JP2002301499A - Water treatment method and apparatus using acid fermentation - Google Patents

Water treatment method and apparatus using acid fermentation

Info

Publication number
JP2002301499A
JP2002301499A JP2001105296A JP2001105296A JP2002301499A JP 2002301499 A JP2002301499 A JP 2002301499A JP 2001105296 A JP2001105296 A JP 2001105296A JP 2001105296 A JP2001105296 A JP 2001105296A JP 2002301499 A JP2002301499 A JP 2002301499A
Authority
JP
Japan
Prior art keywords
tank
sludge
acid
biological treatment
acid fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001105296A
Other languages
Japanese (ja)
Inventor
Ichiro Nakano
一郎 中野
Hitoshi Yanase
仁志 柳瀬
Toshihiro Komatsu
敏宏 小松
Tomohiro Katada
智洋 堅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001105296A priority Critical patent/JP2002301499A/en
Publication of JP2002301499A publication Critical patent/JP2002301499A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method, and apparatus using acid fermentation which can raise disposal capacity by reducing the concentration of persistent SS in a biological treatment to shorten the retention time and producing soluble BOD from removed SS to return the BOD of a denitrification process in the biological treatment as a hydrogen donor. SOLUTION: Water-to-be-treated is subjected to solid-liquid separation in a first settling basin 1, where at least iron or aluminum-based inorganic flocculant is added, and the separated upper layer water is introduced into a biological treatment tank 2 to be biologically treated. The separated persistent SS is introduced into an acid fermentation tank 6 to produce organic acids by the acid fermentation. Fermentation sludge conditioned so as to have a pH of 4.5-6.5, preferably 5.0-6.0, in a sludge conditioning tank is dewatered by a dehydrater 14, and then the dehydrated filtrate containing the organic acids is supplied to the biological treatment tank 2 as an organic carbon source or a hydrogen donor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸発酵を利用する
水処理方法および装置に関し、下廃水の処理技術に係る
ものである。
The present invention relates to a water treatment method and apparatus utilizing acid fermentation, and more particularly to a technique for treating wastewater.

【0002】[0002]

【従来の技術】従来、一般的に下廃水は最初沈殿池、生
物処理槽、最終沈殿池をこの順序で経る間に処理され
る。生物処理槽の生物学的処理において活性汚泥微生物
は酸化と同化の生化学的反応によって廃水中の溶解性B
ODを栄養物として生物増殖し、この反応速度は曝気時
間、活性汚泥微生物量、有機栄養物量の各影響因子によ
って左右される。
2. Description of the Related Art Conventionally, sewage is generally treated firstly through a sedimentation basin, a biological treatment tank, and a final sedimentation basin in this order. In the biological treatment of biological treatment tanks, activated sludge microorganisms dissolve B in wastewater by biochemical reactions of oxidation and assimilation.
OD is used as a nutrient for biological growth, and the reaction rate is affected by the influence factors of the aeration time, the amount of activated sludge microorganisms, and the amount of organic nutrients.

【0003】生物学的処理の脱窒素活性汚泥法は、活性
汚泥に生息している硝化菌と脱窒素菌の生理作用を組み
合わせたものであり、系内で基質のBOD成分と活性汚
泥とを接触させて基質を分解する処理プロセスで硝化工
程と脱窒工程からなる。
[0003] The denitrification activated sludge method of biological treatment combines the physiological actions of nitrifying bacteria and denitrifying bacteria that inhabit the activated sludge, and the BOD component of the substrate and the activated sludge are combined in the system. This is a treatment process for decomposing a substrate by contacting it, and comprises a nitrification step and a denitrification step.

【0004】硝化工程では、廃水中のアンモニア態窒素
およびBOD酸化菌の異化代謝によって有機性窒素から
転換されるアンモニア態窒素を硝化菌によって亜硝酸態
窒素もしくは硝酸態窒素に酸化する。
In the nitrification step, ammonia nitrogen in wastewater and ammonia nitrogen converted from organic nitrogen by catabolism of BOD oxidizing bacteria are oxidized by nitrifying bacteria to nitrite nitrogen or nitrate nitrogen.

【0005】脱窒素工程では、硝化工程で硝化された廃
水中の亜硝酸態窒素もしくは硝酸態窒素を溶存酸素のな
い嫌気的な条件下で脱窒素菌によって窒素ガスへ還元す
る。また、近年においては公共用水域の富栄養化を防止
するために、有機物と併せて窒素、リンの高度な除去が
求められており、最初沈殿池において下廃水中のSSお
よびリンを凝集沈殿処理により除去している。
In the denitrification step, nitrite nitrogen or nitrate nitrogen in the wastewater nitrified in the nitrification step is reduced to nitrogen gas by denitrifying bacteria under anaerobic conditions without dissolved oxygen. In recent years, in order to prevent eutrophication of public water bodies, advanced removal of nitrogen and phosphorus is required in addition to organic matter. Has been removed.

