature of an object to be measured.
Measure the surface temperature of the molten steel flow in the converter using a radiation thermometer with a small n value, which is approximately proportional to the power of It is characterized by

[実施例] 第1図は本発明の一実施例である放射温度計を用いた転
炉のスラグ流出検出方法を示すプロ・ツク図である。
[Embodiment] FIG. 1 is a process diagram showing a method for detecting slag outflow from a converter using a radiation thermometer, which is an embodiment of the present invention.

第1図において、lは、精練後の溶鋼が貯留された炉体
の出鋼口から台車」二の受鋼鍋へ流れる溶鋼流2の表面
温度を測定する放射温度計であり、放射温度計1はレン
ズ部1aを備えるとともに、該レンズ部1aの光学中心
線が溶鋼流2に向けられ溶鋼流2の側方に近接してかつ
溶鋼流2か放射温度計1の検出視野範囲の全部にはいる
ように設けられる。なお、この放射温度計1としては公
知のものを使用できる。
In Fig. 1, l is a radiation thermometer that measures the surface temperature of the molten steel flow 2 flowing from the tapping port of the furnace body where the molten steel after refining is stored to the steel receiving ladle of the bogie 2. 1 is provided with a lens portion 1a, and the optical center line of the lens portion 1a is directed toward the molten steel flow 2, close to the side of the molten steel flow 2, and extends over the entire detection field of view of the radiation thermometer 1. It is set up so that you can enter it. Note that a known radiation thermometer 1 can be used.

高温の溶鋼流2に近接して置かれた放射温度計1を高温
状態から保護して、この放射温度計1を所定の温度状態
に維持4−るため、放射温度計1はケース3内に収容さ
れる。ケース3内には、冷却空気供給装置4から調節機
構5を介して冷却空気か送入され、放射温度計1を冷却
するととらに、レンズ部1aをパーツする。
In order to protect the radiation thermometer 1 placed close to the high-temperature molten steel flow 2 from high temperatures and maintain the radiation thermometer 1 at a predetermined temperature, the radiation thermometer 1 is placed inside the case 3. be accommodated. Cooling air is fed into the case 3 from a cooling air supply device 4 via an adjustment mechanism 5 to cool the radiation thermometer 1 and to cool the lens portion 1a.

放射温度計1のレンズ部1aの0眉(1すのケース3に
は、レンズ部1aの光学軸と同軸となる円筒状の視野限
定パイプ3aが備えらイ1ており、放射温度計1がレン
ズ部1a及び視野限定パイプ3aを介して溶鋼流2の表
面温度を測定できる。詳細後述ずろように、放射温度計
1の温度検出方向が若干ずれても検出視野の全部に溶銅
流2がはいるようにするため、この視野限定パイプ3a
によって放射温度計1のレンズ部1aを中心とした温度
検出の視野角度を例えば30°以下に限定する。
The case 3 of the lens part 1a of the radiation thermometer 1 is equipped with a cylindrical field-limiting pipe 3a coaxial with the optical axis of the lens part 1a. The surface temperature of the molten steel flow 2 can be measured through the lens portion 1a and the field-limiting pipe 3a.As will be described in detail later, even if the temperature detection direction of the radiation thermometer 1 is slightly deviated, the molten copper flow 2 will still cover the entire detection field. In order to make it possible to enter the
The viewing angle for temperature detection centered on the lens portion 1a of the radiation thermometer 1 is limited to, for example, 30° or less.

放射温度計1で測定して得られた溶鋼あるいはスラグの
温度に関する出力電圧信号Eは微分演算器6に送られ、
その電圧信号Eが時間について微分された後、その微分
された電圧信号が表示器7に人力される。表示器7にお
いて、該微分された電圧信号が、詳細後述される時間に
ついての微分温度の所定のしきい値(以下、時間微分温
度のしきい値という。)△Toを越えたとき、溶鋼流2
1]1にスラグを検出した旨表示される。
The output voltage signal E related to the temperature of molten steel or slag obtained by measurement with the radiation thermometer 1 is sent to the differential calculator 6,
After the voltage signal E is differentiated with respect to time, the differentiated voltage signal is input to the display 7. In the display 7, when the differentiated voltage signal exceeds a predetermined threshold value ΔTo of the time-differentiated temperature (hereinafter referred to as the time-differential temperature threshold), which will be described in detail later, the molten steel flow is detected. 2
1] 1 indicates that a slag has been detected.

