JPH0564922A - Processing system for smoothing image - Google Patents

Processing system for smoothing image

Info

Publication number
JPH0564922A
JPH0564922A JP3185530A JP18553091A JPH0564922A JP H0564922 A JPH0564922 A JP H0564922A JP 3185530 A JP3185530 A JP 3185530A JP 18553091 A JP18553091 A JP 18553091A JP H0564922 A JPH0564922 A JP H0564922A
Authority
JP
Japan
Prior art keywords
pixel
unit
unit element
signal
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3185530A
Other languages
Japanese (ja)
Other versions
JP2812344B2 (en
Inventor
Katsumi Nagata
勝美 永田
Yasuto Tamada
康人 玉田
Taketoshi Kojima
健利 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3185530A priority Critical patent/JP2812344B2/en
Priority to US07/741,605 priority patent/US5404233A/en
Priority to EP91114470A priority patent/EP0473142B1/en
Priority to DE69129721T priority patent/DE69129721T2/en
Publication of JPH0564922A publication Critical patent/JPH0564922A/en
Application granted granted Critical
Publication of JP2812344B2 publication Critical patent/JP2812344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

PURPOSE:To enable a pixel data to be easily processed for smoothing by a simple judge operation without making a circuit complicated by a method wherein in a thermal printer or the like having a line array like recording head which outputs an image by dividing one pixel into unit elements in a sub scan direction, the unit element is shifted in the sub scan direction or is increased and decreased in its number. CONSTITUTION:When an image is outputted by dividing one pixel into five unit elements P1-P5, a corresponding 100% diameter pixel data is formed by applying a pixel signal to three unit elements among five unit elements. Thereby, the pixel signal is applied to central three unit elements excepting the upper end one and the lower end one to compose a corresponding pixel data (b2) for an ordinary state. Besides, when a data is processed for smoothing, by increasing or decreasing the unit element to which the pixel signal is to be applied by one unit element before and behind in the sub scan direction according to adjacent pixel information, printing positions for the three stages (b2), (b2), (b3) can be set.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LEDプリンタやサー
マルプリンタの様にほぼ主走査方向に沿って画素形成素
子を配列したライン状のドットプリンタにおける画像平
滑化処理方式に係り、特にドット状に形成した画素パタ
ーンに含まれる斜線若しくは曲線部分を平滑化して高品
質の画像を得る事の出来る画像平滑化処理方式に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image smoothing processing method in a linear dot printer in which pixel forming elements are arranged substantially along the main scanning direction, such as an LED printer or a thermal printer, and more particularly to a dot shape. The present invention relates to an image smoothing processing method capable of smoothing an oblique line or a curved portion included in a formed pixel pattern to obtain a high quality image.

【0002】[0002]

【従来の技術】従来よりLEDプリンタやサーマルプリ
ンタの様に、主走査方向に1列状に配列したアレイ状の
画素形成手段を、ビデオデータに基づいて1ライン同時
に若しくはブロック単位で駆動(点灯)制御しながら副
走査方向に相対移動する感光体ドラム等の記録材上にマ
トリックス状の画素パターンを形成するドットプリンタ
も公知である。
2. Description of the Related Art Conventionally, as in an LED printer or a thermal printer, an array of pixel forming means arranged in one line in the main scanning direction is driven (lit) simultaneously on one line or in block units based on video data. A dot printer is also known in which a matrix-shaped pixel pattern is formed on a recording material such as a photosensitive drum that moves relatively in the sub-scanning direction while being controlled.

【0003】この種のプリンタはいずれもn×mのマト
リックス状に画素パターンを配列して任意の文字若しく
は図形を形成する方式を取るために、Vや〇の様に曲線
若しくは斜線を形成する場合、その印字境界部分が段差
状に形成されてしまい、又Xの様に交差する部分におい
ては複数の画素が近接配置されているためにその部分が
肉太となり、必然的に印字品質が低下する。
Since all printers of this type adopt a method of arranging pixel patterns in a matrix of n × m to form an arbitrary character or figure, when forming a curve or a diagonal line like V or ◯. The print boundary portion is formed in a stepped shape, and a plurality of pixels are arranged close to each other at an intersecting portion such as X, so that the portion becomes thick and inevitably the print quality deteriorates. ..

【0004】かかる欠点を解消する為に、例えば変調ビ
ームを主走査方向に光走査しながら画素パターンを形成
するレーザプリンタにおいては、目的画素に対応するビ
ームを遅延させて前記画素形成位置を主走査方向にシフ
トするか、若しくはビーム出力を変化させて前記画素直
径を変化させる事により印字境界部分の段差部や肉太の
解消を図ってきたが、ライン状に画素形成素子を配列し
たサーマルプリンタやLEDプリンタにおいては主走査
方向に前記画素形成素子の配列間隔が固定されており、
而もLEDプリンタにおいてはライン状に配列したLE
D素子をnビット単位若しくは一走査ライン単位でしか
駆動制御出来ないために、前記の様にレーザプリンタに
用いる平滑化処理手段を取る事が困難である。
In order to solve such a drawback, for example, in a laser printer which forms a pixel pattern while optically scanning a modulated beam in the main scanning direction, the beam corresponding to the target pixel is delayed to perform the main scanning at the pixel forming position. By changing the pixel diameter by shifting in the direction or by changing the beam output, it has been attempted to eliminate the stepped portion and the thickness at the print boundary portion. In the LED printer, the arrangement interval of the pixel forming elements is fixed in the main scanning direction,
Moreover, in LED printers, LEs arranged in a line
Since the D element can be driven and controlled only in units of n bits or in units of one scanning line, it is difficult to use the smoothing processing means used in the laser printer as described above.

【0005】この為LEDプリンタの様に一走査ライン
単位で画像情報を出力する装置において、異なる走査ラ
イン毎に各画素を主走査方向に一定量づつシフトさせて
副走査方向に各画素が斜め配列になるように画素の座標
変換を行って出力させるように構成した平滑化処理方式
が提案されている。(特公昭62ー24987号他)
For this reason, in a device such as an LED printer that outputs image information in units of one scanning line, each pixel is shifted by a certain amount in the main scanning direction for each different scanning line, and each pixel is diagonally arranged in the sub-scanning direction. A smoothing processing method has been proposed in which the coordinate conversion of pixels is performed so as to output the pixel. (Japanese Patent Publication No. Sho 62-24987, etc.)

【0006】しかしながら前記従来技術においてはライ
ン単位の座標移動であるために、文字単位で平滑化処理
を図るのが中々困難であるのみならず、前記技術は主走
査方向のみのシフトであるために、傾きが急峻な段差部
等の場合には例え論理和を取っても円滑なスムージング
処理を図るのが中々困難である。
However, in the above-mentioned prior art, since the coordinate movement is performed in units of lines, it is difficult to achieve smoothing processing in units of characters, and in the above-mentioned technique, the shift is performed only in the main scanning direction. However, in the case of a step portion having a steep inclination, it is difficult to achieve smooth smoothing processing even if the logical sum is calculated.

【0007】かかる欠点を解消する為に、注目画素自体
を狭小化(偏平化)した画素と置換するように構成する
と共に、前記注目画素の偏平化を主走査(水平)方向の
みならず、副走査(垂直)方向にも、言換えれば左右上
下の二軸方向に行なうように構成した技術手段(特開平
2ー112966号)が提案されている。
In order to eliminate such a drawback, the target pixel itself is replaced with a narrowed (flattened) pixel, and the flattening of the target pixel is performed not only in the main scanning (horizontal) direction but also in the sub-scanning direction. In the scanning (vertical) direction, in other words, there has been proposed a technical means (Japanese Patent Laid-Open No. 2-112966) configured to perform in the biaxial directions of right, left, up, and down.

【0008】[0008]

【発明が解決しようとする課題】本技術は偏平画素の置
換を、主走査方向に画素を狭小化させる四枚の補償サブ
セルと、副走査方向に画素を狭小化させる四枚の補償サ
ブセルとを用意し、これらを参照画素パターンと比較さ
せながら適宜選択して注目画素を置換するように構成し
ているが、例えばLEDプリンタの場合は、LEDアレ
イの点灯時間を制御することにより垂直方向の偏平化は
可能であるが、逆に各LED素子の配列間隔は固定され
ており、この様な場合各LED素子の光強度を調整しな
ければ水平方向の偏平化は困難である。また該素子は一
般に複数ビット単位でチップ化されている為素子単位の
強度調整は実質的に困難である。
According to the present technology, the replacement of a flat pixel is performed by four compensation subcells that narrow the pixel in the main scanning direction and four compensation subcells that narrow the pixel in the subscanning direction. The pixel is prepared, and the pixel of interest is replaced by appropriately selecting these while comparing them with the reference pixel pattern. For example, in the case of an LED printer, the flatness in the vertical direction is controlled by controlling the lighting time of the LED array. However, on the contrary, the arrangement interval of each LED element is fixed, and in such a case, flattening in the horizontal direction is difficult unless the light intensity of each LED element is adjusted. Further, since the element is generally made into a chip in units of a plurality of bits, it is substantially difficult to adjust the strength of the element.

【0009】又先行技術としてUSP4437122号
において、1つの画素を主走査方向と副走査方向に3×
3のマトリックス状の単位素に分割し、該単位素単位で
参照画素パターンと比較しながら平滑化処理を行なう技
術も存在するが、かかる技術もLEDプリンタの場合は
水平方向の単位分割が不可能であるために、その適用が
困難であり、而も2軸方向で一括して更には3×3の合
計9個の単位素に変換する為に必要な参照画素パターン
は無用に多くなり、結果として回路構成が大規模化せざ
るを得ず且つ比較動作も遅延化し、高速化に対応し得な
い。
As prior art, in US Pat. No. 4,437,122, one pixel is 3 × in the main scanning direction and the sub scanning direction.
There is also a technique of performing a smoothing process by dividing the unit element into a matrix of 3 and comparing it with a reference pixel pattern in the unit unit. However, in the case of such a technique, the unit division in the horizontal direction is impossible in the case of an LED printer. Therefore, the application is difficult, and the number of reference pixel patterns necessary for collectively converting into a total of 9 unit elements of 3 × 3 in the biaxial direction is unnecessarily large. As a result, the circuit configuration is unavoidably increased in size, and the comparison operation is delayed, which makes it impossible to cope with the speedup.

【0010】本発明はかかる従来技術の欠点に鑑み、サ
ーマルプリンタやLEDプリンタのようなライン状のド
ットプリンタにおいて、回路構成を煩雑化させることな
く、而も簡単な判定動作で容易に且つ精度よく平滑化処
理を行なう事の出来る画像平滑化処理方式を提供するこ
とを目的とする。本発明の他の目的は画像平滑化と共に
ドット自体の高品質化を図り、平滑化処理後のデータの
拡大に十分耐え得る高品質画像を得ることの出来るライ
ンプリンタにおける画像平滑化処理方式を提供すること
を目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention is a linear dot printer such as a thermal printer or an LED printer, which does not complicate the circuit configuration and can be easily and accurately performed by a simple determination operation. An object is to provide an image smoothing processing method capable of performing smoothing processing. Another object of the present invention is to provide an image smoothing processing method in a line printer capable of improving the quality of the dots themselves together with the image smoothing and obtaining a high quality image that can sufficiently endure the expansion of the data after the smoothing processing. The purpose is to do.

【0011】[0011]

【課題を解決する為の手段】従来より、高画質化を図る
為にLEDプリンタ等において、ドット画像を形成する
一画素を副走査方向にP個の単位素に分割し、該分割し
た単位素夫々に繰り返し同一画素信号を印加しながら一
走査ライン若しくは一走査ラインをm分割したnビット
単位で画素パターンを出力させる画像出力方式(特公昭
62ー26626号、特開昭60−134660号他)
が提案されている。本発明はかかる画素分割方式を効果
的に利用したものである。
Conventionally, in an LED printer or the like in order to improve image quality, one pixel forming a dot image is divided into P unit elements in the sub-scanning direction, and the divided unit elements are divided. An image output method for outputting a pixel pattern in units of n bits obtained by dividing one scanning line or m dividing one scanning line while repeatedly applying the same pixel signal to each other (Japanese Patent Publication No. 62-26626, Japanese Patent Publication No. 60-134660, etc.)
Is proposed. The present invention effectively utilizes such a pixel division method.

【0012】即ち請求項1記載の発明は、平滑化処理前
若しくは平滑化処理を行なわない時点では、図1に示す
ように、前記分割した単位素を3個以上好ましくは5個
以上用意し、該分割した単位素全てに画素信号を印加す
る事なく、該単位素群Pより少ない単位素群N(N<
P)に、繰り返し画素信号を印加しながら一走査ライン
若しくはnビット単位で画素パターンを出力させる様に
構成した点、そして平滑化処理時点においては、一画素
を構成する単位素にのみ画素信号を印加するのではな
く、隣接する画素情報に対応させて前記平滑化処理を行
うべき基準画素を選択し、該選択した基準画素一又は複
数の単位素に画素信号を印加することによって前記画素
パターンの出力を行う点、を特徴とするものである。
That is, according to the first aspect of the invention, before the smoothing process or when the smoothing process is not performed, as shown in FIG. 1, three or more, preferably five or more of the divided unit elements are prepared, Without applying a pixel signal to all of the divided unit elements, the unit element group N (N <N
P) is configured to output a pixel pattern in units of one scanning line or n bits while repeatedly applying a pixel signal, and at the time of smoothing processing, the pixel signal is applied only to the unit element forming one pixel. Instead of applying, a reference pixel to be subjected to the smoothing process is selected corresponding to adjacent pixel information, and a pixel signal is applied to the selected reference pixel or a plurality of unit pixels It is characterized in that it outputs.

【0013】この場合、図1に示すように、画素信号が
印加された黒単位素を、基準画素の範囲内で副走査方向
に黒単位素を増減させてもよく、又図2に示すように、
基準画素の範囲を越えて隣接する他の画素の範囲に黒単
位素を削減若しくは付加させてもよい。
In this case, as shown in FIG. 1, the black pixel to which the pixel signal is applied may be increased or decreased in the sub-scanning direction within the range of the reference pixel, or as shown in FIG. To
The black unit element may be reduced or added to the range of another pixel adjacent to the range of the reference pixel.

【0014】さて前記発明は実際に印加すべき画素の単
位素群Nの上下両側に平滑化処理用の空単位素を配置し
た事を特徴とするものであるが、このように構成すると
平滑化処理を行なわない実際の画素が小さくなり、いわ
ゆるべた黒の面画像が形成しにくい。
The present invention is characterized in that empty unit cells for smoothing processing are arranged on both upper and lower sides of the unit pixel group N of pixels to be actually applied. The actual pixels that are not processed become small, and it is difficult to form a so-called solid black surface image.

【0015】請求項4記載の発明は前記前記分割した単
位素群Pと実際に印加すべき基本単位素群Nが一致する
画像出力方式に有効に適用され、更に好ましくは簡単な
回路構成で円滑に平滑化処理を行なう事の出来る画像出
力方式を提供する事を目的とするもので、その特徴とす
る所は、前記した単位素分割方式を採用する画像出力方
式において、図6〜図8に示すように一走査方向に沿っ
て白画素から黒画素に、若しくは前記黒画素から白画素
に切り換わる境界画素と、該境界黒画素に隣接する前位
若しくは次位の走査ライン上に位置する1又は複数の参
照画素と論理積及び論理和を取りながら、前記境界画
素、参照画素若しくはこれらの画素に隣接する画素区域
に、黒単位素を適宜付加若しくは削減して平滑化処理を
行なう点にある。
The invention according to claim 4 is effectively applied to an image output system in which the divided unit element group P and the basic unit element group N to be actually applied coincide with each other, and more preferably, a smooth circuit configuration is employed. It is an object of the present invention to provide an image output method capable of performing smoothing processing on the image output method that employs the above-described unit element division method. As shown, a boundary pixel that switches from a white pixel to a black pixel or from the black pixel to a white pixel along one scanning direction, and a boundary pixel that is located on the preceding or next scanning line adjacent to the boundary black pixel 1 Alternatively, while performing a logical product and a logical sum with a plurality of reference pixels, a black unit element is appropriately added or reduced to the boundary pixel, the reference pixel or a pixel area adjacent to these pixels to perform smoothing processing. ..

【0016】この場合、前記境界画素は必ずしも黒画素
に限定する事なく、白画素の場合も含む。又本発明は単
位素群Pと実際に印加すべき基本単位素群Nが一致する
画像出力方式に有効に適用されるがこれのみに限定され
ず、請求項1記載のP>Nの出力方式にも当然適用可能
である。
In this case, the boundary pixel is not necessarily limited to a black pixel, and may include a white pixel. Further, the present invention is effectively applied to an image output method in which the unit element group P and the basic unit element group N to be actually applied match, but the invention is not limited to this, and the output method of P> N according to claim 1. Of course, it is also applicable.

【0017】[0017]

【作用】次に、前記各請求項の発明の詳細を順を追って
説明する。 A、請求項1記載の発明 本発明を図1に基づいて説明するに1画素を副走査方向
に5つの単位素に分割して画像出力を行うプリンタを用
いた場合に、図(b)に示すように前記5つの単位素の
内、3つの単位素に画素信号を印加する事により対応す
る画素データ(100%直径)を形成し得るように構成
する事により、通常の状態では上端と下端を除く中央の
3つの単位素に画素信号を印加して対応する画素データ
b2を構成し、一方前記データを平滑化処理する場合に
は、隣接する画素情報に対応させて、画素信号を印加す
べき単位素を副走査方向に前後に一単位素づつ増減させ
る事により3段階の印字位置の設定が可能である。(b
1,b3)
Next, the details of the invention of each of the claims will be described step by step. A. The invention according to claim 1 In order to explain the present invention with reference to FIG. 1, when a printer which divides one pixel into five unit elements in the sub-scanning direction and outputs an image is used, FIG. As shown, the pixel data (100% diameter) can be formed by applying a pixel signal to three of the five unit elements. Pixel signals are applied to the three unit pixels in the center except for forming the corresponding pixel data b2. On the other hand, when the data is smoothed, the pixel signals are applied corresponding to adjacent pixel information. It is possible to set the printing position in three stages by increasing or decreasing the power unit element by one unit in the front and rear direction in the sub-scanning direction. (B
1, b3)

【0018】又画素信号を印加すべき単位素P4,P5
を増減すれば、33%(b5),67%(b4),10
0%(b2)に画素サイズを可変に出来る。従って本発
明によれば前記両制御を組合せて例えばXの様な交差部
の画素は67%(2単位素)に設定し肉太を避ける事が
可能になると共に、前記画素信号を印加すべき単位素を
段階的に増減する事により、段差が目立たない曲線状若
しくは傾斜線が形成可能となる。
Further, the unit elements P4 and P5 to which the pixel signals are to be applied
By increasing or decreasing, 33% (b5), 67% (b4), 10
The pixel size can be changed to 0% (b2). Therefore, according to the present invention, by combining both of the above controls, the pixel at the intersection such as X can be set to 67% (2 unit pixels) to avoid thickening, and the pixel signal should be applied. By gradually increasing or decreasing the unit element, it becomes possible to form a curved line or an inclined line in which the step is not noticeable.

【0019】さて前記単位素群Pと画素信号を印加すべ
き単位素数Nの差を大きくする事により前記制御が細密
化される訳であるが、このように構成すると、隣接する
画素同士の密度間隔が疎になり、却って平滑化の達成が
困難になる。そこで請求項2)に記載した発明において
は適正な画素密度を密度を維持しながらより緻密な制御
を可能にするために、図2(a)に示すように前記画素
信号を印加すべき単位素を同一画素内で増減するのでは
なく、該増減域を、副走査方向に前後に位置する隣接す
る他の画素の分割単位素の一部を含む位置まで単位素を
増減可能に設定した点にある。(b6〜b12)
The control is made finer by increasing the difference between the unit prime group P and the unit prime number N to which the pixel signal should be applied. With such a configuration, the density of adjacent pixels is increased. The spacing becomes sparse, which makes it difficult to achieve smoothing. Therefore, in the invention described in claim 2), in order to enable more precise control while maintaining an appropriate pixel density, the unit element to which the pixel signal is applied as shown in FIG. 2A. Is not increased or decreased in the same pixel, but the increase / decrease area is set to be able to increase / decrease the unit element to a position including a part of the division unit element of another adjacent pixel located in the sub-scanning direction. is there. (B6-b12)

【0020】これにより前記実施例の場合に隣接する他
の画素の上端若しくは下端の分割単位素まで増減可能に
設定する事により少なくとも7段階の段階制御が可能で
あり、又図2(b)に示すように、前記分割単位素を含
ませて増減する事により33%(b13,b14),6
7%(b15,b16),100%(b17,b1
8),133%(b19,b20),167%(b2
1,b22)と5種類の画素サイズと併せて35種類の
段階制御が可能となる。(b13〜b22)
Thus, in the case of the above embodiment, it is possible to increase / decrease the division unit element at the upper end or the lower end of another pixel adjacent to each other so that at least 7 steps of step control can be performed, and FIG. As shown, the division unit element is included to increase or decrease 33% (b13, b14), 6
7% (b15, b16), 100% (b17, b1
8), 133% (b19, b20), 167% (b2
1, b22) and 5 kinds of pixel sizes, 35 kinds of step control are possible. (b13 to b22)

【0021】A、請求項4記載の発明 例えば4つの単位素に分割した全ての単位素に画素信号
を印加する事により対応する黒画素を形成し得るように
構成した画像出力方式の場合、次の様にして平滑処理を
行なう。先ず図6は黒単位素を付加する場合の実施例
で、平滑処理前の(a)の画像から平滑の為に負荷すべ
き単位素(第1、第2)の決定は、先ずその走査ライン
で白画素(0)から黒画素(1)に切換わる境界画素
(A)を抽出し、該境界画素(A)とその前位若しくは
次位の走査ライン上で隣接する参照画素(E,F)と論
理積を取って*1及び*2を決定する。尚*1’は*1
を付加した時点で自動的にビットシフト(ディレイ)に
より設定する。
A, the invention according to claim 4 For example, in the case of an image output system constituted so that a corresponding black pixel can be formed by applying a pixel signal to all unit elements divided into four unit elements, The smoothing process is performed as described above. First, FIG. 6 shows an embodiment in which a black unit element is added. The unit element (first and second) to be loaded for smoothing is determined from the image of (a) before the smoothing process by first determining the scanning line. , A boundary pixel (A) that switches from a white pixel (0) to a black pixel (1) is extracted, and the reference pixel (E, F) adjacent to the boundary pixel (A) on its preceding or next scanning line is extracted. ) And AND to determine * 1 and * 2. * 1 'is * 1
The bit shift (delay) is set automatically when is added.

【0022】次に単位素(*3,*4)の決定は、先ず
黒画素(1)から白画素(0)に切換わる境界黒画素
(F)を抽出し、該境界黒画素(F)とその前位若しく
は次位の走査ライン上で隣接する参照画素(A,G)と
論理積を取って*3及び*4を決定する。尚*4’は前
記と同様に*4を付加した時点で自動的にディレイによ
り設定する。 *1:A(0→1)ΛEΛF *2:A(0→1)ΛEΛF *3:F(1→0)ΛAΛG *4:F(1→0)ΛAΛG
Next, the unit pixels (* 3, * 4) are determined by first extracting the boundary black pixel (F) that switches from the black pixel (1) to the white pixel (0), and then determining the boundary black pixel (F). And the reference pixel (A, G) adjacent to the preceding or next scanning line are ANDed to determine * 3 and * 4. Note that * 4 'is automatically set by a delay when * 4 is added as in the above. * 1: A (0 → 1) ΛEΛF * 2: A (0 → 1) ΛEΛF * 3: F (1 → 0) ΛAΛG * 4: F (1 → 0) ΛAΛG

【0023】図7は黒単位素を付加/削除する場合の実
施例で、先ず平滑処理前の画像データ(a)より白画素
(0)から黒画素(1)に切換わる境界画素(A、
A’)を抽出し、該境界画素(A、A’)と前位若しく
は次位の走査ライン上で隣接する参照画素(B)と論理
積を取って付加すべき単位素*1を決定し、又黒画素
(1)から白画素(0)に切換わる境界黒画素(B、
B’)を抽出し、該境界黒画素(B、B’)とその前位
若しくは次位の走査ライン上で隣接する参照画素(A,
A’)と論理積を取って*2を決定するまでは前記と同
様であるが、削除の場合前記境界黒画素(B、B’)を
抽出し、該境界黒画素(B、B’)とその同一走査ライ
ンと前位若しくは次位の走査ライン上で隣接する参照画
素(A、A’D)と論理積を取って削除すべき単位素*
3を決定する。 *1:A、A’(0→1)ΛB *2:B、B’(1→0)ΛA(A’) *3:B、B’(1→0)ΛD(A)ΛA(A’)
FIG. 7 shows an embodiment in which a black unit pixel is added / deleted. First, a boundary pixel (A, which switches from a white pixel (0) to a black pixel (1) in the image data (a) before the smoothing process is changed.
A ') is extracted, and the boundary pixel (A, A') is ANDed with the reference pixel (B) adjacent to the preceding or next scanning line to determine the unit element * 1 to be added. , The boundary black pixel (B, which switches from the black pixel (1) to the white pixel (0),
B ′) is extracted, and the reference black pixel (A, B ′) adjacent to the boundary black pixel (B, B ′) on the preceding or next scanning line (A,
A ') is the same as the above until the logical product is taken to determine * 2, but in the case of deletion, the boundary black pixel (B, B') is extracted and the boundary black pixel (B, B ') is extracted. And a unit pixel to be deleted by logically ANDing the same scan line and the reference pixels (A, A′D) adjacent to the previous or next scan line.
Determine 3. * 1: A, A '(0 → 1) ΛB * 2: B, B' (1 → 0) ΛA (A ') * 3: B, B' (1 → 0) ΛD (A) ΛA (A ' )

【0024】図8は、他の実施例で、その走査ラインの
下位の2つの単位素ライン(iii,iv)次位の走査ライン
の上位2つの単位素ライン(i,ii)に関係づけて付加単
位素(a〜g)を設定する手順について説明する。先
ず、I走査ラインで白画素(0)から黒画素(1)に切
換わる境界画素(A)を抽出し、該境界画素(A)とII
走査ライン上で隣接する参照画素(E,F)と論理積を
取って,iii単位素ラインでは1ビット先行させてbを
設定し、次にI走査ラインで黒画素(1)から白画素
(0)に切換わる境界黒画素(C)を抽出し、該境界黒
画素CとII走査ライン上で隣接する参照画素(G,H)
と論理積を取って,iii単位素ラインでは1ビット遅延
させてb2を設定し、次にiv単位素ラインの場合は夫々
2ビット先行若しくは遅延させてa1,a2とg1,g
2を設定する。
FIG. 8 shows another embodiment in which the lower two unit element lines (iii, iv) of the scan line are related to the upper two unit element lines (i, ii) of the next scan line. A procedure for setting the additional unit primes (a to g) will be described. First, a boundary pixel (A) that switches from a white pixel (0) to a black pixel (1) in the I scan line is extracted, and the boundary pixel (A) and II are extracted.
The logical product of the adjacent reference pixels (E, F) on the scan line is set, and b is set by preceding by 1 bit in the iii unit pixel line, and then the black pixel (1) to the white pixel (in the I scan line). The boundary black pixel (C) which is switched to 0) is extracted, and the reference pixel (G, H) adjacent to the boundary black pixel C on the II scanning line is extracted.
Then, the iii unit element line is delayed by 1 bit to set b2, and then the iv unit element line is advanced or delayed by 2 bits respectively, a1, a2 and g1, g.
Set 2.

【0025】II走査ラインも同様に境界画素(F、G)
を抽出し、該境界画素(F、G)とI走査ライン上で隣
接する参照画素(A,B若しくはB,C)と論理積を取
って,前記と同様にii単位素ラインでは1ビット先行
(遅延)させてd、fを設定し、i単位素ラインの場合
は夫々2ビット先行(遅延)させてc/eを設定する訳
であるが、この際cとeがダブル為に論理和を取って黒
画素とする。従ってかかる方式においても境界画素
(F、G)と参照画素(A、B、C)との論理和を取る
事により容易に平滑化処理が可能となる。
Similarly, the II scan line also has boundary pixels (F, G).
Is extracted, and the boundary pixel (F, G) and the reference pixel (A, B or B, C) adjacent to each other on the I scan line are ANDed, and 1 bit precedes in the unit pixel line ii as described above. (Delay) to set d and f, and in the case of i unit prime lines, each bit is advanced (delayed) to set c / e. To obtain black pixels. Therefore, even in such a system, the smoothing process can be easily performed by taking the logical sum of the boundary pixels (F, G) and the reference pixels (A, B, C).

【0026】[0026]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図4
は本発明が適用される画素分割された単位素を取込んで
nビット単位でLED素子を順次駆動制御するようにし
た時分割方式のLEDヘッド回路で、1はnビットのL
ED素子1aを組込んだ複数のLEDチップ1A…を列
状に配列してなるLEDアレイ、10は該LEDアレイ
の駆動ICで、前記チップ毎のLED素子数nと対応す
る数のメモリ容量を有するシフトレジスタ11、ラッチ
回路12、LED素子数nに対応する数のスイッチ素子
13aを含むスイッチ回路13からなり、マトリックス
状の配線パターン3’を介して前記チップ1AのLED
素子1aとスイッチ素子13a間を接続させている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described in detail below as an example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Not too much. Figure 4
Is a time division type LED head circuit which takes in pixel-divided unit elements to which the present invention is applied and sequentially drives and controls LED elements in n-bit units. 1 is an n-bit L
An LED array 10 in which a plurality of LED chips 1A ... Incorporating ED elements 1a are arranged in rows is a drive IC of the LED array, and has a memory capacity corresponding to the number n of LED elements for each chip. The chip register 1A includes a shift register 11, a latch circuit 12, and a switch circuit 13 including switch elements 13a, the number of which corresponds to the number n of LED elements.
The element 1a and the switch element 13a are connected.

【0027】4は前記単位素をnビットづつシフトレジ
スタ11側に転送制御毎に、前記スイッチ回路13とL
EDチップ1A…との接続を順次選択的に切換えるブロ
ック指定回路である。
Reference numeral 4 designates the switch circuit 13 and L for each transfer control of the unit element to the shift register 11 side by n bits.
It is a block designating circuit for selectively selectively switching the connection with the ED chips 1A.

【0028】次にかかるヘッド回路の動作を簡単に説明
するに、先ずクロックに基づいて最初のnビットの単位
素をコントロール回路53(図3参照)よりシフトレジ
スタ11にシリアルに取込んで格納した後、制御回路5
よりのラッチ信号に基づいて該nビット単位素をパラレ
ルにラッチ回路12にラッチさせると共に、該ラッチデ
ータに基づく出力信号をスイッチ回路13側に転送する
事により対応するLEDチップ1Aの各LED素子1a
の駆動制御を行う。
To briefly explain the operation of the head circuit, first, the first n-bit unit element is serially fetched and stored in the shift register 11 from the control circuit 53 (see FIG. 3) based on the clock. After that, the control circuit 5
Each of the LED elements 1a of the corresponding LED chip 1A by causing the latch circuit 12 to latch the n-bit unit element in parallel on the basis of the latch signal and transferring the output signal based on the latch data to the switch circuit 13 side.
Drive control.

【0029】そして前記シフトレジスタ11には前記ラ
ッチ回路12にデータ転送後、引続いて次位のnビット
単位素をシリアルに格納し続け、該nビットデータ格納
後にラッチ信号に基づいてラッチ回路12側に該データ
をラッチさせるとともに制御回路5より切換え信号をブ
ロック指定回路4に送信し、前記スイッチ回路13の接
続を次位のLEDチップ1B…に切換え、LEDチップ
1Bの各LED素子1aの駆動制御し、以下同様な動作
をm回続けて行い、1走査ライン分の単位素のデータ出
力を行う。
After the data is transferred to the latch circuit 12 in the shift register 11, the next n-bit unit element is continuously stored serially, and after the n-bit data is stored, the latch circuit 12 is based on the latch signal. The control circuit 5 sends a switching signal to the block designating circuit 4, while switching the connection of the switch circuit 13 to the next LED chip 1B ..., Driving each LED element 1a of the LED chip 1B. The same operation is continuously performed m times, and the unit element data for one scanning line is output.

【0030】以下同様な方法でLEDチップ1A〜1N
の駆動制御をm回(N×m回)×5回行うことにより図
5に示すような5分割若しくは4分割した単位素群とし
ての1走査ラインの画素データが展開される事になる。
Thereafter, the LED chips 1A to 1N are processed in the same manner.
By performing the drive control of m times (N × m times) × 5 times, the pixel data of one scanning line as a unit element group divided into five or four as shown in FIG. 5 is developed.

【0031】図3は請求項1〜3記載の実施例を示し、
図3において、ビデオ出力側に設けられた制御回路で、
複数の主走査ラインに対応する画像情報を取込んで平滑
化処理を行った後、該処理後の分割画素データを前記プ
リントエンジン内に設けられたLEDヘッド回路にシリ
アル送信可能に構成されている。
FIG. 3 shows an embodiment according to claims 1 to 3,
In FIG. 3, in the control circuit provided on the video output side,
After the image information corresponding to a plurality of main scanning lines is fetched and subjected to smoothing processing, the processed divided pixel data can be serially transmitted to an LED head circuit provided in the print engine. ..

【0032】その構成を簡単に説明するに、51はパタ
ーンメモリで、例えば不図示のビデオメモリ内に展開さ
れた一走査ライン分の画素信号を基準クロック信号に基
づいてシリアルに前記メモリ51内に入力させつつ前記
メモリ51内に前記出力しようとする画素信号ラインと
共に、常にその前後の一又は複数の走査ラインに相当す
る画素信号ラインを格納しておく。52は論理回路兼用
のデコーダで、図3(b)の拡大部分に示す如く前記パ
ターンメモリ51内の注目画素に隣接する画像情報、よ
り具体的には主走査方向にRドット、副走査方向にχド
ット分のマトリックスRχ1内の画像情報を参酌し、コ
ントロール回路53より採り入れた情報に対応する分割
単位素P1〜P5を示すセレクタ信号SLに基づいて夫
々の単位素P1からP5に対応する分割画素信号を所定
の論理回路に基づいて生成する。
To briefly explain the configuration, 51 is a pattern memory, for example, a pixel signal for one scanning line developed in a video memory (not shown) is serially stored in the memory 51 based on a reference clock signal. A pixel signal line corresponding to one or a plurality of scanning lines before and after the pixel signal line to be output is always stored in the memory 51 while being input. Denoted at 52 is a decoder which also serves as a logic circuit. As shown in the enlarged portion of FIG. 3B, image information adjacent to the pixel of interest in the pattern memory 51, more specifically, R dots in the main scanning direction and sub scanning direction Taking into account the image information in the matrix Rχ1 for the χ dots, the divided pixels corresponding to the respective unit elements P1 to P5 based on the selector signal SL indicating the divided unit elements P1 to P5 corresponding to the information taken in by the control circuit 53. A signal is generated based on a predetermined logic circuit.

【0033】そして前記デコーダ52により生成された
分割画素信号は基準クロックCLKに基づいて、コント
ロール回路53を介してプリントエンジン側のシフトレ
ジスタに転送する。一方前記1の分割信号をシフトレジ
スタに転送の都度、基準クロックCLKに基づいて、前
記パターンメモリ51内の参照すべき画素情報(Rχ
n)を一ビットづつ主走査方向にずらしながら注目画素
*2*3…を順次生成し、例えば分割した単位素P1に
対応する一走査ライン分の分割画素信号をコントロール
回路53を介してシフトレジスタ11にシリアルに転送
し、該転送後セレクト信号SLを切換えて単位素P2に
対応する分割画素信号を前記デコーダ52に組込んだ論
理回路に基づいて転送し、以下前記動作を繰返す。
The divided pixel signal generated by the decoder 52 is transferred to the shift register on the print engine side via the control circuit 53 based on the reference clock CLK. On the other hand, every time the 1 division signal is transferred to the shift register, the pixel information (Rχ) to be referred to in the pattern memory 51 based on the reference clock CLK.
n) is shifted bit by bit in the main scanning direction to sequentially generate the target pixel * 2 * 3, and, for example, a divided pixel signal for one scanning line corresponding to the divided unit element P1 is shifted through the control circuit 53 through the shift register. 11, the select signal SL is switched after the transfer, the divided pixel signal corresponding to the unit pixel P2 is transferred based on the logic circuit incorporated in the decoder 52, and the above operation is repeated.

【0034】即ちより具体的には副走査方向に分割した
例えば5個の単位素群の内、不図示の制御回路よりのセ
レクタ信号SLに基づいて上下端の単位素P1,P5を
除く3個の単位素群P2〜P4に繰り返し前記画素信号
を印加しながら画像データを生成するわけであるが、こ
の際隣接する他の走査ラインの画素情報に対応させて前
記平滑化処理を行うべき注目画素については、前記デコ
ーダ52に組込まれた論理回路に基づいて印加すべき単
位素群P1〜P5を前記発明の作用の項で詳細に説明し
たように副走査方向に印加すべき単位素を増減させなが
ら分割画素パターンの展開を行う。
That is, more specifically, of the five unit element groups divided in the sub-scanning direction, three excluding the unit elements P1 and P5 at the upper and lower ends based on a selector signal SL from a control circuit (not shown). While the image data is generated while repeatedly applying the pixel signal to the unit pixel groups P2 to P4, the target pixel to be smoothed corresponding to the pixel information of another adjacent scanning line. As for the unit element groups P1 to P5 to be applied based on the logic circuit built in the decoder 52, the unit elements to be applied in the sub-scanning direction are increased or decreased as described in detail in the section of the operation of the invention. While developing the divided pixel pattern.

【0035】53は前記デコーダ52より出力される単
位画素データを、基準クロックに基づいて前記したプリ
ントエンジン側のLEDヘッド回路のシフトレジスタ1
1にシリアルに送信するコントロール回路である。そし
て該コントロール回路53よりシリアルに転送された単
位素を取込んで前記LEDヘッド回路1側でnビット単
位でLED素子が順次駆動制御される。かかる回路によ
れば前記した請求項1機細の発明に基づく平滑化処理を
円滑に行う事が出来る。
Reference numeral 53 denotes the unit pixel data output from the decoder 52, based on a reference clock, the shift register 1 of the LED head circuit on the print engine side.
1 is a control circuit that serially transmits to 1. Then, the unit elements serially transferred from the control circuit 53 are taken in, and the LED head circuit 1 side sequentially controls the driving of the LED elements in units of n bits. According to such a circuit, the smoothing processing based on the above-mentioned subtended invention can be smoothly performed.

【0036】図9及び図10は請求項4記載の発明の実
施例を示す平滑化処理回路を示す。図9は本発明の平滑
化処理回路の全体構成図を示すブロックダイヤグラム
で、例えば不図示の画像RAMその他にビデオ展開され
たビデオデータ(以下、VDATA)は、VCLK生成
回路101で生成したVCLKに同期してシリアルにシ
フトレジスタ104に転送され、該シフトレジスタ10
4でN+1ビットパラレルデータに変換した後、SRA
M105の第1バンク、第1アドレスに格納する。続く
N+1ビットの変換パラレルデータは第2アドレスへと
格納し、以下これを繰返しながら1ライン分のVDAT
AをSRAM105の第1バンクに格納する。
9 and 10 show a smoothing processing circuit showing an embodiment of the invention described in claim 4. FIG. 9 is a block diagram showing an overall configuration diagram of the smoothing processing circuit of the present invention. For example, video data (hereinafter, VDATA) rasterized in an image RAM or the like (not shown) is converted into VCLK generated by the VCLK generation circuit 101. The data is transferred to the shift register 104 serially in synchronization with the shift register 10
After converting to N + 1 bit parallel data in step 4, SRA
Store in the first bank, first address of M105. Subsequent N + 1-bit converted parallel data is stored in the second address, and this operation is repeated thereafter for one line of VDAT.
Store A in the first bank of SRAM 105.

【0037】以下同様に、第2ラインのVDATAは第
2バンクへ、第3ラインのVDATAは第3バンクへと
順次格納していく。そしてNライン分のVDATASR
AMIOSのが第1〜Nバンクに格納されるとSRAM
制御回路103は、第N+1バンクの第1アドレスに格
納するためのVDATAが揃うまでの時間を利用して、
第1〜Nバンクの各第1アドレスに格納されているVD
ATAをラッチ信号に基づいて順次読み出し、ラッチア
ンドシフトレジスタ106〜112に、それぞれストア
するとともに、SRAM制御回路103よりの信号に基
づいて、第Nバンク、第1アドレスに変換パラレルデー
タを格納すると同時に、ラッチアンドシフトレジスタ1
06〜112にストアされているデータをNラインシフ
トレジスタ113にロードする。
Similarly, VDATA of the second line is sequentially stored in the second bank, and VDATA of the third line is sequentially stored in the third bank. And VDATASR for N lines
When AMIOS's are stored in banks 1 to N, SRAM
The control circuit 103 uses the time until VDATA for storing at the first address of the N + 1th bank is available,
VD stored at each first address of the first to Nth banks
ATA is sequentially read based on the latch signal, stored in the latch-and-shift registers 106 to 112 respectively, and at the same time the converted parallel data is stored in the Nth bank and the first address based on the signal from the SRAM control circuit 103. , Latch and shift register 1
The data stored in 06 to 112 is loaded into the N line shift register 113.

【0038】以下同様に前記動作を繰返す事により、第
N+1ラインのVDATAをSRAM105の第N+1
バンクに格納しつつ該SRAM105に格納されている
第1〜NラインのVDATAをラッチアンドシフトレジ
スタ106〜112を介して連続的にNラインシフトレ
ジスタ113に供給していく。そして、SRAM105
側では第NラインのVDATAを第Nバンクに格納し終
ると、SRAM制御回路103よりの制御信号に基づい
て第9ラインのVDATAを第1バンクに、更に第10
ラインのVDATAを第2バンクへ格納することによ
り、以下順次第1〜Nバンクの内容を更新していく。
By repeating the above operation in the same manner, the VDATA of the (N + 1) th line is transferred to the (N + 1) th of the SRAM 105.
The VDATA of the first to N-th lines stored in the SRAM 105 while being stored in the bank are continuously supplied to the N-line shift register 113 via the latch-and-shift registers 106 to 112. Then, the SRAM 105
On the side, when the VDATA of the Nth line has been stored in the Nth bank, the VDATA of the 9th line is stored in the first bank and further in the 10th bank based on the control signal from the SRAM control circuit 103.
By storing VDATA of the line in the second bank, the contents of the first to Nth banks are sequentially updated.

【0039】この結果、前記Nラインシフトレジスタ1
13には、SRAM105よりのデータ転送により順次
その内容を更新しながら基準画素(中心ビット)の前後
1若しくは複数ライン、左右3ビットのビットマップ
(N×7)が格納配列される事となり、該ビットマップ
を利用して後記する平滑化処理回路120内での平滑化
処理が可能となる。
As a result, the N line shift register 1
In 13 is stored a bit map (N × 7) of 1 or more lines before and after the reference pixel (center bit) and 3-bit left and right while the contents are sequentially updated by data transfer from the SRAM 105. The smoothing processing can be performed in the smoothing processing circuit 120 described later by using the bitmap.

【0040】平滑化処理回路120は、前記参照画素を
セレクトするセレクタ121A、121Bとアンド回路
122A、122Bからなるアンドロジック123、各
画素の単位素ラインを選択するラインカウンタ124、
前記論理和もしくは論理積により得られた付加(削除)
単位素と境界画素との間に1ビット空いてる場合に該ビ
ットを埋める(削除する)ディレイ回路125A、12
5B、いずれの単位素ラインかを選択するラインカウン
タ124及び前記付加単位素と論理和若しくは削除単位
素と論理積を取りながら平滑処理後の分割画素ビデオデ
ータをLEDヘッド回路側にシリアル送信するORゲー
ト127とANDゲート128とから構成される。
The smoothing processing circuit 120 includes an AND logic 123 including selectors 121A and 121B for selecting the reference pixels and AND circuits 122A and 122B, a line counter 124 for selecting a unit element line of each pixel,
Addition (deletion) obtained by the logical sum or logical product
When one bit is vacant between the unit element and the boundary pixel, the delay circuit 125A, 12 that fills (deletes) the bit
5B, a line counter 124 for selecting which unit element line and an OR for serially transmitting the divided pixel video data after the smoothing processing while taking the logical sum of the additional unit element and the logical product of the deletion unit element It is composed of a gate 127 and an AND gate 128.

【0041】次に平滑化処理回路120の作用を図10
に基づいて説明するに、先ずNライン走査レジスタの対
応する走査ラインMで白画素(0)から黒画素(1)に
切換わる境界画素(A)を抽出し、次にラインカウンタ
124よりのカウンタ信号(i〜iv)に基づいて前記N
ラインシフトレジスタ113内の前位Pー1〜次位P+
1の走査ライン上に位置する画素(B〜M)の内、境界
画素Aと隣接する1又は複数の参照画素をセレクタ12
1A,121Bで選択し、即ちカウンタ信号がi,iiの場
合は前位Pー1の走査ライン上に位置する画素(B〜
G)を、又カウンタ信号がiii,ivの場合は次位P+1の
走査ライン上に位置する画素(H〜M)より参照画素を
選択する。
Next, the operation of the smoothing processing circuit 120 will be described with reference to FIG.
First, the boundary pixel (A) that switches from the white pixel (0) to the black pixel (1) in the corresponding scan line M of the N line scan register is extracted, and then the counter from the line counter 124 is used. The N based on the signals (i to iv)
Previous position P-1 to next position P + in the line shift register 113
Of the pixels (B to M) positioned on one scan line, the selector 12 selects one or more reference pixels adjacent to the boundary pixel A.
1A and 121B, that is, when the counter signals are i and ii, the pixels (B to B) located on the scan line of the preceding P-1 are selected.
G), or when the counter signals are iii and iv, the reference pixel is selected from the pixels (HM) located on the scan line of the next order P + 1.

【0042】そして前記参照画素と境界画素とをAND
回路122A、122Bで論理積を取って必要な付加
(削除)単位素信号を生成すると共に、そして必要な場
合ディレイ回路125A、125Bにて前記AND回路
122A、122Bより得られた付加(削除)単位素信
号を基準画素との間に更に一ビット付加させて二ビット
の連続した付加(削除)単位素信号を生成することは前
記した通りである。そして前記の様にして得られた平滑
処理用の付加(削除)単位素信号はOR回路129A、
129Bを介してNラインシフトレジスタ113より出
力されるビデオデータとOAゲート127により論理和
(付加の場合)を取るかANDゲート128により論理
積(削除)を取って分割した単位素ライン単位でLED
ヘッド回路側にシリアル送信される。
The reference pixel and the boundary pixel are ANDed.
The circuits 122A and 122B take a logical product to generate a necessary addition (deletion) unit elementary signal, and if necessary, the delay circuits 125A and 125B obtain the addition (deletion) unit obtained from the AND circuits 122A and 122B. As described above, one bit is further added between the elementary signal and the reference pixel to generate a continuous addition (deletion) unit elementary signal of two bits. The addition (deletion) unit element signal for smoothing obtained as described above is the OR circuit 129A,
The video data output from the N-line shift register 113 via the 129B and the OA gate 127 take the logical sum (in the case of addition) or the AND gate 128 take the logical product (delete) to divide the LEDs in unit element line units.
Serial transmission to the head circuit side.

【0043】かかる実施例によれば前記した本発明の作
用が円滑に達成し得る。尚本発明においては平滑用単位
素を付加する場合と削除する場合で別異の平滑処理動作
を行なうために、セレクタ121A、121B、AND
回路122A、122B、ディレイ回路125A、12
5B、OR回路129A、129B夫々を各一対づつ設
けている。
According to this embodiment, the above-described operation of the present invention can be smoothly achieved. In the present invention, the selectors 121A, 121B and AND are used to perform different smoothing processing operations when adding and deleting the smoothing unit element.
Circuits 122A and 122B, delay circuits 125A and 12
5B, OR circuits 129A and 129B are provided in pairs.

【0044】[0044]

【効果】以上記載の如く本発明によれば、一つの画素を
副走査方向に複数の単位素に分割して画像出力を行なう
ラインアレイ状の記録ヘッドを有するサーマルプリンタ
やLEDプリンタにおいて、請求項1記載の発明におい
ては前記単位素を副走査方向にシフト若しくは増減させ
る事により、又請求項4記載の発明においては、前記境
界画素と参照画素とを論理積を取ることにより回路構成
を煩雑化させることなく、而も簡単な判定動作で容易に
且つ精度よく平滑化処理を行なう事の出来る。等の種々
の著効を有す。
As described above, according to the present invention, there is provided a thermal printer or an LED printer having a line array recording head which outputs an image by dividing one pixel into a plurality of unit pixels in the sub-scanning direction. In the first aspect of the invention, the unit element is shifted or increased or decreased in the sub-scanning direction, and in the fourth aspect of the invention, the boundary pixel and the reference pixel are logically ANDed to complicate the circuit configuration. It is possible to perform smoothing processing easily and accurately with a simple determination operation without performing the above. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)は本発明の平滑処理用の印字配列
状態を示す基本構成図
1A and 1B are basic configuration diagrams showing a printing arrangement state for smoothing processing of the present invention.

【図2】(a)(b)は平滑用単位素を隣接する画素域
までシフトさせた平滑処理用の印字配列状態を示す
2A and 2B show a print array state for smoothing processing in which a unit pixel for smoothing is shifted to an adjacent pixel area.

【図3】請求項1記載の発明の実施例に係る平滑化処理
回路のブロック図である。
FIG. 3 is a block diagram of a smoothing processing circuit according to an embodiment of the invention described in claim 1.

【図4】本発明が適用される時分割方式を採用するLE
DプリンタのLEDヘッド回路図
FIG. 4 is a LE adopting a time division method to which the present invention is applied.
D printer LED head circuit diagram

【図5】図4のLEDヘッド回路により出力されるドッ
トパターンを示す。
5 shows a dot pattern output by the LED head circuit of FIG.

【図6】請求項4記載の発明の平滑処理動作を行なうた
めに動作手順を示し、特に本図は単位素の付加のみにて
平滑処理を行なう手順を示す。
FIG. 6 shows an operation procedure for performing the smoothing operation of the invention according to claim 4, and particularly this figure shows a procedure for performing the smoothing processing only by adding a unit element.

【図7】請求項4記載の発明の平滑処理動作を行なうた
めに動作手順を示し、特に本図は単位素の付加/削除に
て平滑処理を行なう手順を示す。
FIG. 7 shows an operation procedure for performing the smoothing processing operation of the invention according to claim 4, and particularly this figure shows a procedure for performing the smoothing processing by adding / deleting a unit element.

【図8】請求項4記載の発明の平滑処理動作を行なうた
めに動作手順を示し、特に本図は隣接する単位素ライン
に着目して平滑処理を行なう手順を示す。
FIG. 8 shows an operation procedure for performing the smoothing operation of the invention according to claim 4, and particularly this drawing shows a procedure for performing the smoothing processing by paying attention to adjacent unit element lines.

【図9】請求項1記載の発明の実施例に係る平滑化処理
用コントローラの全体ブロック図である。
FIG. 9 is an overall block diagram of a smoothing processing controller according to an embodiment of the present invention.

【図10】図9中の平滑処理回路部分の要部ブロック図
である
10 is a block diagram of a main part of a smoothing processing circuit portion in FIG.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // G09G 5/36 8121−5G Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // G09G 5/36 8121-5G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一画素を副走査方向に複数の単位素(P≧
3)に分割し、該分割した単位素に適宜、対応する画素
信号を印加しながら一走査ライン若しくはnビット単位
で画素パターンを出力させる画像出力方式において、 前記分割した単位素Pの一又は複数の単位素に、対応す
る画素信号を印加しながら画素パターンを形成するとと
もに、平滑化処理時に、隣接する画素情報に対応させて
平滑化処理を行うべき基準画素を選択し、該選択した基
準画素の単位素に画素信号を印加して前記画素パターン
の出力を行う事を特徴とする画像出力方式
1. A plurality of unit pixels (P ≧ 1
3), and an image output method in which a pixel pattern is output in units of one scanning line or n bits while applying a corresponding pixel signal to the divided unit element, one or more of the divided unit element P. While forming a pixel pattern while applying a corresponding pixel signal to the unit pixel of, the reference pixel to be subjected to the smoothing process is selected in correspondence with the adjacent pixel information, and the selected reference pixel is selected. Image output method characterized in that a pixel signal is applied to the unit pixel of
【請求項2】前記画素信号を印加する単位素を、一画素
の範囲内で増減させる事を特徴とする請求項1記載の画
像出力方式
2. The image output system according to claim 1, wherein the unit pixel to which the pixel signal is applied is increased or decreased within a range of one pixel.
【請求項3】前記画素信号を印加する単位素を、一画素
を越えて隣接する他の画素の単位素に付加させる事を特
徴とする請求項1記載の画像出力方式
3. The image output system according to claim 1, wherein the unit element for applying the pixel signal is added to the unit element of another pixel adjacent to and exceeding one pixel.
【請求項4】一画素ドットを副走査方向に複数の単位素
群に分割し、該分割した単位素群に適宜、対応する画素
信号を印加しながら一走査ライン若しくはnビット単位
で画素パターンを出力させる画像出力方式において、 一走査方向に沿って画素信号が印加されない画素(以下
白画素という)から画素信号を印加する画素(以下黒画
素という)に、若しくは前記黒画素から白画素に切り換
わる境界画素と、該境界画素に隣接する前位若しくは次
位の走査ライン上に位置する1又は複数の参照画素と論
理積及び論理和を取りながら、前記境界画素、参照画素
若しくはこれらの画素に隣接する画素区域に、黒単位素
を適宜付加若しくは削減して平滑化処理を行なう事を特
徴とする画像出力方式
4. A pixel dot is divided into a plurality of unit element groups in the sub-scanning direction, and a pixel pattern is formed in units of one scanning line or n bits while applying corresponding pixel signals to the divided unit element groups. In the image output method for outputting, a pixel along which a pixel signal is not applied (hereinafter referred to as a white pixel) along one scanning direction is switched to a pixel to which a pixel signal is applied (hereinafter referred to as a black pixel), or the black pixel is switched to a white pixel. The boundary pixel and the reference pixel or these pixels are adjacent to each other while taking a logical product and a logical sum of the boundary pixel and one or more reference pixels located on the preceding or next scanning line adjacent to the boundary pixel. Image output method characterized by performing smoothing processing by appropriately adding or reducing black unit pixels to the pixel area
JP3185530A 1990-08-28 1991-06-29 Image smoothing method Expired - Fee Related JP2812344B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3185530A JP2812344B2 (en) 1990-08-28 1991-06-29 Image smoothing method
US07/741,605 US5404233A (en) 1990-08-28 1991-08-07 Method for smoothing image
EP91114470A EP0473142B1 (en) 1990-08-28 1991-08-28 Method for smoothing an image
DE69129721T DE69129721T2 (en) 1990-08-28 1991-08-28 Image smoothing process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22436990 1990-08-28
JP2-224369 1990-08-28
JP3185530A JP2812344B2 (en) 1990-08-28 1991-06-29 Image smoothing method

Publications (2)

Publication Number Publication Date
JPH0564922A true JPH0564922A (en) 1993-03-19
JP2812344B2 JP2812344B2 (en) 1998-10-22

Family

ID=26503158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185530A Expired - Fee Related JP2812344B2 (en) 1990-08-28 1991-06-29 Image smoothing method

Country Status (1)

Country Link
JP (1) JP2812344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19630633A1 (en) * 1995-08-01 1997-02-06 Kyocera Corp Method and device for generating images

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145675A (en) * 1984-08-08 1986-03-05 Nippon Telegr & Teleph Corp <Ntt> Picture element data interpolation system
JPS6424568A (en) * 1987-07-20 1989-01-26 Sanyo Electric Co Interpolating circuit for picture data
JPH01321578A (en) * 1988-06-23 1989-12-27 Sharp Corp Picture display system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145675A (en) * 1984-08-08 1986-03-05 Nippon Telegr & Teleph Corp <Ntt> Picture element data interpolation system
JPS6424568A (en) * 1987-07-20 1989-01-26 Sanyo Electric Co Interpolating circuit for picture data
JPH01321578A (en) * 1988-06-23 1989-12-27 Sharp Corp Picture display system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19630633A1 (en) * 1995-08-01 1997-02-06 Kyocera Corp Method and device for generating images
US5684933A (en) * 1995-08-01 1997-11-04 Kyocera Corporation Method and apparatus for forming images using a pre and post smoothing bit thinning down process
DE19630633C2 (en) * 1995-08-01 1998-05-28 Kyocera Corp Method and device for generating images

Also Published As

Publication number Publication date
JP2812344B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
KR950006621B1 (en) Image processing apparatus
CN1132093C (en) Method and apparatus for calibrating delay lines to create gray levels in continuous tone printing
EP0473142B1 (en) Method for smoothing an image
US6016154A (en) Image forming apparatus
US5745249A (en) Pipelined architecture for patterned halftone generation
US5621453A (en) Increasing image forming method and apparatus therefor in led printer
US5241324A (en) Image printing method for edge emission type el printer
US5483605A (en) High speed pattern recognition technique for implementation of resolution enhancement algorithms into an application specific integrated circuit (ASIC) device
JPH0314266B2 (en)
JPH0650903B2 (en) Image recording method
JP2812344B2 (en) Image smoothing method
JP2871195B2 (en) Image smoothing processing device in printer
JP2839810B2 (en) High density image forming method in LED printer
JPH05246080A (en) Image forming device
JP3215748B2 (en) Print density correction method and LED printer incorporating the correction method
JP2871193B2 (en) Image smoothing method
JPS62267168A (en) Apparatus for transposition processing of matrix data
JP2958984B2 (en) Image processing device
JPH05177872A (en) Gradation control method in dot image output device
JP2000165672A (en) Device and method for generating halftone
JP4454831B2 (en) Image forming apparatus and image forming method
JP2871881B2 (en) Image processing device
JPS63297070A (en) Thermal image recording system by block printing system
JPH02225063A (en) Printer
JP2006050415A (en) Image processing apparatus and threshold data storage method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees