JPH0564798A - Biological treatment of organic sewage - Google Patents

Biological treatment of organic sewage

Info

Publication number
JPH0564798A
JPH0564798A JP3254270A JP25427091A JPH0564798A JP H0564798 A JPH0564798 A JP H0564798A JP 3254270 A JP3254270 A JP 3254270A JP 25427091 A JP25427091 A JP 25427091A JP H0564798 A JPH0564798 A JP H0564798A
Authority
JP
Japan
Prior art keywords
sludge
present
denitrification
biological treatment
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3254270A
Other languages
Japanese (ja)
Other versions
JP2563015B2 (en
Inventor
Akira Watanabe
昭 渡辺
Takayuki Suzuki
隆幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP3254270A priority Critical patent/JP2563015B2/en
Publication of JPH0564798A publication Critical patent/JPH0564798A/en
Application granted granted Critical
Publication of JP2563015B2 publication Critical patent/JP2563015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To biologically treat nitrogen-containing org. sewage while the sedimentation and dehydration properties of sludge are well held and the amount of excessive sludge is little. CONSTITUTION:In the biological treatment of nitrogen-containing org. sewage, nitration and denitrification are biologically performed at least under an alkaline condition and pH adjustment is performed in a denitrifying process and the alkaline condition is pref. set to pH 8.5 or more and 2 or more C org. matter is pref. used as the hydrogen donor of the denitrifying process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機性汚水の処理方法
に係わり、特に、余剰汚泥量が少なく、かつ汚泥の沈降
性および脱水性の良好なる窒素含有有機性汚水の生物学
的処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating organic sewage, and particularly to a biological treatment method for nitrogen-containing organic sewage having a small amount of excess sludge and good sludge sedimentation and dewatering properties. Regarding

【0002】[0002]

【従来の技術】従来、有機性汚水の処理方法として、生
物学的処理が最も普遍的な方法として採用され、広く普
及している。しかしながら、この方法では、(1)多量
の余剰汚泥が発生する、(2)余剰汚泥の脱水性はきわ
めて悪く、(3)曝気槽の汚泥濃度を10,000mg/
l以上の高濃度で運転する場合には、沈殿池での汚泥分
離が容易でない等の問題があり、経済性とともに操作性
の面からも余剰汚泥の減量化、改質化についての効果的
な処理方法の開発が望まれている。
2. Description of the Related Art Conventionally, biological treatment has been widely adopted as the most universal treatment method of organic wastewater. However, in this method, (1) a large amount of excess sludge is generated, (2) the dehydration property of the excess sludge is extremely poor, and (3) the sludge concentration in the aeration tank is 10,000 mg /
When operating at a high concentration of 1 or more, there is a problem that sludge separation in the sedimentation tank is not easy, etc., and it is effective for reducing and reforming excess sludge not only in terms of economy but also operability. Development of a treatment method is desired.

【0003】このような問題に対して、これまでは脱水
条件の検討や脱水機の能力アップなど主に物理化学およ
び工学的な検討がなされており、汚泥の減量化について
は、嫌気性消化法が主流の技術となってきた。一方、嫌
気好気法による沈降性の改善など、処理プロセスの改変
による汚泥の改質化についても報告されている。これら
の技術のうち、脱水条件については新しいポリマの開発
など今後とも検討する余地があるが、脱水機の能力につ
いては技術的な限界が指摘されており、嫌気性消化につ
いては、効率と処理水質の点で問題を残されている。ま
た、嫌気好気法なども有効ではあるが、その効果と安定
性について必ずしも明らかではない。
To solve such problems, physical chemistry and engineering have been mainly studied so far, such as examination of dehydration conditions and improvement of dehydrator capacity. For the reduction of sludge, the anaerobic digestion method is used. Has become the mainstream technology. On the other hand, improvement of sludge by modification of treatment process such as improvement of sedimentation property by anaerobic / aerobic method has also been reported. Of these technologies, there is room for further study on the dehydration conditions, such as the development of new polymers, but technical limitations have been pointed out regarding the capacity of the dehydrator, and regarding anaerobic digestion, efficiency and treated water quality have been pointed out. There are problems left in terms of. Although the anaerobic / aerobic method is also effective, its effect and stability are not always clear.

【0004】[0004]

【発明が解決しようとする課題】本発明者等は先に特願
平2−68460号において少なくともアルカリ性条件
下での生物学的処理工程と、中性条件下での生物学的処
理工程の2工程による有機性汚水の処理方法を提案して
いる。同方法は上記問題点の解決に非常に有効ではある
が、2工程処理の為、規模と経済性・操作性において全
ての施設に必ずしも好適とは言い難い面があった。そこ
で、本発明は、更に改良し、有機性汚水の生物学的処理
において、余剰汚泥の脱水性、沈降性がよく、また、そ
の生成量も少なく経済性、操作性に優れた処理方法を提
供することを課題とする。
DISCLOSURE OF THE INVENTION The inventors of the present invention previously described in Japanese Patent Application No. 2-68460 two steps of at least a biological treatment step under alkaline conditions and a biological treatment step under neutral conditions. We propose a method of treating organic wastewater by the process. Although this method is very effective in solving the above problems, it is difficult to say that it is suitable for all facilities in terms of scale, economy and operability because it is a two-step treatment. Therefore, the present invention provides a treatment method which is further improved and has excellent dehydration and sedimentation properties of surplus sludge in biological treatment of organic wastewater, and also has a small production amount and is excellent in economic efficiency and operability. The task is to do.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、窒素含有有機性汚水の生物学的処理に
おいて、少なくともアルカリ性条件下で生物学的に硝化
脱窒素を行うと共に、前記pH調整を脱窒素工程で行う
ことを特徴とする有機性汚水の生物学的処理方法とした
ものである。特に本発明では、窒素含有有機性汚水の処
理において、少なくともpH8.5以上のアルカリ性条
件下で生物学的に硝化脱窒素を行い、該脱窒素工程でp
H調整する1工程での処理である。前記処理方法で、窒
素含有有機性汚水の生物学的硝化脱窒素処理を行う場合
脱窒素工程に添加する水素供与体は酢酸、プロピオン酸
やイソプロピルアルコール、エタノール等の炭素数2以
上の有機物であることが好ましい。
In order to solve the above problems, in the present invention, in the biological treatment of nitrogen-containing organic wastewater, nitrification and denitrification is performed biologically at least under alkaline conditions, and This is a biological treatment method for organic wastewater, characterized in that pH adjustment is performed in a denitrification step. In particular, in the present invention, in the treatment of nitrogen-containing organic wastewater, biological nitrification denitrification is carried out under alkaline conditions of at least pH 8.5 or more, and p
This is a one-step process for adjusting H. When biological nitrification and denitrification treatment of nitrogen-containing organic wastewater is performed by the above treatment method, the hydrogen donor added to the denitrification step is an organic substance having 2 or more carbon atoms such as acetic acid, propionic acid, isopropyl alcohol, and ethanol. Preferably.

【0006】次に、本発明を図面を参照して詳細に説明
する。図1は、本発明の一例を示すフロー概略図であ
る。図1において、窒素含有有機性汚水1は、返送汚泥
2とともにアルカリ剤4によりpH8.5以上に維持さ
れた脱窒素槽A6に流入する。硝化槽7ではアンモニア
性窒素の硝化によりpHが低下するため、遊離アンモニ
アの毒性によって硝化菌が失活することはなく、長期
間、安定して処理される。さらに、本発明では、高pH
条件下で硝化が行われるため、硝酸態窒素はほとんど生
成されず、亜硝酸態窒素が蓄積する。生成された循環硝
化液3中の亜硝酸態窒素は、原水中の炭素数2以上の有
機物を水素供与体として、脱窒素槽A6で脱窒される。
Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic flow chart showing an example of the present invention. In FIG. 1, the nitrogen-containing organic wastewater 1 flows into the denitrification tank A6, which is maintained at a pH of 8.5 or higher by the alkaline agent 4 together with the returned sludge 2. Since the pH of the nitrification tank 7 is lowered by nitrification of ammoniacal nitrogen, nitrifying bacteria are not deactivated due to the toxicity of free ammonia, and stable treatment is performed for a long period of time. Further, in the present invention, high pH
Since nitrification is carried out under the conditions, nitrate nitrogen is scarcely produced and nitrite nitrogen is accumulated. The nitrite nitrogen in the produced circulating nitrification solution 3 is denitrified in the denitrification tank A6 using an organic substance having a carbon number of 2 or more in the raw water as a hydrogen donor.

【0007】なお、原水中に炭素数2以上の有機物が相
対的に不足する場合には、別途外部から添加するとよ
い。残部の亜硝酸態窒素は、脱窒素槽B8においてイソ
プロピルアルコール(IPA)を水素供与体5として完
全に除去される。脱窒液は再曝気槽9、沈殿池10を経
由して放流される。本発明の処理方法によって排出され
る汚泥は、脱水性、沈降性に優れ、また、汚泥発生量も
従来のpH中性域の生物処理に比べて20〜40%少な
いことから、特に、高濃度の有機物を含む汚水の生物処
理には、汚泥処理の面から著しい改善をもたらすもので
ある。
When the raw water is relatively deficient in an organic substance having 2 or more carbon atoms, it may be added separately from the outside. The remaining nitrite nitrogen is completely removed in the denitrification tank B8 using isopropyl alcohol (IPA) as the hydrogen donor 5. The denitrification liquid is discharged via the re-aeration tank 9 and the sedimentation tank 10. The sludge discharged by the treatment method of the present invention is excellent in dewatering property and sedimentation property, and the sludge generation amount is 20 to 40% less than that in the conventional biological treatment in the neutral pH range. The biological treatment of sewage containing such organic matter brings about a remarkable improvement in terms of sludge treatment.

【0008】[0008]

【作用】有機性汚水の生物学的処理は、通常、pH中性
付近に維持されて行われるが、自然界には、高pH(ア
ルカリ性)域の生息条件を好む微生物が多数存在するこ
とが知られている。図2は、図1と同型の装置(反応槽
の全容積30リットル)を用いて、脱窒素槽のpHを
7.0(対照系:−○−)と9.0(本発明:−●−)
でそれぞれ運転した場合の硝化活性を比較した結果であ
る。図2から明らかなように、本発明の処理方法で運転
した場合の硝化活性の至適pHはアルカリ側に移行し、
高pH条件下においても、安定して硝化が行われること
が確認された。高pH処理法の脱窒素槽A6で脱窒素に
利用された有機物は、汚水中に含まれている酢酸やプロ
ピオン酸であった。
The biological treatment of organic sewage is usually carried out by maintaining the pH at around neutral pH, but it is known that there are many microorganisms in nature that prefer habitat conditions in high pH (alkaline) regions. Has been. FIG. 2 shows the pH of the denitrification tank of 7.0 (control system:-○-) and 9.0 (invention:-●) using the same apparatus as that of FIG. 1 (total volume of the reaction tank: 30 liters). −)
It is the result of comparing the nitrification activity when operating in each case. As is clear from FIG. 2, the optimum pH of nitrification activity when operated by the treatment method of the present invention shifts to the alkali side,
It was confirmed that nitrification was performed stably even under high pH conditions. The organic substances used for denitrification in the denitrification tank A6 of the high pH treatment method were acetic acid and propionic acid contained in the wastewater.

【0009】一方、脱窒素槽B8において、メタノール
を水素供与体とした場合の脱窒素活性の回分実験の結果
を表1に示す。表1から標準法の約1/3であったが、
イソプロピルアルコール(IPA)に代えて運転した結
果、標準法と同等の活性を示した。
On the other hand, Table 1 shows the results of a batch experiment of denitrification activity when methanol was used as a hydrogen donor in the denitrification tank B8. From Table 1 it was about 1/3 of the standard method,
As a result of driving in place of isopropyl alcohol (IPA), the same activity as that of the standard method was shown.

【表1】 すなわち脱窒素菌は、含有炭素数1のメタノールを利
用して脱窒素を行う微生物と、酢酸等の低級脂肪酸やエ
タノール、イソプロピルアルコール等の含有炭素数2以
上の有機物を利用して脱窒素を行う微生物の2種類に大
きく分けることができる。高pH条件下で脱窒素を行う
場合は、メタノール資化性の脱窒素菌の活性が低下する
ため、メタノールより安価で含有炭素数2以上のイソプ
ロピルアルコール等を利用することが好ましい。本発明
は効率および経済性の面からも有利な処理方法である。
[Table 1] That is, the denitrifying bacterium performs denitrification by using a microorganism that performs denitrification using methanol having a carbon content of 1 and an organic substance having a carbon content of 2 or more such as lower fatty acid such as acetic acid, ethanol, and isopropyl alcohol. There are two types of microorganisms. When denitrification is performed under high pH conditions, the activity of methanol-assimilating denitrifying bacteria decreases, so it is preferable to use isopropyl alcohol having a carbon number of 2 or more, which is cheaper than methanol. The present invention is an advantageous treatment method in terms of efficiency and economy.

【0010】図3は、余剰汚泥の沈降比較試験を行った
結果である。本発明の汚泥(−●−:MLSS 484
7mg/l、−▲−:MLSS 2424mg/l)は対照
系(−○−:MLSS 5124mg/l、−△−:ML
SS 2562mg/l)に比べて沈降性に優れ、各々の
SVIは本発明が125ml/g(MLSS 2424mg
/l)、対照系が330ml/g(MLSS 2562mg
/l)であった。また、沈降速度の比較を図4に示す。
図4において沈降速度は汚泥濃度2500〜5000mg
/lの範囲で、本発明の高pH処理法(−●−)の汚泥
が標準法(−○−)に比べて、2.5〜6倍速い結果と
なった。このように沈降性が異なる原因として、微生物
相の違いが考えられる。
FIG. 3 shows the results of a sedimentation comparison test of excess sludge. Sludge of the present invention (-●-: MLSS 484
7 mg / l,-▲-: MLSS 2424 mg / l is a control system (-○-: MLSS 5124 mg / l, -Δ-: ML).
It has a better sedimentation property than SS 2562 mg / l), and each SVI is 125 ml / g (MLSS 2424 mg) according to the present invention.
/ L), control system 330 ml / g (MLSS 2562 mg
/ L). A comparison of sedimentation rates is shown in FIG.
In Figure 4, the sedimentation rate is sludge concentration 2500-5000mg
In the range of / l, the sludge of the high pH treatment method (-●-) of the present invention was 2.5 to 6 times faster than the standard method (-○-). The difference in the microbial flora is considered to be the cause of the different sedimentation properties.

【0011】それぞれの余剰汚泥を光学顕微鏡により観
察した結果、対照系の汚泥中には、透明なゲル(バイオ
ポリマ)に包まれた細菌群が多数存在するのに対して、
本発明の汚泥中には全く認められなかった。また、二種
類の汚泥を遠心分離により固液分離すると、対照系の汚
泥界面上には白色の汚泥層が存在したのに対して、本発
明の汚泥には存在しなかった。この白色の沈殿層を顕微
鏡で観察すると、それらはバイオポリマに包まれた細菌
群であった。次に、遠心分離により白色沈殿層を除去し
た汚泥を調整して、これらの細菌群が汚泥沈降性に与え
る影響を調べた結果を図5に示す。図5において、バイ
オポリマ生産菌有を−○−で、無を−●−で示す。この
ように遠心分離によりバイオポリマに包まれた細菌群を
除去することで汚泥の沈降性が著しく改善された。以上
の結果より、対照系と本発明で汚泥沈降性が異なる主な
理由は、両者の微生物相が異なるためであり、対照系の
汚泥が沈降しにくい原因は、バイオポリマに包まれた細
菌群が多数存在するためであると考えられた。
As a result of observing each surplus sludge with an optical microscope, in the control sludge, a large number of bacterial groups surrounded by a transparent gel (biopolymer) are present.
It was not found at all in the sludge of the present invention. When two types of sludge were subjected to solid-liquid separation by centrifugation, a white sludge layer was present on the control sludge interface, whereas it was not present in the sludge of the present invention. When the white precipitate layer was observed under a microscope, they were a group of bacteria encapsulated in biopolymer. Next, the sludge from which the white sediment layer has been removed by centrifugation was prepared, and the results of examining the effect of these bacterial groups on the sludge sedimentation property are shown in FIG. In FIG. 5, presence of biopolymer-producing bacteria is indicated by-○-, and absence thereof is indicated by-●-. Thus, the sedimentation property of sludge was remarkably improved by removing the bacterial groups encased in the biopolymer by centrifugation. From the above results, the main reason that the sludge sedimentation property of the present invention is different from that of the control system is that the microflora of the two are different, and the reason why the sludge of the control system is difficult to settle is that the bacteria group encased in the biopolymer is It is thought that this is because there are many.

【0012】対照系と本発明で生成する汚泥の脱水試験
を行った結果、本発明の脱水ケーキ含水率は約80%で
あり、対照系に比べて約7%低い結果となった。また、
剥離性については、本発明の脱水ケーキが、ろ布に全く
汚泥が付着しないのに対して、標準法の汚泥はろ布に付
着(約1/6〜1/8程度)した。本発明の汚泥の脱水
性が優れている原因として、本発明の汚泥のVSS/
SS含有率の平均値は83%であり、対照系に比べて約
4%低く、し尿中のMg++,Ca++,PO4 -3−P、溶
存CO2等が不溶性の沈殿物を形成し、それらが脱水助
剤として作用している。本発明と対照系では出現する
微生物相が異なり、本発明の汚泥中には難脱水性に関与
すると考えられるバイオポリマに包まれた細菌群が存在
しない等が理由として考えられた。
As a result of the dehydration test of the sludge produced in the control system and the present invention, the water content of the dehydrated cake of the present invention was about 80%, which was about 7% lower than that of the control system. Also,
Regarding the releasability, the dewatered cake of the present invention did not adhere any sludge to the filter cloth, whereas the standard method sludge adhered to the filter cloth (about 1/6 to 1/8). The reason why the sludge of the present invention is excellent in dewatering property is VSS /
The average value of the SS content was 83%, which was about 4% lower than that of the control system, and Mg ++ , Ca ++ , PO 4 -3- P, dissolved CO 2 and the like in human urine formed insoluble precipitates. Formed and they act as dehydration aids. The microbial flora appearing in the present invention is different from that in the control system, and it is considered that the sludge of the present invention does not have bacterial groups encased in biopolymers that are considered to be involved in the difficulty of dehydration.

【0013】以上のように、高pH条件下では、それに
対応した細菌群が増殖し、良好な硝化脱窒素が進行する
ため、あえて別途中性での処理工程を行う必要はない。
また、脱窒素はアルカリ生成反応であるため、硝化槽で
pH調整する場合に比べて脱窒素槽でpH調整する方
が、アルカリ消費量が節約でき、発明者らの実験では約
1/2に低減できた。以上のように、窒素含有有機性汚
水を高pH条件で処理することにより、汚泥処理の点で
著しい改善がもたらされるが、pH11.0以上では微
生物がほとんど失活してしまうので、経済性と効果の点
からは、本発明のごとくpH9.0付近に維持すること
が好ましい。
As described above, under high pH conditions, bacteria corresponding thereto grow and good nitrification denitrification proceeds, so it is not necessary to carry out a separate neutral treatment step.
Further, since denitrification is an alkali formation reaction, the pH consumption in the denitrification tank can be saved more than in the case where the pH is adjusted in the nitrification tank. It was possible to reduce. As described above, treating nitrogen-containing organic sewage under high pH conditions brings about a remarkable improvement in sludge treatment, but at pH 11.0 or higher, microorganisms are almost inactivated, which is economical and economical. From the viewpoint of effects, it is preferable to maintain the pH at around 9.0 as in the present invention.

【0014】[0014]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されない。 実施例1 本発明の処理方法をし尿を対象とした実施例について説
明する。実験は図1と同型の実験装置を2系列設けて、
硝化液循環方式での対照系(pH中性、無希釈)と脱窒
素槽をpH9.0にコントロールした本発明方式での比
較実験を行った。実施の条件は次のとおりである。 (1)原水: 除渣し尿(水質は表3に示
す。) (2)pH調整用薬剤:25% NaOH溶液 (3)装 置: 図1と同型の反応槽(120リ
ットル容) (4)運転条件: 表2に示す。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited thereto. Example 1 An example in which the treatment method of the present invention is applied to urine will be described. The experiment was carried out by installing two series of experimental devices of the same type as in Fig. 1,
A comparative experiment was conducted between a control system (pH neutral, undiluted) in the nitrification solution circulation system and a system of the present invention in which the denitrification tank was controlled to pH 9.0. The conditions of implementation are as follows. (1) Raw water: Decontaminated urine (Water quality is shown in Table 3.) (2) pH adjusting agent: 25% NaOH solution (3) Equipment: Reaction tank of the same type as that of FIG. 1 (120 liter volume) (4) Operating conditions: Shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】各処理方式での水質(平均値)を表3に示
す。
Table 3 shows the water quality (average value) of each treatment method.

【表3】 [Table 3]

【0017】高pH処理法の硝化槽で生成されたNOx
−Nの約90%はNO2 −Nであった。その他の処理水
質は、対照系とほとんど同じであった。また、汚泥処理
の面からは表4に示したように汚泥発生量、脱水ケーキ
含水率ともに本発明による処理方法が対照系に比べて良
好な結果となった。
NO x produced in a nitrification tank of high pH treatment method
About 90% of the -N was NO 2 -N. The other treated water quality was almost the same as the control system. In terms of sludge treatment, as shown in Table 4, the treatment amount according to the present invention showed good results in both the sludge generation amount and the dehydrated cake water content as compared with the control system.

【表4】 [Table 4]

【0018】[0018]

【発明の効果】本発明によれば、次のような効果を奏す
ることができる。 (1)本発明の処理方式により排出される余剰汚泥の脱
水性は、著しく良好で、汚泥発生量も従来の処理法に比
べて低い。そのため、後続の汚泥処理工程の負担を大幅
に改善できる。 (2)本発明の処理方式では、高濃度の曝気槽汚泥で
も、その沈降性は良好で、遠心分離等の機械的濃縮操作
は不要であり、重力沈殿のみで固液分離が可能である。 (3)高pH域で行うため脱窒素菌相が従来法と異な
り、水素供与体として汚水中の酢酸やプロピオン酸及び
/又は安価な含有炭素数2以上の有機物(イソプロピル
アルコール等)を利用でき、効率及び経済性の面からも
有利である。
According to the present invention, the following effects can be obtained. (1) The dehydration property of the excess sludge discharged by the treatment method of the present invention is remarkably good, and the sludge generation amount is lower than that of the conventional treatment method. Therefore, the burden on the subsequent sludge treatment process can be significantly reduced. (2) According to the treatment method of the present invention, even a high-concentration aeration tank sludge has a good settling property, does not require a mechanical concentration operation such as centrifugation, and can perform solid-liquid separation only by gravity precipitation. (3) Since the denitrifying microflora is different from the conventional method because it is carried out in a high pH range, acetic acid or propionic acid in wastewater and / or an inexpensive organic substance containing 2 or more carbon atoms (such as isopropyl alcohol) can be used as a hydrogen donor. It is also advantageous in terms of efficiency and economy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例を示すフロー概略図である。FIG. 1 is a schematic flow diagram showing an example of the present invention.

【図2】対照系と本発明の硝化活性の至適pH域を比較
したグラフである。
FIG. 2 is a graph comparing a control system and the optimum pH range of the nitrifying activity of the present invention.

【図3】対照系と本発明の余剰汚泥の沈降比較試験を行
った結果を示すグラフである。
FIG. 3 is a graph showing the results of the sedimentation comparison test of the control system and the excess sludge of the present invention.

【図4】対照系と本発明の余剰汚泥の沈降速度を比較し
た結果を示すグラフである。
FIG. 4 is a graph showing the results of comparing the sedimentation rates of the control system and the excess sludge of the present invention.

【図5】バイオポリマに包まれた細菌群を除去した汚泥
の沈降性を調べた結果を示すグラフである。
FIG. 5 is a graph showing the results of investigating the sedimentation property of sludge from which bacterial groups encased in biopolymer have been removed.

【符号の説明】[Explanation of symbols]

1:原水、2:返送汚泥、3:循環硝化液、4:アルカ
リ剤、5:水素供与体、6:脱窒素槽A、7:硝化槽、
8:脱窒素槽B、9:再曝気槽、10:沈殿池、11:
余剰汚泥、12:処理水、13:pHコントローラー、
14、15:散気管
1: Raw water, 2: Return sludge, 3: Circulating nitrification solution, 4: Alkaline agent, 5: Hydrogen donor, 6: Denitrification tank A, 7: Nitrification tank,
8: denitrification tank B, 9: re-aeration tank, 10: sedimentation tank, 11:
Excess sludge, 12: treated water, 13: pH controller,
14, 15: Air diffuser

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒素含有有機性汚水の生物学的処理にお
いて、少なくともアルカリ性条件下で生物学的に硝化脱
窒素を行うと共に、前記pH調整を脱窒素工程で行うこ
とを特徴とする有機性汚水の生物学的処理方法。
1. The biological treatment of nitrogen-containing organic wastewater, characterized in that biological nitrification denitrification is performed at least under alkaline conditions, and the pH adjustment is performed in a denitrification step. Biological treatment method.
JP3254270A 1991-09-06 1991-09-06 Biological treatment method of organic wastewater Expired - Lifetime JP2563015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3254270A JP2563015B2 (en) 1991-09-06 1991-09-06 Biological treatment method of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3254270A JP2563015B2 (en) 1991-09-06 1991-09-06 Biological treatment method of organic wastewater

Publications (2)

Publication Number Publication Date
JPH0564798A true JPH0564798A (en) 1993-03-19
JP2563015B2 JP2563015B2 (en) 1996-12-11

Family

ID=17262641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3254270A Expired - Lifetime JP2563015B2 (en) 1991-09-06 1991-09-06 Biological treatment method of organic wastewater

Country Status (1)

Country Link
JP (1) JP2563015B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183539A (en) * 2012-06-01 2012-09-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method
JP2014111251A (en) * 2012-10-31 2014-06-19 Swing Corp Purifying method and purifying apparatus of drainage and granular activated carbon used for the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204294A (en) * 1981-06-10 1982-12-14 Kubota Ltd Denitrification of water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204294A (en) * 1981-06-10 1982-12-14 Kubota Ltd Denitrification of water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012183539A (en) * 2012-06-01 2012-09-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method
JP2014111251A (en) * 2012-10-31 2014-06-19 Swing Corp Purifying method and purifying apparatus of drainage and granular activated carbon used for the same

Also Published As

Publication number Publication date
JP2563015B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
JP2003245689A (en) Method and apparatus for treating wastewater
JP4104845B2 (en) Method and apparatus for treatment of water containing phosphorus / ammonia
JP4267860B2 (en) Nitrogen and phosphorus simultaneous removal type wastewater treatment method
EP1346956A1 (en) Process for sludge treatment using sludge pretreatment and membrane bioreactor
JP3473328B2 (en) Biological dephosphorization equipment
KR20000021183A (en) Method for managing wastewater including high concentrated organic matter.
CA1114964A (en) Plant for the treatment of waste water by the activated-sludge process
JP2563015B2 (en) Biological treatment method of organic wastewater
JPH0788500A (en) Method for treating sewage countercurrent water
JP3387244B2 (en) Anaerobic treatment method
JP2002301500A (en) Water treatment method and apparatus using acid fermentation
JP2002301499A (en) Water treatment method and apparatus using acid fermentation
JP3311925B2 (en) Organic wastewater treatment method
JPS6034796A (en) Treating apparatus of waste water containing heavy metal utilizing activated sludge
JP2002045889A (en) Treating method and treating device for organic waste water
JP2018176131A (en) Denitrification treatment apparatus for ammonia nitrogen-containing drainage and method for denitrification treatment
JP3239306B2 (en) Wastewater treatment method
JPH0679715B2 (en) Biological treatment method of organic wastewater
KR100438323B1 (en) High intergated Biological Nutrient Removal System
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
JP2003010877A (en) Activated sludge treatment method for sewage and its apparatus
KR100318367B1 (en) Waste water treatment apparatus
JP3400622B2 (en) Method and apparatus for treating organic sewage