JP3215748B2 - Print density correction method and LED printer incorporating the correction method - Google Patents

Print density correction method and LED printer incorporating the correction method

Info

Publication number
JP3215748B2
JP3215748B2 JP8577293A JP8577293A JP3215748B2 JP 3215748 B2 JP3215748 B2 JP 3215748B2 JP 8577293 A JP8577293 A JP 8577293A JP 8577293 A JP8577293 A JP 8577293A JP 3215748 B2 JP3215748 B2 JP 3215748B2
Authority
JP
Japan
Prior art keywords
led
lighting
data
exposure
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8577293A
Other languages
Japanese (ja)
Other versions
JPH06270471A (en
Inventor
佳之 長房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP8577293A priority Critical patent/JP3215748B2/en
Publication of JPH06270471A publication Critical patent/JPH06270471A/en
Application granted granted Critical
Publication of JP3215748B2 publication Critical patent/JP3215748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はLEDプリンタにおける
印字濃度補正方法に係り、特にライン状に配列したLE
D素子群を一走査ライン毎に副走査方向に複数回点灯し
ながら印字ドットを形成する分割露光方式を効果的に利
用した印字濃度補正方法と補正方法を組込んだLEDプ
リンタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting print density in an LED printer, and more particularly, to a linearly arranged LE.
The present invention relates to a print density correction method that effectively utilizes a divided exposure method of forming a print dot while lighting a D element group a plurality of times in a sub-scanning direction for each scanning line, and an LED printer incorporating the correction method.

【0002】[0002]

【従来の技術】従来より、主走査方向に沿ってライン上
に配列したLED素子群を時分割によりnビット単位で
若しくは一主走査ライン単位で画像情報に対応して前記
LED素子列を点灯制御し、そのドット露光像を感光体
ドラムの母線上に結像させて該露光像に対応した静電潜
像を形成可能にしたLEDプリンタは公知であり、この
種の装置においてはLEDヘッドは一般に複数素子単位
でチップ化し、該チップ夫々に、nビットのデータをシ
リアル入力させるシフトレジスタ、ラッチ回路及び前記
シフトレジスタからのパラレルデータに基づいて前記チ
ップ内の発光素子の駆動制御を行う駆動ドライバ等が組
込まれた駆動ICを接続して構成されるが、前記LED
チップはウエーハ生成時の製造条件の相違等に起因して
チップ間若しくは各素子間で輝度(光出力)特性のバラ
ツキを有する。この為、従来よりLEDチップ相互間で
安定した光出力を得る為に、各チップ毎に前記輝度特性
に対応させて通電時間若しくは駆動電流を制御する事に
よりLEDチップの輝度特性を補正する方法が種々提案
されている。(実公平1ー21805、特開平1ー29
7271、実開昭59ー132276他)
2. Description of the Related Art Conventionally, LED element groups arranged on a line in the main scanning direction are time-divisionally controlled to turn on the LED element rows corresponding to image information in units of n bits or in units of one main scanning line. An LED printer is known in which the dot exposure image is formed on the generatrix of the photosensitive drum to form an electrostatic latent image corresponding to the exposure image. In this type of apparatus, an LED head is generally used. A shift register, a latch circuit for serially inputting n-bit data to each of the chips in units of a plurality of elements, a drive driver for controlling the driving of the light emitting elements in the chip based on parallel data from the shift register, etc. Is connected to a driving IC incorporating the LED.
Chips have variations in luminance (light output) characteristics between chips or between elements due to differences in manufacturing conditions during wafer production. For this reason, conventionally, in order to obtain a stable light output between the LED chips, a method of correcting the luminance characteristics of the LED chips by controlling the energization time or the driving current in accordance with the luminance characteristics for each chip has been proposed. Various proposals have been made. (July 1-2805, JP-A-1-29
7271, Kokai 59-132276, etc.)

【0003】しかしながら前記従来技術のようにLED
各チップ毎の輝度特性に対応させて通電時間若しくは駆
動電流を制御しても、定電流回路を内蔵する駆動IC間
のバラツキ、又チップ内のLED素子間についてもバラ
ツキを有しており、従ってこれらを個々に補正する事は
その制御動作と制御回路が極めて煩雑化する。即ち前記
したようにLEDチップには夫々の発光素子を駆動制御
する為の駆動ドライバや前記各LEDチップを順次切換
えながらその通電時間を設定するコモンドライバ等が接
続されているが、これらのドライバの立上がり若しくは
立下がり特性等は各駆動IC毎に夫々異なる。又チップ
内のLED素子間についても生成膜及びエッチング等の
バラツキにより各素子毎の発光強度にバラツキを有す。
そして前記駆動ICとチップ内のLED素子間のバラツ
キを含めた発光強度のバラツキは±20%前後あり、従
って隣接するドット間の一方が80%、他方が120%
と最悪の場合、両者間でそのバラツキが50%(120
/80)となってしまい、印字濃度即ち感光体上の潜像
電位に大きなバラツキが生じる。
[0003] However, as in the prior art described above,
Even if the energization time or the drive current is controlled in accordance with the luminance characteristics of each chip, there is variation between the drive ICs incorporating the constant current circuit and also between the LED elements in the chip. Correcting these individually makes the control operation and control circuit extremely complicated. That is, as described above, the LED chip is connected to a drive driver for driving and controlling the respective light emitting elements, a common driver for setting the energization time while sequentially switching the LED chips, and the like. The rise or fall characteristics are different for each drive IC. Also, between the LED elements in the chip, there is a variation in the light emission intensity of each element due to the variation of the generated film and the etching.
The variation in the light emission intensity including the variation between the driving IC and the LED element in the chip is about ± 20%, so that one between adjacent dots is 80% and the other is 120%.
And in the worst case, the variation between them is 50% (120
/ 80), and a large variation occurs in the print density, that is, the potential of the latent image on the photosensitive member.