いま、第1図に示すように、溶鋼流2が、溶鋼のみの部
分2aから溶鋼流2にスラグが含まれる部分2bに移行
すると、第2図(A)に示すように、放射温度計の指示
温度は溶鋼2aのみであったときの指示温度’r+[’
c]から、スラグ2bを含むときの指示温度T 2[’
C]に変化する。
Now, as shown in Fig. 1, when the molten steel flow 2 moves from a part 2a containing only molten steel to a part 2b where slag is included in the molten steel flow 2, as shown in Fig. 2 (A), the radiation thermometer The indicated temperature is the indicated temperature 'r+[' when only the molten steel 2a is present.
c], the indicated temperature T 2[' when including the slag 2b
C].

ここで、−・般に、 溶鋼流2のスラグを含む部分2bの指示温度T2>溶鋼
流2の溶鋼のみの部分2aの指示温度T1・・・・・・
・(1) である。
Here, - In general, the indicated temperature T2 of the portion 2b containing slag in the molten steel flow 2 > the indicated temperature T1 of the portion 2a containing only molten steel in the molten steel flow 2...
・(1).

微分演算器6の出力電圧は、第2図(r()に示すよう
に、溶鋼流2が溶鋼2aのみのときほとんどセロである
が、上述の温度TI[℃コから温度′1゛2ピC1への
移行時に時間微分温度I2きい値△′roを越えるレベ
ルになった後、その出力電圧がまた再びほとんどゼロの
状態になる。
The output voltage of the differential calculator 6 is almost zero when the molten steel flow 2 is only the molten steel 2a, as shown in FIG. After reaching a level exceeding the time-differential temperature I2 threshold Δ'ro during the transition to C1, its output voltage again becomes almost zero.

一般に、溶鋼流2の表面温度を該放射温度計1で計測し
た場合の温度計1の出力電圧は、次式のように近似され
る。
Generally, when the surface temperature of the molten steel flow 2 is measured by the radiation thermometer 1, the output voltage of the thermometer 1 is approximated by the following equation.

E−εσTn   ・・・・・・・・・(2)ここで、
εは表面温度が測定される溶鋼流2の放射率、σは温度
計1の固有の定数、′rは被測定物である溶鋼流2の表
面温度[0K]、nは温度計1によって決まる定数であ
る。
E−εσTn ・・・・・・・・・(2) Here,
ε is the emissivity of the molten steel flow 2 whose surface temperature is measured, σ is a constant specific to the thermometer 1, 'r is the surface temperature of the molten steel flow 2 that is the object to be measured [0K], and n is determined by the thermometer 1. It is a constant.

」−述のように、放射温度計1を用いて溶鋼流2の表面
温度を測定した場合、溶鋼流2が溶鋼2aのみの場合の
放射率ε1とスラグ2bを含む場合の放射率ε、との関
係は、一般に次式で表わされる。
- As mentioned above, when the surface temperature of the molten steel flow 2 is measured using the radiation thermometer 1, the emissivity ε1 when the molten steel flow 2 contains only the molten steel 2a and the emissivity ε when the molten steel flow 2 contains the slag 2b are The relationship is generally expressed by the following equation.

ε2−ε、 ’=、  0 、1〜02・・・・・・(
3)すなわち、(3)式よりスラグ2bを含む場合の放
射率ε2は、溶鋼流2が溶鋼2aのみの場合の放射率ε
8に比較し約0.1〜0.2だけ大きい。
ε2−ε, '=, 0, 1~02...(
3) In other words, from equation (3), the emissivity ε2 when the slag 2b is included is the emissivity ε2 when the molten steel flow 2 contains only the molten steel 2a.
It is larger by about 0.1 to 0.2 compared to 8.

従って、溶鋼流2の表面温度を放射温度計1を用いて測
定した場合、一般に表面温度′l゛はほとんど変化がな
いが、放射率εが上述のように異なるためスラグの流出
を検出することができろ。
Therefore, when the surface temperature of the molten steel flow 2 is measured using the radiation thermometer 1, the surface temperature 'l゛ generally does not change much, but since the emissivity ε differs as described above, it is difficult to detect the outflow of slag. Be able to do it.