【0006】[0006]

【発明が解決しようとする課題】ところで、近年におい
ては公共用水域の富栄養化防止のため、下水からの窒素
除去が求められている。特に地域によっては、従来以上
に高度に窒素を除去することが求められるケースも多
い。窒素除去においては一般に流入下水中のBODを窒
素除去のための有機炭素源としているが、このBODは
下水中に過剰に存在しているわけではないため、従来以
上の高度な窒素除去を行おうとする場合、BODが不足
し、流入下水以外から補給することが必要になる。
In recent years, it has been required to remove nitrogen from sewage in order to prevent eutrophication of public water bodies. Particularly in some areas, it is often required to remove nitrogen more than ever before. In nitrogen removal, the BOD in the incoming sewage is generally used as an organic carbon source for nitrogen removal. However, since this BOD is not present in excess in the sewage, it is necessary to perform more advanced nitrogen removal than before. In this case, the BOD is insufficient, and it is necessary to supply water from sources other than inflow sewage.

【0007】一方、流入下水中の有機性のSS成分は、
好気条件下では徐々に酸化分解して、最終的には水と二
酸化炭素になるだけである。しかし、嫌気性消化におい
ては、流入下水あるいはその中の有機性SS成分は、嫌
気的条件下では酸発酵し、酸発酵期には主として炭水化
物が分解されて発酵液中に酢酸、プロピオン酸、酪酸、
吉草酸などの有機酸が生成し、その後の酸性減退期には
有機酸や含窒素有機化合物等の分解が始まり、BOD値
が最高に達し、最終段階のアルカリ性発酵期には酸発酵
期に生成した各種の有機酸、未分解のアミノ酸などがメ
タン、二酸化炭素、アンモニアに分解される。
On the other hand, the organic SS component in the incoming sewage is
Under aerobic conditions, it gradually oxidizes and decomposes, eventually resulting only in water and carbon dioxide. However, in anaerobic digestion, the influent sewage or organic SS components therein undergo acid fermentation under anaerobic conditions. During the acid fermentation period, mainly carbohydrates are decomposed, and acetic acid, propionic acid, butyric acid are contained in the fermentation broth. ,
Organic acids such as valeric acid are generated, and the decomposition of organic acids and nitrogen-containing organic compounds starts during the acid decline period, the BOD value reaches the maximum, and the acid fermentation period occurs during the final alkaline fermentation period Various organic acids and undecomposed amino acids are decomposed into methane, carbon dioxide, and ammonia.

【0008】本発明は上記した課題を解決するものであ
り、流入下水中の有機性SS成分を分離・除去し、この
有機性SS成分を酸発酵させて溶解性BOD成分(上記
の有機酸等から成る)を生成させ、生物学的処理の脱窒
素工程へ水素供与体として戻すことで脱窒素処理能力の
向上を図ることができる酸発酵を利用する水処理方法お
よび装置を提供することを目的とする。
The present invention solves the above-mentioned problems, and separates and removes organic SS components from inflowing sewage, and acid-ferments the organic SS components to dissolve soluble BOD components (such as the organic acids described above). And a water treatment method utilizing acid fermentation, which can improve the denitrification treatment capacity by returning to the denitrification step of the biological treatment as a hydrogen donor, thereby providing a water treatment method and apparatus. And

【0009】[0009]

【課題解決するための手段】上記した課題を解決するた
めに、請求項1に係る本発明の酸発酵を利用する水処理
方法は、少なくとも鉄またはアルミニウム系の無機凝集
剤を添加する沈殿池において被処理水を固液分離し、そ
の分離上層水を生物処理槽へ導いて生物学的処理し、分
離したSSを酸発酵槽に導いて酸発酵により有機酸を生
成し、pH4.5〜6.5に、好ましくは5.0〜6.
0に調質した発酵汚泥を脱水機で脱水し、有機酸を含む
脱水ろ液を生物処理槽へ有機炭素源もしくは水素供与体
として供給するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, a water treatment method using acid fermentation according to the present invention according to claim 1 is directed to a sedimentation tank to which at least an iron or aluminum-based inorganic coagulant is added. The water to be treated is solid-liquid separated, the separated upper layer water is guided to a biological treatment tank for biological treatment, and the separated SS is guided to an acid fermentation tank to produce an organic acid by acid fermentation. .5, preferably 5.0-6.
The dewatered fermented sludge is dehydrated by a dehydrator, and a dehydrated filtrate containing an organic acid is supplied to a biological treatment tank as an organic carbon source or a hydrogen donor.

【0010】上記した構成により、沈殿池で鉄またはア
ルミニウム系の無機凝集剤による凝集沈殿処理によりS
Sおよびリンを除去するので、生物処理槽へ流入するS
S量が減少して生物処理槽における汚水の平均滞留時間
を短くして運転することができ、活性汚泥微生物による
酸化、分解が困難な被処理水中のSSを酸発酵槽での酸
発酵により溶解性BODである有機酸に変えることで生
物処理槽での処理を可能にし、溶解性BODを栄養物と
して活性汚泥微生物が増殖する。よって、SS量の減少
および汚泥濃度の増加により系内で処理可能な汚泥負荷
量が増加するとともに、系外への排出物量が減少する。
[0010] According to the above-described structure, the coagulation and sedimentation treatment with an iron or aluminum-based inorganic coagulant in the sedimentation basin is performed.
Since S and phosphorus are removed, S flowing into the biological treatment tank
The amount of S decreases, and the average residence time of sewage in the biological treatment tank can be shortened to operate. The treatment in the biological treatment tank is enabled by changing to an organic acid that is a soluble BOD, and the activated sludge microorganisms grow using the soluble BOD as a nutrient. Therefore, the sludge load that can be treated in the system increases due to the decrease in the SS amount and the increase in the sludge concentration, and the amount of discharge to the outside of the system decreases.

【0011】酸発酵槽では酢酸、プロピオン酸、酪酸、
吉草酸等の多様な有機酸が生成するので、この有機酸を
生物学的処理(脱窒処理)において必要な有機炭素源も
しくは水素供与体として利用することで、系外から供給
するメタノール等の水素供与体を抑制してコストを下げ
ることができるとともに、資化できる活性汚泥微生物種
が多様化し、その増殖を図ることができる。
In an acid fermenter, acetic acid, propionic acid, butyric acid,
Since various organic acids such as valeric acid are generated, by using this organic acid as an organic carbon source or hydrogen donor necessary for biological treatment (denitrification treatment), methanol and other substances supplied from outside the system The cost can be reduced by suppressing the hydrogen donor, and the types of activated sludge microorganisms that can be assimilated can be diversified and their proliferation can be promoted.

【0012】発酵汚泥中には無機凝集剤として添加され
た鉄あるいはアルミニウムの水酸化物が存在し、これら
の水酸化物が水分を多量に含んでおり、発酵汚泥の脱水
性を低下させる。このため、発酵汚泥をpH4.5〜
6.5に、好ましくは5.0〜6.0に調質すること
で、鉄あるいはアルミニウムの水酸化物の一部を可溶化
させて脱水機における発酵汚泥の脱水性を高めて脱水ケ
ーキの含水率を低下させ、脱水ろ液として回収する有機
酸の回収量を高めることができる。発酵汚泥の調質は酸
発酵槽で行っても良く、別途に汚泥調質槽を設けて行っ
ても良い。
[0012] Fermented sludge contains iron or aluminum hydroxide added as an inorganic coagulant, and these hydroxides contain a large amount of water, which lowers the dewatering property of the fermented sludge. For this reason, fermented sludge is pH 4.5-
By refining to 6.5, preferably 5.0 to 6.0, a part of the hydroxide of iron or aluminum is solubilized to increase the dewatering property of the fermented sludge in the dewatering machine, and The water content can be reduced, and the amount of organic acid recovered as a dehydrated filtrate can be increased. Refining of the fermented sludge may be performed in an acid fermentation tank, or a separate sludge conditioning tank may be provided.

【0013】請求項2に係る本発明の酸発酵を利用する
水処理装置は、系内に流入する被処理水を固液分離する
沈殿池と、沈殿池の分離上層水を生物学的処理する生物
処理槽と、沈殿池の沈降SSを酸発酵させる酸発酵槽
と、酸発酵槽の発酵汚泥を調質する汚泥調質槽と、汚泥
調質槽の発酵汚泥を脱水する脱水機と、脱水機で分離し
た有機酸を含む脱水ろ液を生物処理槽へ供給する脱水ろ
液供給系と、汚泥調質槽へ凝集剤を供給する凝集剤供給
系と、汚泥調質槽へ酸を供給する酸供給系と、汚泥調質
槽へアルカリを供給するアルカリ供給系と、汚泥調質槽
の槽内汚泥のpHを測定するpH測定手段と、pH測定
手段の測定値に基づいて酸供給系もしくはアルカリ供給
系の供給量を制御して汚泥調質槽の槽内汚泥のpHを設
定値に維持する制御装置とを備えたものである。
According to a second aspect of the present invention, there is provided a water treatment apparatus utilizing acid fermentation, wherein a sedimentation basin for solid-liquid separation of water to be treated flowing into the system and a biological treatment of the separation upper layer water of the sedimentation basin. Biological treatment tank, acid fermentation tank for acid fermentation of sedimentation SS in sedimentation basin, sludge refining tank for refining fermented sludge in acid fermentation tank, dehydrator for dewatering fermented sludge in sludge refining tank, dehydration Filtrate supply system to supply dewatered filtrate containing organic acids separated by the machine to the biological treatment tank, coagulant supply system to supply coagulant to sludge conditioning tank, and supply of acid to sludge conditioning tank An acid supply system, an alkali supply system for supplying alkali to the sludge conditioning tank, a pH measuring means for measuring the pH of the sludge in the sludge conditioning tank, and an acid supply system or Control to maintain the pH of sludge in the sludge conditioning tank at a set value by controlling the supply amount of the alkali supply system It is that a location.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1〜図2において、下廃水は最
初沈殿池1に導いて鉄またはアルミニウム系の無機凝集
剤、有機高分子凝集剤を添加し、凝集沈殿処理によって
下廃水中のSS、リンを除去する。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2, the wastewater is first introduced into a sedimentation basin 1 to which an iron or aluminum-based inorganic coagulant and an organic polymer coagulant are added, and SS and phosphorus in the wastewater are removed by coagulation sedimentation treatment.

【0015】最初沈殿池1で固液分離した分離上層水は
生物処理槽2へ導いて生物学的処理し、最終沈殿池(図
示省略)を経て放流する。この過程で生物処理槽2へ流
入する分離上層水に含まれる不活性SS量はわずかであ
り、生物処理槽2における活性汚泥の平均滞留時間を短
くして運転することが可能となる。
The separated upper layer water, which has been separated into solid and liquid in the first sedimentation basin 1, is guided to the biological treatment tank 2 for biological treatment, and discharged through the final sedimentation basin (not shown). In this process, the amount of inert SS contained in the separated upper layer water flowing into the biological treatment tank 2 is small, and the operation can be performed with a short average residence time of the activated sludge in the biological treatment tank 2.

【0016】この生物処理槽2は好気槽のみでも可能で
あるが、本実施の形態においては窒素除去を行うため
に、図2に示すように、脱窒槽3と硝化槽4とで構成
し、脱窒槽3と硝化槽4との間に硝化液循環系5を設け
ており、脱窒槽3へ分離上層水および後述する脱水ろ液
を導く。生物処理槽2の形態はこの他に脱窒槽3と硝化
槽4を交互に多段に配置することも可能であり、この場
合に脱水ろ液は2段目もしくは3段目の脱窒槽3へ供給
する。
Although the biological treatment tank 2 can be constituted only by an aerobic tank, in the present embodiment, in order to remove nitrogen, it is constituted by a denitrification tank 3 and a nitrification tank 4 as shown in FIG. A nitrification liquid circulation system 5 is provided between the denitrification tank 3 and the nitrification tank 4, and guides the separated upper layer water and a dehydration filtrate described later to the denitrification tank 3. In addition to the above, the biological treatment tank 2 can be configured such that the denitrification tank 3 and the nitrification tank 4 are alternately arranged in multiple stages. In this case, the dehydrated filtrate is supplied to the second or third stage denitrification tank 3. I do.

【0017】最初沈殿池1で固液分離した沈降SSは酸
発酵槽6に導き、酸発酵によって有機酸を生成する。こ
の酸発酵槽6で生成する有機酸には酢酸、プロピオン
酸、酪酸、吉草酸等がある。
First, the sedimentation SS separated into solid and liquid in the sedimentation basin 1 is led to the acid fermentation tank 6 to generate an organic acid by acid fermentation. Organic acids generated in the acid fermenter 6 include acetic acid, propionic acid, butyric acid, valeric acid and the like.

【0018】酸発酵槽6の発酵汚泥を汚泥調質槽7へ導
き、汚泥調質槽7において凝集剤供給ポンプ17を用い
て凝集剤を添加する一方槽内汚泥のpHをpHセンサー
8で測定し、その測定値に基づいて制御装置9で酸供給
系9の酸供給ポンプ11もしくは、アルカリ供給系12
のアルカリ供給ポンプ13の駆動を制御して添加する酸
もしくはアルカリの量を調整し、汚泥調質槽7の槽内汚
泥のpHを設定値に維持する。pHの設定範囲は4.5
〜6.5であり、好ましくは5.0〜6.0に設定す
る。
The fermented sludge in the acid fermentation tank 6 is guided to a sludge conditioning tank 7, and a flocculant is added to the sludge conditioning tank 7 using a flocculant supply pump 17, while the pH of the sludge in the tank is measured by a pH sensor 8. Then, based on the measured value, the controller 9 controls the acid supply pump 11 of the acid supply system 9 or the alkali supply system 12.
By controlling the drive of the alkali supply pump 13 to adjust the amount of acid or alkali to be added, the pH of the sludge in the sludge conditioning tank 7 is maintained at a set value. pH setting range is 4.5
To 6.5, and preferably set to 5.0 to 6.0.

【0019】汚泥調質槽7の発酵汚泥は脱水機14で脱
水し、有機酸を含む脱水ろ液を生物処理槽2の脱窒槽3
へ脱水ろ液供給系15を通して供給し、有機炭素源もし
くは水素供与体として供する。
The fermented sludge in the sludge conditioning tank 7 is dewatered by a dehydrator 14, and the dehydrated filtrate containing an organic acid is removed from the denitrification tank 3 of the biological treatment tank 2.
And supplied through a dehydration filtrate supply system 15 to serve as an organic carbon source or a hydrogen donor.

【0020】生物処理槽2では硝化液循環系5を通して
硝化槽4から硝化液を脱窒槽3へ返送し、脱窒槽3にお
いて有機酸を有機炭素源もしくは水素供与体として利用
して先に述べた作用によって脱窒処理する。このことで
系外から供給するメタノール等の水素供与体を抑制して
コストを下げることができる。
In the biological treatment tank 2, the nitrification liquid is returned from the nitrification tank 4 to the denitrification tank 3 through the nitrification liquid circulation system 5, and the organic acid is used as an organic carbon source or a hydrogen donor in the denitrification tank 3 as described above. A denitrification treatment is performed by the action. Thus, the cost can be reduced by suppressing a hydrogen donor such as methanol supplied from outside the system.

【0021】このように、活性汚泥微生物が酸化、分解
により資可することが困難な被処理水中のSSを酸発酵
槽6での酸発酵により溶解性BODである有機酸に変
え、生物処理槽2で酢酸、プロピオン酸、酪酸、吉草酸
等の多様な有機酸からなる溶解性BODを栄養物とする
ことで、それらを資化できる活性汚泥微生物種が多様化
して活性汚泥微生物が増殖する。
As described above, the SS in the water to be treated, which is difficult for the activated sludge microorganisms to utilize by oxidation and decomposition, is converted into an organic acid, which is a soluble BOD, by acid fermentation in the acid fermentation tank 6. By using the soluble BOD composed of various organic acids such as acetic acid, propionic acid, butyric acid, and valeric acid as a nutrient in 2, the types of activated sludge microorganisms that can utilize them are diversified, and the activated sludge microorganisms proliferate.

【0022】発酵汚泥中には無機凝集剤として添加され
た鉄あるいはアルミニウムの水酸化物が存在し、これら
の水酸化物が水分を多量に含んでおり、発酵汚泥の脱水
性を低下させる。このため、発酵汚泥を汚泥調質槽7に
おいてpH4.5〜6.5に、好ましくは5.0〜6.
0に調質することで、鉄あるいはアルミニウムの水酸化
物の一部を可溶化させて脱水機14における発酵汚泥の
脱水性を高めて脱水ケーキの含水率を低下させ、脱水ろ
液として回収する有機酸の回収量を高めることができ
る。また、槽内汚泥のpHを4.5〜6.5に、好まし
くは5.0〜6.0に維持することで、凝集沈殿した汚
泥フロックからリンがすべて再溶出することを阻止で
き、生物処理槽2にリンが流入することを低減できる。
Iron or aluminum hydroxide added as an inorganic coagulant is present in the fermented sludge, and these hydroxides contain a large amount of water, which lowers the dewatering property of the fermented sludge. Therefore, the fermented sludge is adjusted to pH 4.5 to 6.5, preferably 5.0 to 6.5, in the sludge conditioning tank 7.
By tempering to 0, a part of the hydroxide of iron or aluminum is solubilized to increase the dewatering property of the fermented sludge in the dehydrator 14 and reduce the water content of the dewatered cake, which is recovered as a dewatered filtrate. The amount of organic acids recovered can be increased. Further, by maintaining the pH of the sludge in the tank at 4.5 to 6.5, preferably at 5.0 to 6.0, it is possible to prevent all phosphorus from being re-eluted from the flocculated sludge floc, and the biological The flow of phosphorus into the treatment tank 2 can be reduced.

【0023】発酵汚泥の調質は酸発酵槽で行っても良
い。この場合には以下の作用効果も得られる。つまり、
酸発酵槽6における発酵過程が酸発酵期を経て酸性減退
期に移行すると酸発酵期に生成した有機酸の分解すなわ
ちメタン化が始まるので、酸発酵槽6の槽内汚泥のpH
を4.5〜6.5に、好ましくは5.0〜6.0に維持
することでメタン化への移行を抑制し、酸発酵槽におい
て生成する有機酸を最も多く回収することができる。ま
た、酸発酵槽6におけるSRT(汚泥滞留時間)もしく
はHRT(水理学的滞留時間)は0.5日から5日であ
り、望ましくは1日から3日が良い。
The conditioning of the fermented sludge may be performed in an acid fermenter. In this case, the following operation and effect can be obtained. That is,
When the fermentation process in the acid fermentation tank 6 shifts to the acid decline period after the acid fermentation period, decomposition of the organic acid generated during the acid fermentation period, that is, methanation starts.
Is maintained at 4.5 to 6.5, preferably 5.0 to 6.0, whereby the shift to methanation can be suppressed, and the most organic acid generated in the acid fermentation tank can be recovered. The SRT (sludge residence time) or HRT (hydraulic residence time) in the acid fermenter 6 is 0.5 to 5 days, and preferably 1 to 3 days.

【0024】[0024]

【発明の効果】以上述べたように本発明によれば、生物
処理槽の前段において被処理水からSSを除去し、除去
したSSを酸発酵により溶解性BODである有機酸に変
えて生物処理槽へ供給することで、SS量の減少によっ
て生物処理槽における活性汚泥の平均滞留時間を短くし
て運転できるとともに、活性汚泥微生物が資化すること
が困難なSSを溶解性BODとして生物処理槽で処理す
ることができ、系外へ排出していたSSの排出物量が減
少する。また、有機酸を生物学的処理(脱窒処理)にお
いて必要な有機炭素源もしくは水素供与体として利用す
ることで、系外から供給するメタノール等の水素供与体
を抑制してコストを下げることができるとともに、多様
な有機酸からなる溶解性BODを栄養物とすることで資
化できる活性汚泥微生物種が多様化して活性汚泥微生物
が増殖し、汚泥濃度の増加により系内で処理可能な汚泥
負荷量が増加する。さらに、酸発汚泥のpHを4.5〜
6.5に、好ましくは5.0〜6.0に調質して脱水す
ることで、鉄あるいはアルミニウムの水酸化物の一部を
可溶化させて脱水機における発酵汚泥の脱水性を高めて
脱水ケーキの含水率を低下させ、脱水ろ液として回収す
る有機酸の回収量を高めることができる。
As described above, according to the present invention, the SS is removed from the water to be treated in the preceding stage of the biological treatment tank, and the removed SS is converted to an organic acid which is a soluble BOD by acid fermentation. By supplying to the tank, the average sludge retention time of the activated sludge in the biological treatment tank can be shortened due to the decrease in the amount of SS and the operation can be performed. And the amount of SS discharged out of the system is reduced. In addition, by using an organic acid as an organic carbon source or a hydrogen donor required in a biological treatment (denitrification treatment), it is possible to reduce a cost by suppressing a hydrogen donor such as methanol supplied from outside the system. Activated sludge microbial species that can be assimilated by using soluble BOD composed of various organic acids as nutrients can be diversified and activated sludge microorganisms proliferate, and sludge load that can be treated in the system by increasing sludge concentration The amount increases. Further, the pH of the acid sludge is adjusted to 4.5 to 4.5.
By tempering to 6.5, preferably to 5.0 to 6.0 and dehydrating, a part of the hydroxide of iron or aluminum is solubilized to enhance the dehydration of fermented sludge in the dehydrator. The water content of the dehydrated cake can be reduced, and the amount of the organic acid recovered as the dehydrated filtrate can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における酸発酵を利用する
水処理装置を示すブロック図である。
FIG. 1 is a block diagram showing a water treatment apparatus using acid fermentation according to an embodiment of the present invention.

【図2】同水処理装置における生物処理槽の構成を示す
ブロック図である。
FIG. 2 is a block diagram showing a configuration of a biological treatment tank in the water treatment apparatus.

【符号の説明】[Explanation of symbols]

1 最初沈殿池 2 生物処理槽 3 脱窒槽 4 硝化槽 5 硝化液循環系 6 酸発酵槽 7 汚泥調質槽 8 pHセンサー 9 制御装置 10 酸供給系 11 酸供給ポンプ 12 アルカリ供給系 13 アルカリ供給ポンプ 14 脱水機 15 脱水ろ液供給系 DESCRIPTION OF SYMBOLS 1 First sedimentation tank 2 Biological treatment tank 3 Denitrification tank 4 Nitrification tank 5 Nitrification liquid circulation system 6 Acid fermentation tank 7 Sludge conditioning tank 8 pH sensor 9 Controller 10 Acid supply system 11 Acid supply pump 12 Alkaline supply system 13 Alkaline supply pump 14 Dehydrator 15 Dehydration filtrate supply system

フロントページの続き (72)発明者 小松 敏宏 大阪府大阪市浪速区敷津東一丁目2番47号 株式会社クボタ内 (72)発明者 堅田 智洋 大阪府大阪市浪速区敷津東一丁目2番47号 株式会社クボタ内 Fターム(参考) 4D015 BA23 BB05 CA01 DA02 DA12 EA32 FA02 FA03 FA26 4D040 BB05 BB15 BB57 BB73 BB93 4D059 AA04 AA06 AA23 BA13 BE49 BE54 BF12 CA28 EA05 EB05 EB11 Continued on the front page (72) Inventor Toshihiro Komatsu 1-47, Shikitsu Higashi 1-chome, Namiwa-ku, Osaka-shi, Osaka (72) Inventor Tomohiro Katata 1-chome 2, Shikitsu-higashi, Naniwa-ku, Osaka, Osaka No. 47 F-term in Kubota Corporation (Reference) 4D015 BA23 BB05 CA01 DA02 DA12 EA32 FA02 FA03 FA26 4D040 BB05 BB15 BB57 BB73 BB93 4D059 AA04 AA06 AA23 BA13 BE49 BE54 BF12 CA28 EA05 EB05 EB11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも鉄またはアルミニウム系の無
機凝集剤を添加する沈殿池において被処理水を固液分離
し、その分離上層水を生物処理槽へ導いて生物学的処理
し、分離したSSを酸発酵槽に導いて酸発酵により有機
酸を生成し、pH4.5〜6.5に、好ましくは5.0
〜6.0に調質した発酵汚泥を脱水機で脱水し、有機酸
を含む脱水ろ液を生物処理槽へ有機炭素源もしくは水素
供与体として供給することを特徴とする酸発酵を利用す
る水処理方法。
Claims: 1. A water to be treated is solid-liquid separated in a sedimentation tank to which at least an iron or aluminum-based inorganic coagulant is added, and the separated upper layer water is guided to a biological treatment tank for biological treatment. It is led to an acid fermentation tank to produce an organic acid by acid fermentation, and has a pH of 4.5 to 6.5, preferably 5.0.
Water using acid fermentation, wherein the fermented sludge conditioned to -6.0 is dehydrated with a dehydrator, and a dehydrated filtrate containing an organic acid is supplied to a biological treatment tank as an organic carbon source or a hydrogen donor. Processing method.
【請求項2】 系内に流入する被処理水を固液分離する
沈殿池と、沈殿池の分離上層水を生物学的処理する生物
処理槽と、沈殿池の沈降SSを酸発酵させる酸発酵槽
と、酸発酵槽の発酵汚泥を調質する汚泥調質槽と、汚泥
調質槽の発酵汚泥を脱水する脱水機と、脱水機で分離し
た有機酸を含む脱水ろ液を生物処理槽へ供給する脱水ろ
液供給系と、汚泥調質槽へ凝集剤を供給する凝集剤供給
系と、汚泥調質槽へ酸を供給する酸供給系と、汚泥調質
槽へアルカリを供給するアルカリ供給系と、汚泥調質槽
の槽内汚泥のpHを測定するpH測定手段と、pH測定
手段の測定値に基づいて酸供給系もしくはアルカリ供給
系の供給量を制御して汚泥調質槽の槽内汚泥のpHを設
定値に維持する制御装置とを備えたことを特徴とする酸
発酵を利用する水処理装置。
2. A sedimentation basin for solid-liquid separation of water to be treated flowing into the system, a biological treatment tank for biologically treating the separation upper layer water of the sedimentation basin, and an acid fermentation for acid fermentation of the sedimentation SS of the sedimentation basin. Tank, sludge refining tank for refining fermented sludge in acid fermentation tank, dehydrator for dewatering fermented sludge in sludge refining tank, and dehydration filtrate containing organic acid separated by dehydrator to biological treatment tank Dehydration filtrate supply system to supply, coagulant supply system to supply coagulant to sludge conditioning tank, acid supply system to supply acid to sludge conditioning tank, and alkali supply to supply alkali to sludge conditioning tank System, pH measuring means for measuring the pH of the sludge in the sludge conditioning tank, and a tank for the sludge conditioning tank by controlling the supply amount of the acid supply system or the alkali supply system based on the measured value of the pH measurement means. Water treatment utilizing acid fermentation, comprising: a control device for maintaining the pH of the internal sludge at a set value. apparatus.
JP2001105296A 2001-04-04 2001-04-04 Water treatment method and apparatus using acid fermentation Pending JP2002301499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001105296A JP2002301499A (en) 2001-04-04 2001-04-04 Water treatment method and apparatus using acid fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001105296A JP2002301499A (en) 2001-04-04 2001-04-04 Water treatment method and apparatus using acid fermentation

Publications (1)

Publication Number Publication Date
JP2002301499A true JP2002301499A (en) 2002-10-15

Family

ID=18958005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001105296A Pending JP2002301499A (en) 2001-04-04 2001-04-04 Water treatment method and apparatus using acid fermentation

Country Status (1)

Country Link
JP (1) JP2002301499A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297262A (en) * 2005-04-19 2006-11-02 Sumitomo Heavy Ind Ltd Organic acid production method, organic acid production device, and waste water treatment equipment
JP2007260601A (en) * 2006-03-29 2007-10-11 Sumitomo Heavy Industries Environment Co Ltd Method for producing organic acid, apparatus for producing organic acid and wastewater treatment equipment
CN102417281A (en) * 2011-12-12 2012-04-18 吴明杰 Method and device for efficiently treating animal husbandry sewage
KR101450752B1 (en) * 2014-02-06 2014-10-17 이형철 Processing apparatus for fermentation of Animal carcasses
CN105399291A (en) * 2015-12-11 2016-03-16 清华大学 Disintegration method for excess sludge and application of disintegrated sludge in hydrogen production through fermentation
CN108751625A (en) * 2018-08-20 2018-11-06 兴源环境科技股份有限公司 A kind of processing system and technique of ferment antibiotics waste water
JP2019181399A (en) * 2018-04-16 2019-10-24 アグリ・コア株式会社 Processing method of digestive juice after methane fermentation, processor of digestive juice after methane fermentation, and methane fermentation system
CN113072275A (en) * 2021-04-01 2021-07-06 新疆碧水源环境资源股份有限公司 Novel water treatment process for sludge synergism

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297262A (en) * 2005-04-19 2006-11-02 Sumitomo Heavy Ind Ltd Organic acid production method, organic acid production device, and waste water treatment equipment
JP2007260601A (en) * 2006-03-29 2007-10-11 Sumitomo Heavy Industries Environment Co Ltd Method for producing organic acid, apparatus for producing organic acid and wastewater treatment equipment
JP4688713B2 (en) * 2006-03-29 2011-05-25 住友重機械エンバイロメント株式会社 Organic acid generation method, organic acid generation apparatus, and wastewater treatment facility
CN102417281A (en) * 2011-12-12 2012-04-18 吴明杰 Method and device for efficiently treating animal husbandry sewage
KR101450752B1 (en) * 2014-02-06 2014-10-17 이형철 Processing apparatus for fermentation of Animal carcasses
CN105399291A (en) * 2015-12-11 2016-03-16 清华大学 Disintegration method for excess sludge and application of disintegrated sludge in hydrogen production through fermentation
CN105399291B (en) * 2015-12-11 2018-08-28 清华大学 A kind of crack method of excess sludge and the application in fermentation and hydrogen production
JP2019181399A (en) * 2018-04-16 2019-10-24 アグリ・コア株式会社 Processing method of digestive juice after methane fermentation, processor of digestive juice after methane fermentation, and methane fermentation system
CN108751625A (en) * 2018-08-20 2018-11-06 兴源环境科技股份有限公司 A kind of processing system and technique of ferment antibiotics waste water
CN108751625B (en) * 2018-08-20 2023-12-29 兴源环境科技股份有限公司 Treatment system and process for fermentation antibiotic wastewater
CN113072275A (en) * 2021-04-01 2021-07-06 新疆碧水源环境资源股份有限公司 Novel water treatment process for sludge synergism

Similar Documents

Publication Publication Date Title
US8864993B2 (en) Process for removing ammonium from a wastewater stream
Sun et al. Advanced treatment of landfill leachate using anaerobic–aerobic process: Organic removal by simultaneous denitritation and methanogenesis and nitrogen removal via nitrite
EP1463687A1 (en) Biological water treatment process involving post-denitrification mechanism and a membrane filter
JP2003245689A (en) Method and apparatus for treating wastewater
JP2006272177A (en) Method and system for removing biological nitrogen
JP2002301500A (en) Water treatment method and apparatus using acid fermentation
JP2002301499A (en) Water treatment method and apparatus using acid fermentation
CN117534240A (en) Comprehensive sewage treatment process for brewing Maotai-flavor white spirit
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
JP2007117842A (en) Method and apparatus for removing nitrogen of high concentration organic waste water
JP3799557B2 (en) Wastewater treatment method
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
KR19980043482A (en) Waste Landfill Leachate Treatment Method
CN113072261A (en) Advanced treatment method for textile printing and dyeing wastewater
JPS6222678B2 (en)
KR100325722B1 (en) A treatment method of sewage and wastewater using ozone and oxygen
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
KR100192144B1 (en) Solid waste made land leachate treatment process
JPH0483594A (en) Biological treatment of organic sewage
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
JP2002301498A (en) Water treatment method and apparatus using acid fermentation
KR20050081251A (en) A high-strength organic wastewater treatment system composed of biofilm fermentator and anaerobic-anoxic-aerobic reactor
KR20010091457A (en) A sewage treating method for improving the nitrogen removal and a sewage treating device for the same
CN115477390B (en) Process for treating garbage leachate by combining biological treatment and membrane assembly
CN217868518U (en) Organic wastewater treatment equipment containing medium-long chain fatty acid