【0004】一方感光体上における露光量は前記LED
素子の光出力と露光時間の積により定まるものであり、
この為特開平4ー212871号に示すように、ライン
上に並べた多数のLED素子を画像情報に対応させて同
時露光させるスタティック駆動型のLEDヘッドを用い
た装置において個々のLED素子を発光させるためのス
トローブ信号を予めLED素子毎の光量ランクを示すラ
ンク補正出力回路等に入力されている内容に従ってON
時間がCPUによって設定され、そして印字すべきタイ
ミングでストローブ信号が出力され、該ストローブ信号
に基づいてLED素子毎の光量ランクに対応して発光時
間を補正しながら該素子の露光時間の制御を行っている
技術が存在する。又同公報においては前記ランク補正出
力回路の補正データをドット単位で設定するのではな
く、対象画素とその周囲の周囲画素との濃度に基づいて
濃度選択を行う技術が開示されている。
On the other hand, the exposure amount on the photoreceptor
It is determined by the product of the light output of the element and the exposure time,
For this reason, as shown in JP-A-4-212871, individual LED elements emit light in an apparatus using a static drive type LED head that simultaneously exposes a large number of LED elements arranged on a line according to image information. Signal is turned on in accordance with the contents input in advance to a rank correction output circuit indicating the light quantity rank of each LED element.
The time is set by the CPU, and a strobe signal is output at a timing to be printed. Based on the strobe signal, the exposure time of the LED element is controlled while correcting the emission time corresponding to the light amount rank of each LED element. Technology exists. Further, in this publication, a technique is disclosed in which the correction data of the rank correction output circuit is not set in units of dots but a density is selected based on the density of a target pixel and surrounding pixels.

【0005】[0005]

【発明が解決しようとする課題】しかしながら前記のよ
うに単に露光時間をLED素子毎の光量ランクに対応し
て制御する技術は、前記したように一走査ライン毎に同
時露光させるスタティック駆動型のLEDヘッドにおい
て有効であるが、いわゆる時分割方式のLEDヘッドに
おいては問題がある。即ち時分割方式のLEDヘッドは
一走査ライン分の例えば2560個のLED素子を64
ビットづつ40ブロック(LEDチップ)に分割し、該
分割したLEDチップ(ブロック)単位で前記LEDを
順次点灯制御するようにしたもので、従って該時分割方
式においては、スタティック駆動方式に比較して露光時
間が1/40であり、この様な少ない露光時間を更にL
ED素子毎の光量ランクに対応して発光時間を更に分割
制御する事は中々困難であり、而も近年のように感光体
ドラムの小径化及び高速化に対応して水平同期サイクル
が大幅に短縮するに連れ前記時分割方式において露光時
間を更に分割制御するのは実質的にほとんど不可能であ
る。
However, as described above, the technique of simply controlling the exposure time in accordance with the light quantity rank of each LED element is based on the static drive type LED for simultaneously exposing one scanning line as described above. Although effective in a head, there is a problem in a so-called time division type LED head. In other words, the time-division type LED head uses, for example, 2560 LED elements for one scanning line as 64
The LED is divided into 40 blocks (LED chips) bit by bit, and the LEDs are sequentially controlled to be turned on in units of the divided LED chips (blocks). Therefore, in the time division method, compared with the static drive method, The exposure time is 1/40.
It is currently difficult to further control the light emission time according to the light intensity rank of each ED element, and the horizontal synchronization cycle has been significantly reduced in response to the recent trend toward smaller photoconductor drum diameters and higher speeds. As a result, it is practically almost impossible to further control the exposure time in the time division method.

【0006】この為、沖電気研究開発(第139号Vo
L.55 No3昭和63年7月)レポートで、LED
素子に接続される電流制御用の厚膜抵抗体を使用して、
LED出力の大小に応じて厚膜抵抗体をレーザトリミン
グしてその抵抗値を調整する事により、各素子毎の通電
電流制御をした技術も存在するが、レーザートリミング
する数が多く生産性が悪い。解像度が上がると厚膜抗体
の間隔も狭くなり技術的に困難。
For this reason, Oki Electric R & D (No. 139 Vo)
L. 55 No3 July 1988 report) LED
Using a thick film resistor for current control connected to the element,
There is also a technique of controlling the conduction current for each element by laser-trimming the thick-film resistor according to the level of the LED output and adjusting the resistance value, but the number of laser-trimmings is large and the productivity is poor. . As the resolution increases, the distance between the thick-film antibodies becomes narrower, which makes it technically difficult.

【0007】本発明はかかる従来技術の欠点に鑑み、前
記駆動ICとチップ内のLED素子間のバラツキを含め
たLED素子の光出力と露光時間の積により定まる感光
体上の露光量の一定化を図り、これにより感光体上のド
ット印字濃度を均一濃度に設定し得るLEDプリンタの
分割露光方式における印字濃度補正方法と該補正方法を
用いたLEDプリンタを提供する事を目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention is to stabilize the amount of exposure on a photoreceptor, which is determined by the product of the light output of the LED element including the variation between the driving IC and the LED element in the chip and the exposure time. To achieve a uniform dot print density on the photoreceptor .
It is an object of the present invention to provide a print density correction method in a divided exposure system and an LED printer using the correction method.