この放射率εの変化に対して、(2)式より、11値が
小さい方が放射温度計1の出力電圧Eの変化が大きくな
るので、本実施例の測定においては、n値が小さい放射
温度計1の検出素子を用いることが望ましい。例えば放
射温度計1の検出素子と1゜て、SL PbS又はザー
モパイルを用いた場合、一般に、Siのn値はI)bS
のn値より大きく、またPh50′)n値はザーモパイ
ルのn値よりも大きい。
Regarding this change in emissivity ε, according to equation (2), the smaller the 11 value is, the larger the change in the output voltage E of the radiation thermometer 1 is. It is desirable to use the detection element of thermometer 1. For example, when using SL PbS or a thermopile at 1° with the detection element of the radiation thermometer 1, the n value of Si is generally I)bS
The n value of Ph50′) is larger than the n value of the thermopile.

従って、本実施例の測定においては、上記n値が小さい
例えばザーモパイルを放射温度計1の検出素子として用
いることが望ましい。
Therefore, in the measurement of this embodiment, it is desirable to use, for example, a thermopile having a small n value as the detection element of the radiation thermometer 1.

第3図はこのことを検証17たデータであり、放射率ε
に対する放射温度計1の指示温度[’K]対披対電測定
物温度]比T B / T oの特性を示す図である。
Figure 3 shows the data that verified this, showing the emissivity ε
FIG. 3 is a diagram showing the characteristics of the ratio T B /T o of the indicated temperature of the radiation thermometer 1 ['K] to the temperature of the object to be measured against the electric current].

第3図に示すようにn値が4.7.10及び20に対し
て放射率εが増加するにつれて上記比’f’ B / 
T oが増加する特性を示し、また、n値が小さくなる
のにつれて、放射率εに対する上記比′I″B/1゛。
As shown in Figure 3, as the emissivity ε increases for n values of 4.7.10 and 20, the above ratio 'f' B /
The above ratio 'I''B/1'' to the emissivity ε shows the characteristic that T o increases, and as the n value decreases.

の増加率が大きくなる特性を示してて、n値か小さい方
が、放射率εに対する上記比1” B / ’T”。の
変化率が大きいので、放射温度計1の検出素子としてn
値が小さいものを用いる。発明者の実験によれば、」二
記n値は10以下であることが望ましい。
It shows the characteristic that the increase rate of is large, and the smaller the n value, the above ratio 1''B/'T'' to the emissivity ε. Since the rate of change of is large, n is used as the detection element of radiation thermometer 1.
Use the one with the smaller value. According to the inventor's experiments, it is desirable that the n value is 10 or less.

さらに、第4図ないし第7図を参照して、放射温度計1
の視野限定パイプ3aを取りイマjCI′だ場合の効果
について説明する。第4図は視野限定パイプ3aを備え
ていない放射温度計1の検出視野の位置変化を説明する
ための図であり、第5図はその位置変化時の放射温度計
1の時間を対指示温度[’C1特性を示す図である。
Furthermore, with reference to FIGS. 4 to 7, the radiation thermometer 1
The effect when the field-of-view limiting pipe 3a is taken and it is now jCI' will be explained. FIG. 4 is a diagram for explaining the change in the position of the detection field of the radiation thermometer 1 which is not equipped with the field-limiting pipe 3a, and FIG. ['Is a diagram showing C1 characteristics.

いま、第4図(A)に示すように、視野限定パイプ3a
を備えていない放射温度計1の概略円形の検出視野11
が溶鋼流2の内にすべて含まれている状態から、溶鋼流
2の流出方向と垂直な方向に放射温度計1の検出視野が
ずれ、第4図(B)に示すように、放射温度計1の検出
視野11の一部が溶鋼流2の外側にはみ出た場合、視野
限定パイプ3aを備えていない放射温度計1の指示温度
は第5図のように変化ずろ。すなわら、第4図(A)の
場合、放射温度計1の指示温度は’i’+r’c]であ
るが、第4図(B)の状態になったとき、放射温度計1
の検出視野11の一部が溶鋼流2の外側にはみ出し、従
って放射温度計1で検出される熱量が低−Fするので、
第5図に示すように、指示温度1゛。
Now, as shown in FIG. 4(A), the view limited pipe 3a
Approximately circular detection field of view 11 of radiation thermometer 1 not equipped with
is completely contained in the molten steel flow 2, the detection field of the radiation thermometer 1 shifts in the direction perpendicular to the outflow direction of the molten steel flow 2, and as shown in Fig. 4 (B), the radiation thermometer When a part of the detection field of view 11 of the radiation thermometer 1 protrudes outside the molten steel flow 2, the temperature indicated by the radiation thermometer 1 which is not equipped with the field-limiting pipe 3a changes as shown in FIG. In other words, in the case of FIG. 4(A), the temperature indicated by the radiation thermometer 1 is 'i'+r'c], but when the state of FIG. 4(B) is reached, the temperature indicated by the radiation thermometer 1 is
A part of the detection field of view 11 protrudes outside the molten steel flow 2, and therefore the amount of heat detected by the radiation thermometer 1 is low -F.
As shown in FIG. 5, the indicated temperature is 1.

[’C1に低下する。この後、再び、放射温度計1の検
出視野11を第4図(A)に示すように、溶鋼流2内に
すべてがはいるようにすると、放射温度計1の指示温度
はT汀℃]に戻る。従って、視野限定パイプ3aを備え
ていない場合、放射温度計1の検出視野11がずれるこ
とで、その指示温度を低下させ測定誤差を生じさせる。
['Decreases to C1. After this, when the detection field of view 11 of the radiation thermometer 1 is made to completely enter the molten steel flow 2 as shown in FIG. 4 (A), the temperature indicated by the radiation thermometer 1 is T ℃ Return to Therefore, when the field-of-view limiting pipe 3a is not provided, the detection field of view 11 of the radiation thermometer 1 is shifted, which lowers the indicated temperature and causes a measurement error.

次に、放射温度計1の視野の中心点は前述と同一・であ
るが、視野面積を小さくずろように視野限定パイプ3a
を放射温度計1に取り付けた場合について考える。第6
図は、視野限定パイプ3aを備える放射温度計1の検出
視野の位置変化を説明するための図であり、第7図はそ
の位置変化時の放射温度計1の時間り対指示温度[℃」
特性を示す図である。
Next, the center point of the field of view of the radiation thermometer 1 is the same as described above, but the field of view area is shifted to a smaller value so that the field of view limiting pipe 3a
Consider the case where is attached to radiation thermometer 1. 6th
The figure is a diagram for explaining the change in the position of the detection field of the radiation thermometer 1 equipped with the limited field of view pipe 3a, and FIG.
FIG. 3 is a diagram showing characteristics.

第6図に示4′ように、視野限定パイプ3aを(1(h
えた放射温度計1の概略円形の検出視野12の直径は、
視野限定パイプ3aを備えていない放射温度計1の検出
視野11の直径よりし小さくなる。
As shown in FIG. 6, the visual field limiting pipe 3a (1(h
The diameter of the approximately circular detection field 12 of the radiation thermometer 1 obtained is
The diameter is smaller than the diameter of the detection field 11 of the radiation thermometer 1 not equipped with the field-limiting pipe 3a.

従って、第4図と同様な検出視野の角度で、溶鋼流2の
流出方向と垂直な方向に放射温度計1の検出視野]2を
ずらした場合でも、検出視野12はすべて溶鋼流2内に
有り、従って、第7図のように、放射温度計1の指示温
度[’C1の低下は生じない。
Therefore, even if the detection field of view of the radiation thermometer 1 is shifted in the direction perpendicular to the outflow direction of the molten steel flow 2 at the angle of the detection field of view similar to that shown in Fig. 4, the detection field of view 12 is entirely within the molten steel flow 2. Therefore, as shown in FIG. 7, the temperature indicated by the radiation thermometer 1 ['C1] does not decrease.

従って、放射温度計1に視野限定パイプ3aを取りト1
けることによって、放射温度計1の検出視野I2が少し
ずれても検出視野12は引へて溶鋼流2内に有るので、
第5図に示すような測定誤差が生しないといろ利点かあ
る。発明者による実験によれば、放射温度計1の1−記
検出視野f(1度0(第1図)は30℃以下にすること
が望ましい。
Therefore, the field-limiting pipe 3a is attached to the radiation thermometer 1.
By doing so, even if the detection field of view I2 of the radiation thermometer 1 deviates slightly, the detection field of view 12 is pulled back and remains within the molten steel flow 2.
There is an advantage that measurement errors as shown in FIG. 5 do not occur. According to experiments conducted by the inventor, it is desirable that the detection field of view f (1 degree 0 (FIG. 1) of the radiation thermometer 1 be 30 degrees Celsius or less.

また、放射温度計1のレンズ部1aの対物レンズをズー
ム方式と12、放射温度11−1の検出視野を小さくし
て使用してもよい。
Alternatively, the objective lens of the lens portion 1a of the radiation thermometer 1 may be of a zoom type 12, and the detection field of radiation temperature 11-1 may be made smaller.

以」二説明したように、−ヒ記n値が小さくかつ視野限
定パイプ3aを備えた放射温度計1を用いることによっ
て、溶鋼流2におけるスラグ2bの検出を迅速かつ的確
に行うことができ、また、放射温度計1の出力として電
気信号が出力されるので、スラグ流出の検出を自動化す
ることができるという利点がある。従って、スラブ流出
の検出タイミングのバラツキが生じず、スラグ流出判定
にかかわる作業において熟練作業者を必要としない。
As explained below, by using the radiation thermometer 1 which has a small n value and is equipped with the limited field of view pipe 3a, it is possible to quickly and accurately detect the slag 2b in the molten steel flow 2. Furthermore, since an electric signal is output as the output of the radiation thermometer 1, there is an advantage that detection of slag outflow can be automated. Therefore, there is no variation in the detection timing of slab outflow, and skilled workers are not required for work related to determining slag outflow.

[発明の効果] 以上詳述したように本発明によれば、放射温度計の出力
が被測定物の表面温度のn乗に概ね比例する−」−記n
値が小さい放射温度計を用いて転炉における溶鋼流の表
面温度を測定し、測定された表面温度の変化に基づいて
上記溶鋼流内のスラグ流出を検出するようにしたので、
操業者の目視判断によらず迅速かつ的確にスラグ流出を
検出することかできる。
[Effects of the Invention] As detailed above, according to the present invention, the output of the radiation thermometer is approximately proportional to the n-th power of the surface temperature of the object to be measured.
The surface temperature of the molten steel flow in the converter is measured using a radiation thermometer with a small value, and the outflow of slag in the molten steel flow is detected based on the change in the measured surface temperature.
Slag outflow can be detected quickly and accurately without the operator's visual judgment.

従って、スラグ流出の検出タイミンクのハラツギか生じ
ず、該スラグ流出判定にかがイつる熟練作業者を必要と
しないという利点がある。
Therefore, there are advantages in that there is no delay in detecting slag outflow, and that highly skilled workers are not required to determine the slag outflow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である放射温度計を用いた転
炉のスラグ流出検出方法を示すブロック図、 第2図は第1図の測定方法による結果である時間り対温
度及び時間微分温度特性を示す図、第3図は放射率ε 
に対する放射温度計の指示温度対被測定物温度比′I″
B / T o特性を示す図、第4図は視野限定パイプ
を備えていない放射温度計の検出視野のl′れを説明す
るための図、第5図は第4図の検出視野のずれにおける
放射温度計の指示温度特性を示す図、 第6図は視野限定パイプを備える放射温度計の検出視野
のずれを説明するための図、 第7図は第6図の検出視野のずれにおける放射温度計の
指示温度特性を示す図である。 l・・放射温度計、   la・・レンズ部、2・・溶
鋼流、   2a・溶鋼、 2b・・・スラグを含む溶銅流、  3・・・ケース、
3a・視野限定パイプ、 4・・・冷却空気供給装置、 5・・調節機構、    6・・・微分演算器、7・表
示器。 特許出願人 株式会社神戸製鋼所 代 理 人 弁理士 青白 葆 外2名第4図 (A)     CB) (A]         (日) 第5図
Fig. 1 is a block diagram showing a method for detecting slag outflow from a converter using a radiation thermometer, which is an embodiment of the present invention. Fig. 2 shows the results of the measurement method shown in Fig. 1: time vs. temperature and time. A diagram showing differential temperature characteristics, Figure 3 shows emissivity ε
Radiation thermometer indicated temperature to measured object temperature ratio 'I''
A diagram showing the B/T o characteristics, Figure 4 is a diagram to explain the deviation of the detection field of view of a radiation thermometer not equipped with a field-limiting pipe, and Figure 5 is a diagram showing the deviation of the detection field of view in Figure 4. Figure 6 is a diagram showing the indicated temperature characteristics of a radiation thermometer. Figure 6 is a diagram to explain the deviation of the detection field of the radiation thermometer equipped with a limited field of view pipe. Figure 7 is the radiation temperature at the deviation of the detection field of view of Figure 6. FIG. 3 is a diagram showing the indicated temperature characteristics of the meter. l... Radiation thermometer, la... Lens part, 2... Molten steel flow, 2a... Molten steel, 2b... Molten copper flow containing slag, 3... Case,
3a. View-limiting pipe, 4. Cooling air supply device, 5. Adjustment mechanism, 6. Differential calculator, 7. Display device. Patent applicant: Kobe Steel, Ltd. Agent Patent attorney: 2 people (A) CB) (A) (Japanese) Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)放射温度計の出力が被測定物の表面温度のn乗に
概ね比例する上記n値が小さい放射温度計を用いて転炉
における溶鋼流の表面温度を測定し、測定された表面温
度の変化に基づいて上記溶鋼流内のスラグ流出を検出す
ることを特徴とする転炉のスラグ流出検出方法。
(1) Measure the surface temperature of the molten steel flow in the converter using a radiation thermometer whose n value is small, and the output of the radiation thermometer is approximately proportional to the n-th power of the surface temperature of the object to be measured. A method for detecting slag outflow from a converter, comprising detecting slag outflow in the molten steel flow based on a change in .
JP10878686A 1986-05-12 1986-05-12 Detection of outflow of converter slag Pending JPS62263913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10878686A JPS62263913A (en) 1986-05-12 1986-05-12 Detection of outflow of converter slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10878686A JPS62263913A (en) 1986-05-12 1986-05-12 Detection of outflow of converter slag

Publications (1)

Publication Number Publication Date
JPS62263913A true JPS62263913A (en) 1987-11-16

Family

ID=14493444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10878686A Pending JPS62263913A (en) 1986-05-12 1986-05-12 Detection of outflow of converter slag

Country Status (1)

Country Link
JP (1) JPS62263913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617110A (en) * 1992-06-30 1994-01-25 Nippon Steel Corp Method for deciding completion of metal tapping
JP2014055315A (en) * 2012-09-11 2014-03-27 Jfe Steel Corp Monitoring method of slag stream discharged from throat and converter operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617110A (en) * 1992-06-30 1994-01-25 Nippon Steel Corp Method for deciding completion of metal tapping
JP2014055315A (en) * 2012-09-11 2014-03-27 Jfe Steel Corp Monitoring method of slag stream discharged from throat and converter operation method

Similar Documents

Publication Publication Date Title
EP2440898A1 (en) Multifunction laser power meter
WO2010064727A1 (en) Method of determining temperature of molten pig iron and method of operating blast furnace using same
US2493078A (en) Immersion unit for radiation pyrometers
JPH11326061A (en) Temperature measuring method and device for molten bath in furnace
JPS62263913A (en) Detection of outflow of converter slag
Sugiura et al. Continuous temperature measurement of liquid iron and slag tapped from a blast furnace
SE508842C2 (en) Method and apparatus for measuring the temperature of a melt in a sample vessel and using optical pyrometry
Sugiura et al. Simultaneous measurements of temperature and iron–slag ratio at taphole of blast furnace
JPS6219727A (en) Immersion thermometer for molten metal
Sugiura et al. Radiation thermometry for high-temperature liquid stream at blast furnace
JPH01267426A (en) Method and apparatus for temperature measurement of molten metal
WO2021149490A1 (en) Lance tip, converter internal temperature measuring equipment, and converter internal temperature measuring method
CN114838830A (en) Method, device and system for detecting temperature of iron-donating process section
JP2006308497A (en) Method and device for measuring furnace bottom temperature, and method and device for monitoring bottom of melting furnace
JPS5811821A (en) Measuring method for molten steel temperature
JPH02129607A (en) Fusion splicing device for optical fiber
TWI789807B (en) Converter blowing control method and converter blowing control system
JPH06285625A (en) Automatic brazing equipment
JPS62174314A (en) Detection of slag outflow from converter
JPH01185422A (en) Method for measuring temperature of molten iron
JP4146420B2 (en) Blast furnace tapping temperature and hot metal / molten slag mixing ratio measurement method
KR20190078403A (en) Monitoring apparatus for outputting amount of molten steel
JPS5848615A (en) Detection for slopping in converter
JP3334528B2 (en) Method and apparatus for measuring temperature of molten metal
Polatschek IoT for clogging and refractory wear detection