【0008】[0008]

【課題を解決する為の手段】従来より図1(B)に示す
様に画素パターンを生成する一画素ドットを副走査方向
にP個の単位素に分割し、該分割した単位素夫々に繰り
返し同一画素信号を印加しながら、言い換えればLED
プリンタの場合ライン状に配列したLED素子を一走査
ライン毎に副走査方向に適宜複数回点灯しながら、感光
体上に一のドット潜像を形成するLEDプリンタは公知
である。(特公昭62−26626号、特開昭60-134660号他)
本発明はかかる分割露光方式を効果的に利用し、ライン
状に配列したLED素子を一走査ライン毎に副走査方向
に適宜複数回点灯しながら感光体上にドット潜像を形成
するLEDプリンタの分割露光方式における印字濃度補
正方法であって、 LED素子の画素情報と、該LED素
子と対応する前記点灯パターン情報との両ビット情報に
ついて論理積を取りながら生成されるビデオデータに基
づいて前記LED素子を副走査方向に適宜複数回点灯制
御を行う事により前記LED素子間の光量のバラツキを
考慮した補正を行う事を特徴とする。
Conventionally, as shown in FIG. 1B, one pixel dot for generating a pixel pattern is divided into P unit elements in the sub-scanning direction, and each of the divided unit elements is repeated. While applying the same pixel signal, in other words, LED
In the case of a printer, an LED printer that forms one dot latent image on a photoreceptor while illuminating LED elements arranged in a line in a sub-scanning direction for each scanning line as appropriate several times is known. (Japanese Patent Publication No. 62-26626, Japanese Patent Application Laid-Open No. 60-134660, etc.)
The present invention is an LED printer which forms a dot latent image on a photoreceptor while effectively utilizing such a divided exposure method, and illuminating LED elements arranged in a line in a sub-scanning direction for each scanning line appropriately several times . Compensation of print density in split exposure system
Correct method, comprising : pixel information of an LED element;
And the lighting pattern information corresponding to the
Video data generated while performing a logical AND
Then, the LED element is turned on a plurality of times in the sub-scanning direction as appropriate.
Control the light amount variation between the LED elements.
It is characterized by performing correction in consideration of the above.

【0009】そしてこのような補正方法を実現する手段
として、前記分割露光方式を取るLEDプリンタにおい
て、ライン状に配列したLED素子を画素情報に基づい
て一走査ライン毎に副走査方向に適宜複数回点灯制御し
ながら感光体上にドット潜像を形成可能に構成し、各L
ED素子間の光量のバラツキを測定し、該バラツキに対
応した補正データが書込まれた記憶手段と、該記憶手段
より読み出された補正データに基づいて選択される点灯
パターンとを具え、前記LED素子の画素情報と、該L
ED素子と対応する前記点灯パターン情報との両ビット
情報について論理積を取りながら生成されるビデオデー
タに基づいて前記LED素子を副走査方向に適宜複数回
点灯制御しながら感光体上にドット潜像を形成する事を
特徴とする。
[0009] As means for realizing such a correction method, in an LED printer employing the above-mentioned divided exposure method, LED elements arranged in a line are arranged based on pixel information.
Lighting control several times in the sub-scanning direction for each scanning line
While forming a dot latent image on the photoreceptor.
Measuring the light intensity variation of between ED elements, storage means for correcting data corresponding to the variation is written, and a lighting pattern is selected based on the correction data read out from the storage means comprises the The pixel information of the LED element and the L
Both bits of the ED element and the corresponding lighting pattern information
Video data generated while performing a logical AND on information
The LED element in the sub-scanning direction several times
It is characterized in that a dot latent image is formed on the photosensitive member while controlling the lighting .

【0010】[0010]

【作用】本発明の基本原理を、例えば1走査ライン毎に
n(8)回繰り返し走査する分割露光方式であって、平
均光量に対し±20%の光量バラツキのある5ビットの
LEDを補正する場合について考えてみる。
The basic principle of the present invention, for example, a division exposure method repetitively scanning n (8) times for each scan line, 5 bits that ± 20% of the light amount variation with respect to the flat <br/> average amount Let us consider a case where the LED is corrected.

【0011】1) 先ず前記5ビットのLEDを全点灯
させてその各素子の光量を測定する。(図2(A)) 2) 次に最小光量値のLED素子(No1)を分割露
光回数n(例えば8/8若しくは16/16)回繰り返
し点灯させた場合の感光体上に形成し得る潜像ドット径
が正規解像度のドット径になるように露光時間を設定す
る。この設定はストローブ時間を制御する事により行わ
れ、全てのLED素子についてこのストローブ時間が基
準となって点灯される。この場合最小光量値のLED素
子(No1)を基準としなくとも良いが、最小光量値の
LED素子を基準とする事により、これを点灯回数の最
大値とする事により、後記する補正式の演算が容易にな
る。又最小光量値のLED素子の基準点灯回数について
も分割露光回数n/nに限定しなくても印字濃度との関
係で例えば(n−1)/n(7/8若しくは15/1
6)を基準点灯回数に設定してもよい。
1) First, all the 5-bit LEDs are turned on, and the light quantity of each element is measured. (FIG. 2A) 2) Next, a latent element that can be formed on the photoconductor when the LED element (No. 1) having the minimum light amount is repeatedly turned on n times (for example, 8/8 or 16/16) for the number of divided exposures. The exposure time is set so that the image dot diameter becomes the dot diameter of the regular resolution. This setting is performed by controlling the strobe time, and all the LED elements are turned on based on the strobe time. In this case, it is not necessary to use the LED element (No. 1) having the minimum light amount value as a reference. Becomes easier. Also, the reference lighting number of the LED element having the minimum light amount value is not limited to the number of divided exposures n / n, but may be, for example, (n-1) / n (7/8 or 15/1) in relation to the print density.
6) may be set as the reference lighting frequency.

【0012】3)最小光量値のLED素子を分割露光回
数n点灯させた場合と同等の露光エネルギになるような
点灯回数を他のLED素子について図2(B)の補正式
に基づいて算出し、該算出した分割点灯データを補正デ
ータとして光量補正ROMに書込む。 4)次に対応するLED素子毎に前記補正データ(以下
レジスト選択データと言う)をROMから読み出す事に
より図2(C)に示す点灯パターンレジスタを選択す
る。
3) The number of times of lighting such that the LED element having the minimum light amount has the same exposure energy as the case where the number of times of the divided exposure is n is calculated for the other LED elements based on the correction formula of FIG. Then, the calculated divided lighting data is written into the light quantity correction ROM as correction data. 4) Next, the lighting pattern register shown in FIG. 2C is selected by reading the correction data (hereinafter referred to as resist selection data) from the ROM for each corresponding LED element.

【0013】5)次に図1(A)に示すように、一走査
ライン毎に分割露光回数nに対応して同一画像データを
n分割走査ライン分繰り返しシリアル出力すると共に、
各露光ラインで前記レジスタの対応する分割露光ライン
におけるビットデータと、対応する画像データとアンド
を取り、該画像データとビットデータがいずれも黒の場
合のみLEDが点灯されるONデータとなるビデオデー
タをLEDヘッド側に出力する。 6)この結果、図2(C)及び図1(A)の右欄に示す
ように光量0.8のLED素子の場合は、例えば8/8
回、該光量0.9のLED素子の場合は、例えば7/8
回と光量のバラツキに対応して反比例的に分割露光され
る事となり、感光体ドラム上に形成される露光ドット径
の均一化が図れる。
5) Next, as shown in FIG. 1A, the same image data is repeatedly output serially for n divided scanning lines corresponding to the number of divided exposures n for each scanning line.
In each exposure line, bit data in the corresponding divided exposure line of the register, corresponding image data and AND are taken, and video data which is ON data in which an LED is turned on only when both the image data and the bit data are black Is output to the LED head side. 6) As a result, as shown in the right column of FIG. 2C and FIG.
Times, in the case of the LED element having the light amount of 0.9, for example, 7/8
Exposure is performed in a divided manner in inverse proportion to the variation in the amount of light, and the diameter of the exposure dots formed on the photosensitive drum can be made uniform.

【0014】[0014]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図3
乃至図4はLEDプリンタのコントロール部を示す本発
明の実施例で、その構成を作用に従って詳細に説明する
に、VCLKに基づいてビットマップメモリ11から転
送されたシリアル画像データVDATAは8ビットシリ
アル/パラレル変換回路12によりバッファメモリ14
のバス幅に対応する8ビットパラレルデータに変換した
後、8ビット画像データWDATAをディレクションコ
ントロール13を介してメモリコントロール回路15よ
り送信されるアドレスADR及び WRITEサイクルMWR
によってバッファメモリ14の選択された一のバンクの
所定アドレスに格納される。このバッファメモリ14は
ビットマップメモリ11から読み出されるシリアル画像
データの転送速度VCLKから分割露光速度に対応する
LEDの転送速度TCLKに変換する為に前記画像デー
タを一時記憶させるもので、次の様にメモリ制御されな
がらWRITE/READが行われる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, unless otherwise specified, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. Not just. FIG.
FIG. 4 to FIG. 4 show an embodiment of the present invention showing the control section of the LED printer. The configuration will be described in detail according to the operation. The serial image data VDATA transferred from the bitmap memory 11 based on VCLK is an 8-bit serial data. Buffer memory 14 by parallel conversion circuit 12
After converting the 8-bit image data WDATA into 8-bit parallel data corresponding to the bus width of the address ADR and the WRITE cycle MWR transmitted from the memory control circuit 15 via the direction control 13,
Thus, the data is stored at a predetermined address of the selected one bank of the buffer memory 14. The buffer memory 14 temporarily stores the image data in order to convert the transfer speed VCLK of the serial image data read from the bitmap memory 11 to the transfer speed TCLK of the LED corresponding to the divided exposure speed. WRITE / READ is performed while the memory is controlled.

【0015】ビットシリアル/パラレル変換回路12に
より8ビットパラレルデータへの変換が完了した後、該
変換回路12により次の8ビットパラレル変換が完了す
るまでの8VCLKの時間内にバッファメモリ14を図
4のタイミングチャートに示すようにコントロールす
る。即ち、バッファメモリ14は2走査ライン分のメモ
リ領域BANK1,2を有し、BANK1が書込みバッ
ファであるときはBANK2が読み出しバッファとな
り、次の水平同期信号Lsyncが入力されるまで、BAN
K1に8ビット単位で次位の一走査ライン分の画像デー
タを格納する。一方現位の一走査ライン分の画像データ
が格納されているBANK2では前記1WRITEサイクル
毎に前記WRITEサイクルを除いた8VCLKの時間(以
下リードサイクルという)内にn×8ドットの画像デー
タを読み出す必要がある。ここでn×8ドットの画像デ
ータを読み出すとは、同一の8ドットの画像データを繰
り返しn回読み出すという意味ではなく、例えば16分
割露光の場合は0000アドレスから0127アドレスまでの1
28の画像データを読み出す事を言う。従ってBANK
1に1/16走査ライン分の画像データが書込まれる毎
に、BANK2より現位の一走査ラインの画像データが
掃き出され、以下これを16回繰り返して現位の一走査
ラインの画像データが16回繰り返し掃き出しが行われ
る事となる。尚、前記BANK1、2の切換え、即ち書
込み/読み出しのトグル動作は水平同期信号Lsyncに基
づいて行われ、以下前記BANK1、2の切換えを行い
ながら前記動作を繰り返す。
After the conversion into 8-bit parallel data is completed by the bit serial / parallel conversion circuit 12, the buffer memory 14 is stored in the buffer memory 14 within 8 VCLK until the next 8-bit parallel conversion is completed by the conversion circuit 12. Is controlled as shown in the timing chart of FIG. That is, the buffer memory 14 has memory areas BANK1 and BANK2 for two scanning lines, and when BANK1 is a write buffer, BANK2 becomes a read buffer, and BANK2 is input until the next horizontal synchronization signal Lsync is input.
The image data for the next one scanning line is stored in K1 in units of 8 bits. On the other hand, in BANK 2 in which image data for the current one scan line is stored, it is necessary to read out n × 8 dot image data within 8 VCLK time (hereinafter referred to as a read cycle) excluding the WRITE cycle for each 1 WRITE cycle. There is. Here, reading out the image data of n × 8 dots does not mean that the same image data of 8 dots is repeatedly read out n times. For example, in the case of 16-division exposure, one image from address 0000 to address 0127 is read.
This means reading out 28 image data. Therefore BANK
Each time 1/16 scan line image data is written in 1, the current one scan line image data is swept out from BANK2. This is repeated 16 times, and the current one scan line image data is repeated. Is repeated 16 times. The switching of the BANKs 1 and 2, that is, the toggle operation of writing / reading is performed based on the horizontal synchronization signal Lsync, and the above operation is repeated while the BANKs 1 and 2 are switched.

【0016】そして前記BANK2より読み出された画
像データは、データラッチ&シフト回路49に4×8ド
ット単位で保持され、該32ドットのデータがラッチさ
れる毎に、コントロール回路15のLDに基づいて前記
32ドット毎に32ビットパラレルシリアル変換回路1
6にパラレル入力され、更に前記VCLKより16倍の
転送速度を有するTCLKに基づいて該変換回路16よ
り前記パラレルデータがアンドゲート17にシリアル出
力される。そしてこのシリアル画像データと同期してア
ンドゲート17に入力される補正シリアルデータとアン
ドを取りながらVCLKより16倍の転送速度を有する
TCLKに基づいて一走査ラインの画像データが前記レ
ジストパターンに対応させて適宜黒白転換させた補正画
像データが16分割露光ライン分LEDヘッド30側に
送信される。尚、前記分割露光ライン掃き出し毎に分割
水平同期信号SLsyncが繰り返し、LEDヘッド側に出
力される。
The image data read from the BANK 2 is held in the data latch & shift circuit 49 in units of 4 × 8 dots. Each time the data of 32 dots is latched, the image data is read out based on the LD of the control circuit 15. A 32-bit parallel-serial conversion circuit 1 for every 32 dots
6, and the parallel data is serially output from the conversion circuit 16 to the AND gate 17 based on TCLK having a transfer rate 16 times higher than the VCLK. The image data of one scan line is made to correspond to the resist pattern based on TCLK having a transfer speed 16 times as fast as VCLK while taking the AND with the corrected serial data input to the AND gate 17 in synchronization with the serial image data. The corrected image data that has been appropriately converted to black and white is transmitted to the LED head 30 for 16 divided exposure lines. The divided horizontal synchronizing signal SLsync is repeated every time the divided exposure line is swept out, and is output to the LED head side.

【0017】次に前記補正シリアルデータの生成方法に
ついて、説明する。先ず前記図2(B)に示すようにL
EDヘッドの全点灯により得られた光量分布データ(正
規化データ)を補正式を介して発光パターンレジスタ2
5を選択するための分割点灯数を示す露光補正データに
変換し、夫々のLEDヘッド30に対応する光量補正R
OM21に書込んでおく。従って光量補正ROM21は
夫々のLEDヘッド30に付設されるもので、その装置
のヘッド30が交換されれば該ROM21も交換する。
尚前記ROM21の代りにマスクRAM等を用い、LE
Dヘッド30の経時的劣化にともない補正データを書換
え可能に構成してもよい。光量補正ROM21は8ビッ
トデータが書込み可能なメモリ幅を有するが、分割露光
回数が16分割の場合4ビットデータで足りるために前
記ROM21に書込まれるデータは1つのアドレスの上
位4ビットに奇数NoのLED素子の補正データを、又
下位4ビットに偶数NoのLED素子の補正データが夫
々書込み可能に構成している。これにより1つのアドレ
スの上位及び下位に夫々一印字ドットづつの補正データ
が格納される事になるために、ROM21のメモリ容量
の省メモリ化と、1のアクセスで2つの補正データが掃
き出し可能であるために、その分ROM21のアクセス
速度を遅くさせる事が出来るという効果を有す。
Next, a method of generating the corrected serial data will be described. First, as shown in FIG.
The light amount distribution data (normalized data) obtained by full lighting of the ED head is converted into a light emission pattern register 2 via a correction formula.
5 is converted into exposure correction data indicating the number of divisional lightings for selecting 5, and a light amount correction R corresponding to each LED head 30 is obtained.
Write it to OM21. Therefore, the light amount correction ROM 21 is attached to each LED head 30, and if the head 30 of the device is replaced, the ROM 21 is also replaced.
Note that a mask RAM or the like is used instead of the ROM 21 and LE
The correction data may be configured to be rewritable as the D head 30 deteriorates with time. The light amount correction ROM 21 has a memory width in which 8-bit data can be written. However, when the number of division exposures is 16, 4-bit data is sufficient, and the data written in the ROM 21 has an odd No. in the upper 4 bits of one address. , And the correction data of the even-numbered LED elements can be written in the lower 4 bits. As a result, correction data for each print dot is stored in the upper and lower parts of one address, respectively, so that the memory capacity of the ROM 21 can be reduced and two correction data can be swept out by one access. For this reason, there is an effect that the access speed of the ROM 21 can be reduced correspondingly.

【0018】さて前記補正ROM21を装着した後、水
平同期信号LsyncとVCLKに基づいて補正回路タイミ
ングジェネレータ22より分割露光ラインの転送速度で
あるTCLKの1/2のクロックICLKをアドレスカ
ウンタ23に入力させる事により、該カウンタ23によ
り指定された光量補正ROM21内の所定アドレスに対
応する上位及び下位一対の印字ドットの8ビット補正デ
ータがラッチ&データセレクタ24に転送され且つラッ
チされる。そして該セレクタ24内で前記ジェネレータ
22より出力されるセレクト信号SELによって上位4
ビット及び下位4ビットの補正データ(レジスト選択デ
ータ)を順次選択し、TCLKの転送速度と同期させて
発光パターンレジスタ25に入力させる。発光パターン
レジスタ25は前記4ビットのレジスタ選択信号によっ
て16種類のレジスタを選択でき、選択されたレジスタ
25の内容をパターンセレクタ26にパラレル出力す
る。
After mounting the correction ROM 21, the correction circuit timing generator 22 inputs a clock ICLK of 1/2 of TCLK, which is the transfer speed of the divided exposure line, to the address counter 23 based on the horizontal synchronization signal Lsync and VCLK. As a result, 8-bit correction data of a pair of upper and lower printing dots corresponding to a predetermined address in the light amount correction ROM 21 designated by the counter 23 is transferred to the latch & data selector 24 and latched. Then, in the selector 24, the upper 4 bits are selected by the select signal SEL output from the generator 22.
Bits and correction data (resist selection data) of lower 4 bits are sequentially selected and input to the light emission pattern register 25 in synchronization with the transfer speed of TCLK. The light emission pattern register 25 can select 16 types of registers by the 4-bit register selection signal, and outputs the contents of the selected register 25 to the pattern selector 26 in parallel.

【0019】パラレル出力された16ビットのレジスタ
データは、分割露光ラインの走査順番を示す4ビットバ
イナリカウンタ27よりの出力信号により順次分割露光
線に対応した一ビットデータをセレクトする。即ち、4
ビットバイナリカウンタ27は分割露光同期信号SLsy
ncが入力される毎に1ビットづつカウントされ、該SL
syncを16回カウントした時点で、リセットするように
構成している。従って前記シリアル画像データと同期し
てアンドゲート17に入力される補正シリアルデータ
は、先ず前記バイナリカウンタ27により第1分割露光
ライン上におけるレジストデータ(1ビット)が1走査
ライン分アンドゲート側にシリアル出力され、次に分割
露光同期信号SLsyncが入力された時点でバイナリカウ
ンタ27がカウントアップし、次に第2分割露光ライン
上におけるレジストデータ(1ビット)が1走査ライン
分アンドゲート17側にシリアル出力され、以下前記動
作を繰り返す。尚、発光パターンレジスタ25の基準レ
ジスタは必ずしも16/16に選択する必要がなく、M
PUBUS及びMPUI/F回路28を介して得られる
印字濃度制御信号に基づいて例えば15/16を基準レ
ジスタになるように選択してもよい。
The 16-bit register data output in parallel selects 1-bit data corresponding to the divided exposure lines sequentially according to an output signal from a 4-bit binary counter 27 indicating the scanning order of the divided exposure lines. That is, 4
The bit binary counter 27 outputs the divided exposure synchronization signal SLsy
Each time nc is input, one bit is counted and the SL
It is configured to reset when sync is counted 16 times. Therefore, the corrected serial data input to the AND gate 17 in synchronization with the serial image data is obtained by first register data (1 bit) on the first divided exposure line by the binary counter 27 for one scan line to the AND gate side. The binary counter 27 counts up when the divided exposure synchronizing signal SLsync is input next, and the resist data (1 bit) on the second divided exposure line is serially transmitted to the AND gate 17 for one scanning line. Is output and the above operation is repeated thereafter. Note that the reference register of the light emission pattern register 25 does not necessarily need to be set to 16/16, and M
For example, 15/16 may be selected to be the reference register based on the print density control signal obtained via the PUBUS and the MPU I / F circuit 28.

【0020】又、29はLEDヘッドストローブ発生回
路で、前記したように最小光量値(0.8)のLED素
子を分割露光回数(8若しくは16)繰り返し点灯させ
た場合の感光体上に形成し得る潜像ドット径が正規解像
度のドット径になるように露光時間を設定する為のスト
ローブ時間設定レジスタ29aを内蔵しており、該レジ
スタの値は前記MPUI/F回路28を介して得られる
印字濃度制御信号に基づいて調整可能に構成されてい
る。。
An LED head strobe generating circuit 29 is formed on the photosensitive member when the LED element having the minimum light amount (0.8) is repeatedly turned on (8 or 16) as described above. A strobe time setting register 29a for setting the exposure time so that the obtained latent image dot diameter becomes the dot diameter of the regular resolution is built in, and the value of this register is printed by the MPUI / F circuit 28. It is configured to be adjustable based on the density control signal. .

【0021】図5(A)はLEDヘッド回路の構成を示
し、前記コントローラのアンドゲート17より転送させ
たシリアル補正画像データDATA32ビットはシフト
レジスタ31及び31に32ビットシリアル転送毎に、
(B)に示すように、クロックタイミングCLK0〜C
LK1をずらして32×2ラッチ回路32に転送ラッチ
され、該ラッチ回路32に32×2ビットラッチされる
毎に該ラッチデータに基づいてコモンドライバ回路33
を駆動させ前記ストローブ時間に基づいて対応するLE
Dチップ30Aの各LED素子30aを点灯させる。
FIG. 5A shows the configuration of the LED head circuit. The 32-bit serial correction image data DATA transferred from the AND gate 17 of the controller is transferred to the shift registers 31 and 31 every 32-bit serial transfer.
As shown in (B), clock timings CLK0 to CLKC
LK1 is shifted and latched by the 32 × 2 latch circuit 32. Each time 32 × 2 bits are latched by the latch circuit 32, the common driver circuit 33 is latched based on the latch data.
To drive the corresponding LE based on the strobe time.
Each LED element 30a of the D chip 30A is turned on.

【0022】そして32ビット×2データをラッチ回路
32にラッチ毎にブロック指定回路34よりの切換え信
号に基づいて、前記コモンドライバ回路33の接続を次
位のLEDチップ30Bに切換え、LEDチップ30B
の各LED素子30aを点灯制御し、以下同様な動作を
40回続けて行い、1分割露光ライン分の補正画像デー
タの出力を行う。更に同様な方法で次位の分割露光ライ
ン、次々位の分割露光ラインの点灯制御を行うことによ
り16ラインの分割露光ラインのLED素子の点灯制御
がなされる。この結果、図4に示すように光量0.8の
LED素子の場合は、例えば16/16回、該光量0.
9のLED素子の場合は、例えば14/16回と光量の
バラツキに対応して反比例的に分割露光される事とな
り、感光体ドラム上に形成される露光ドット径の均一化
が図れる。
The connection of the common driver circuit 33 is switched to the next LED chip 30B based on the switching signal from the block designating circuit 34 for each latch of 32 bits × 2 data in the latch circuit 32.
The lighting operation of each LED element 30a is controlled, and the same operation is continuously performed 40 times to output corrected image data for one divided exposure line. Further, by controlling the lighting of the next divided exposure line and the successive divided exposure line in a similar manner, the lighting of the LED elements of the 16 divided exposure lines is controlled. As a result, as shown in FIG. 4, in the case of an LED element having a light amount of 0.8, for example, 16/16 times, the light amount of 0.
In the case of the 9 LED elements, divisional exposure is performed in inverse proportion to, for example, 14/16 times corresponding to the variation in the amount of light, and the diameter of the exposure dots formed on the photosensitive drum can be made uniform.

【0023】[0023]

【効果】以上記載のごとく本発明によれば前記駆動IC
とチップ内のLED素子間のバラツキを含めたLED素
子の光出力と露光時間の積により定まる感光体上の露光
量の一定化を図り、これにより感光体上のドット印字濃
度を均一濃度に設定し得る。又本発明は分割露光方式に
おいて分割露光用の画像データとLED素子間の光量の
バラツキに基づく補正レジストデータとアンドを取るだ
けでと光量のバラツキに対応して反比例的に分割露光さ
れる事となり、感光体ドラム上に形成される露光ドット
径の均一化を容易に達成し得る。又本発明は露光時間を
分割制御するものではなく、露光回数を制御するもので
あるために、時分割方式にも容易に適用可能である。
According to the present invention, as described above, the driving IC
The exposure amount on the photoreceptor, which is determined by the product of the light output of the LED element and the exposure time, including the variation between the LED elements in the chip, and the exposure time, is used to set the dot print density on the photoreceptor uniform. I can do it. Further, according to the present invention, in the divisional exposure method, simply performing AND operation on the image data for the divisional exposure and the correction resist data based on the variation in the light amount between the LED elements results in the divisional exposure in inverse proportion to the variation in the light amount. In addition, the uniformization of the diameter of the exposure dots formed on the photosensitive drum can be easily achieved. Further, since the present invention does not control the division of the exposure time but controls the number of exposures, it can be easily applied to a time division system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本構成を示す作用図で、(A)はレ
ジスタデータと画像データとのアンドを取りながら形成
される点灯パターン。(B)は分離露光方式と従来のデ
ータ転送方式を示す
FIG. 1 is an operation diagram showing a basic configuration of the present invention, in which (A) shows a lighting pattern formed by taking AND of register data and image data. (B) shows a separation exposure method and a conventional data transfer method.

【図2】本発明の作用を示し、(A)はLED素子間の
光量分布図、(B)は分割点灯数を導く為の補正式を示
す表図、(C)は点灯パターンレジスタデータとその点
灯パターンの種類を示す。
2A and 2B show the operation of the present invention, wherein FIG. 2A is a light quantity distribution diagram between LED elements, FIG. 2B is a table showing a correction formula for deriving the number of divided lighting, and FIG. The type of the lighting pattern is shown.

【図3】本発明の実施例に係るコントローラの全体回路
図である。
FIG. 3 is an overall circuit diagram of a controller according to an embodiment of the present invention.

【図4】図3のデータの流れと作用を示すタイムチャー
ト図である。
FIG. 4 is a time chart showing a data flow and an operation of FIG. 3;

【図5】本実施例に用いられるLEDヘッド回路図であ
る。
FIG. 5 is an LED head circuit diagram used in the present embodiment.

【符号の説明】[Explanation of symbols]

12 8ビットシリアル/パラレル変換回路 15 メモリコントロール回路 14 バッファメモリ 49 データラッチ&シフト回路 17 アンドゲート 30 LEDヘッド 21 光量補正ROM 22 補正回路タイミングジェネレータ 25 発光パターンレジスタ 29 LEDヘッドストローブ発生回路 12 8-bit serial / parallel conversion circuit 15 memory control circuit 14 buffer memory 49 data latch & shift circuit 17 AND gate 30 LED head 21 light quantity correction ROM 22 correction circuit timing generator 25 light emission pattern register 29 LED head strobe generation circuit

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ライン状に配列したLED素子を一走査
ライン毎に副走査方向に適宜複数回点灯しながら感光体
上にドット潜像を形成するLEDプリンタの分割露光方
式における印字濃度補正方法であって、 LED素子の画素情報と、該LED素子と対応する前記
点灯パターン情報との両ビット情報について論理積を取
りながら生成されるビデオデータに基づいて前記LED
素子を副走査方向に適宜複数回点灯制御を行う事により
前記LED素子間の光量のバラツキを考慮した補正を行
う事 を特徴とするLEDプリンタの分割露光方式におけ
る印字濃度補正方法。
1. One scan of LED elements arranged in a line
Photoconductor while lighting multiple times in the sub-scanning direction as appropriate for each line
Form a latent dot image on topLED printer split exposure method
The print density correction method in the formula, The pixel information of the LED element and the LED element corresponding to the LED element
Logical AND of both bit information with lighting pattern information
LED based on video data generated while
By performing lighting control of the element several times in the sub-scanning direction as appropriate
Correction taking into account the variation in the amount of light between the LED elements
Thing LED printerSplit exposure methodSmell
Print density correction method.
【請求項2】 ライン状に配列したLED素子を画素情
報に基づいて一走査ライン毎に副走査方向に適宜複数回
点灯制御しながら感光体上にドット潜像を形成可能に構
成した分割露光方式におけるLEDプリンタにおいて、 各LED素子間の光量のバラツキを測定し、該バラツキ
に対応した補正データが書込まれた記憶手段と、 該記憶手段より読み出された補正データに基づいて選択
される点灯パターンとを具え、前記LED素子の画素情報と、該LED素子と対応する
前記点灯パターン情報との両ビット情報について論理積
を取りながら生成されるビデオデータに基づいて前記L
ED素子を副走査方向に適宜複数回点灯制御 しながら感
光体上にドット潜像を形成する事を特徴とする分割露光
方式におけるLEDプリンタ。
2. A plurality of LED elements arranged in a line shape are scanned a plurality of times in the sub-scanning direction for each scanning line based on pixel information.
A dot latent image can be formed on the photoconductor while controlling lighting.
In the divided-exposure type LED printer, the variation of the light amount between the respective LED elements is measured, and a storage unit in which correction data corresponding to the variation is written, and a correction data read from the storage unit. A lighting pattern selected by the user, and corresponding to the pixel information of the LED element and the LED element.
Logical AND of both bit information with the lighting pattern information
L based on the video data generated while
Split exposure characterized by forming a dot latent image on a photoconductor while controlling the lighting of the ED element several times in the sub-scanning direction as appropriate
LED printer in the system .
JP8577293A 1993-03-19 1993-03-19 Print density correction method and LED printer incorporating the correction method Expired - Fee Related JP3215748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8577293A JP3215748B2 (en) 1993-03-19 1993-03-19 Print density correction method and LED printer incorporating the correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8577293A JP3215748B2 (en) 1993-03-19 1993-03-19 Print density correction method and LED printer incorporating the correction method

Publications (2)

Publication Number Publication Date
JPH06270471A JPH06270471A (en) 1994-09-27
JP3215748B2 true JP3215748B2 (en) 2001-10-09

Family

ID=13868173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8577293A Expired - Fee Related JP3215748B2 (en) 1993-03-19 1993-03-19 Print density correction method and LED printer incorporating the correction method

Country Status (1)

Country Link
JP (1) JP3215748B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812176A (en) * 1995-11-02 1998-09-22 Konica Corporation Image forming apparatus with array-formed recording elements
JP2000158698A (en) * 1998-11-26 2000-06-13 Seiko Instruments Inc Optical writing printer head and printer employing it
US7852362B2 (en) 2005-07-15 2010-12-14 Ricoh Company, Limited Image writing device using digital light-emitting elements
JP5413013B2 (en) * 2009-07-22 2014-02-12 富士ゼロックス株式会社 Light emitting element head, image forming apparatus, light amount correcting method and program for light emitting element head

Also Published As

Publication number Publication date
JPH06270471A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
US4910603A (en) Half-tone image reproduction method and apparatus using partial density ranges
US6603496B2 (en) Image recording method and apparatus enlarging isolated dots
US6184971B1 (en) Exposure apparatus and image formation apparatus
JPH0630887B2 (en) Thermal printer
JP3215748B2 (en) Print density correction method and LED printer incorporating the correction method
JPH0789128A (en) Formation of high density image in led printer
JPH07108714A (en) Image forming apparatus
US6061078A (en) Non-impact printer apparatus and method of printing with improved control of emitter pulsewidth modulation duration
JP2839810B2 (en) High density image forming method in LED printer
JPH078004B2 (en) Image forming device
JPH05500146A (en) Method and apparatus for printing gray levels using a binary architecture printhead
US5278581A (en) Printer for printing and image formed of 2-dimensionally arranged pixels, and method of printing the same
US5870130A (en) Method for heating a thermal printer head apparatus that minimizes changes in temperature and voltage, and a thermal printer head heating control apparatus therefor
JP3497216B2 (en) Image forming method
US4984092A (en) Halftone image gradation data converted to bit-train data with data retained after thresholding converted to pulse-train data
JP2006056122A (en) Image forming apparatus
JPS61164856A (en) Recording head and half tone recording method using the same
JPH05177872A (en) Gradation control method in dot image output device
KR0138340B1 (en) The heating method and the heating control apparatus of thermal transfer head
JP2000085178A (en) Exposing apparatus and image forming apparatus
JPH09150542A (en) Recording element array
JPS60105553A (en) Thermal head
JP3117771B2 (en) Color image forming method
US7701613B2 (en) Image forming apparatus with random number generator
JP2003127458A (en) Led array apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees