JPH0563722B2 - - Google Patents

Info

Publication number
JPH0563722B2
JPH0563722B2 JP22113188A JP22113188A JPH0563722B2 JP H0563722 B2 JPH0563722 B2 JP H0563722B2 JP 22113188 A JP22113188 A JP 22113188A JP 22113188 A JP22113188 A JP 22113188A JP H0563722 B2 JPH0563722 B2 JP H0563722B2
Authority
JP
Japan
Prior art keywords
wall thickness
measured
nozzle
water
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22113188A
Other languages
Japanese (ja)
Other versions
JPH0267909A (en
Inventor
Shigetoshi Hyodo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22113188A priority Critical patent/JPH0267909A/en
Publication of JPH0267909A publication Critical patent/JPH0267909A/en
Publication of JPH0563722B2 publication Critical patent/JPH0563722B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はクラツド管等の肉厚を超音波と渦電流
とを併用して測定する肉厚測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wall thickness measuring device that measures the wall thickness of a clad pipe or the like by using both ultrasonic waves and eddy current.

〔従来の技術〕[Conventional technology]

クラツド管は母材の外周又は内周にクラツド材
を冶金的に接合せしめた積層構造を有しており、
用途に応じたクラツド材を選択することにより材
料強度を維持出来、特殊雰囲気下での耐酸性等に
優れ、しかも管材コストの低減を図り得るものと
して広く使用されている。このようなクラツド材
の厚さはクラツド管の性能、寿命を保証するうえ
で極めて重要な管理項目であり、従来より肉厚測
定のための装置、例えば超音波のみを利用する装
置、或いは超音波と渦電流とを組合せ使用する装
置等が提案されている(特開昭59−54902号)。
A clad pipe has a laminated structure in which a clad material is metallurgically bonded to the outer or inner periphery of a base material.
By selecting a cladding material according to the application, it is possible to maintain material strength, has excellent acid resistance under special atmospheres, and is widely used as a material that can reduce the cost of pipe materials. The thickness of the cladding material is an extremely important control item in order to guarantee the performance and lifespan of the cladding pipe. Conventionally, the thickness of the cladding material is an extremely important control item in order to guarantee the performance and lifespan of the cladding pipe. A device using a combination of eddy current and eddy current has been proposed (Japanese Patent Application Laid-open No. 54902/1983).

しかし、超音波のみを用いる装置では母材とク
ラツド材との境界面からの反射波を検出する必要
があるが、母材とクラツド材との音響インピーダ
ンスが近似した値となつている場合には測定自体
極めて困難であるという欠点があつた。
However, with a device that uses only ultrasonic waves, it is necessary to detect the reflected waves from the interface between the base material and the cladding material, but when the acoustic impedances of the base material and the cladding material are similar, The drawback was that the measurement itself was extremely difficult.

一方、超音波と渦電流とを組合せ利用する装置
はクラツド管の母材とクラツド材との全肉厚を測
定する超音波肉厚測定系と、クラツド材の肉厚を
測定する渦電流肉厚測定系とを備えており、クラ
ツド管表面に定めた測定点に夫々測定ヘツド部を
接触させて、全肉厚、クラツド材肉厚を測定する
構成となつている。
On the other hand, devices that use a combination of ultrasonic waves and eddy currents include an ultrasonic wall thickness measurement system that measures the total wall thickness between the base material of the clad pipe and the clad material, and an eddy current wall thickness measurement system that measures the wall thickness of the clad material. The measuring system is configured to measure the total wall thickness and the wall thickness of the cladding material by bringing the measurement head into contact with each measurement point defined on the surface of the cladding tube.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このような従来装置では、測定ヘツ
ド部を測定点に接触させて逐次測定を行う接触式
となつているため、例えばクラツド管等について
その長手方向各部においてクラツド材の肉厚分布
を知る場合の如く測定回数が多くなると測定作業
が極めて煩わしく、連続測定が困難である。ま
た、非接触でクラツド管の肉厚を連続測定する場
合、通常超音波肉厚測定系の測定ヘツド部と、渦
電流肉厚測定系の測定ヘツド部とを所要の間隔を
おいて並置し、クラツド管をスパイラル状に移動
させながら測定するため、両測定ヘツド部による
測定値を位置同期させる手段が必要となり、装置
が複雑となる。更に、クラツド管の移動時にスリ
ツプが生じると両測定値の位置同期が不正確とな
り十分な測定精度が得られないという問題があつ
た。
By the way, such conventional devices are of a contact type in which measurements are made sequentially by bringing the measurement head into contact with the measurement points, so for example, when determining the wall thickness distribution of the cladding material at each longitudinal section of a cladding pipe, etc. When the number of measurements is increased, the measurement work becomes extremely troublesome and continuous measurement is difficult. In addition, when continuously measuring the wall thickness of a cladding pipe without contact, the measurement head of the ultrasonic wall thickness measurement system and the measurement head of the eddy current wall thickness measurement system are usually placed side by side with a required spacing, Since measurements are taken while moving the cladding tube in a spiral manner, a means for synchronizing the positions of the measured values from both measurement heads is required, making the apparatus complicated. Furthermore, if a slip occurs during movement of the clad tube, the positional synchronization of both measured values becomes inaccurate, resulting in a problem in that sufficient measurement accuracy cannot be obtained.

本発明は斯かる事情に鑑みなされたものであつ
て、その目的とするところは母材とクラツド材と
の音響インピーダンスが近似している場合におい
ても、超音波特性と電磁気的特性の差異を利用し
て効果的に、しかも正確に連続的な肉厚測定を行
い得る肉厚測定装置を提供するにある。
The present invention was made in view of the above circumstances, and its purpose is to utilize the difference in ultrasonic properties and electromagnetic properties even when the acoustic impedances of the base material and cladding material are similar. To provide a wall thickness measuring device capable of effectively and accurately measuring wall thickness continuously.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る肉厚測定装置にあつてはクラツド
材の肉厚と母材の肉厚とを加えた全肉厚を測定す
る超音波肉厚測定系と、クラツド材の肉厚を測定
する渦電流肉厚測定系とを具備する肉厚測定装置
において、内部に水室を有し、先端に前記水室に
供給される水を被測定点表面に向けて噴射するノ
ズルを有するハウジングと、該ハウジングの基端
側に設けられ、前記水室中の水及びノズルから噴
射される水流を通じて被測定点との間で、その伝
播方向が被測定点表面と直交する向きの超音波を
送受信する超音波肉厚測定系のプローブと、前記
ハウジング内であつてその先端に設けたノズルと
同心状にその外周に配設され、前記プローブによ
る被測定点と同一の被測定点表面に対し、これと
直交する向きに磁界を形成する渦電流肉厚測定系
のコイルとを具備する測定ヘツド部を、クラツド
材の表面と間隔を隔てて対向配置したことを特徴
とする。
The wall thickness measuring device according to the present invention includes an ultrasonic wall thickness measuring system that measures the total wall thickness including the wall thickness of the clad material and the wall thickness of the base material, and a vortex system that measures the wall thickness of the clad material. A wall thickness measuring device equipped with a current wall thickness measuring system, comprising: a housing having a water chamber inside and having a nozzle at a tip for spraying water supplied to the water chamber toward a surface of a point to be measured; An ultrasonic device that is provided on the base end side of the housing and transmits and receives ultrasonic waves whose propagation direction is perpendicular to the surface of the point to be measured between the point to be measured and the point to be measured through the water in the water chamber and the water flow jetted from the nozzle. A probe of the sonic wall thickness measurement system is arranged on the outer periphery of the housing concentrically with a nozzle provided at the tip thereof within the housing, and is applied to the surface of the same point to be measured as the point to be measured by the probe. The present invention is characterized in that a measuring head portion comprising a coil of an eddy current wall thickness measuring system that forms a magnetic field in orthogonal directions is disposed opposite to the surface of the cladding material at a distance.

〔作用〕[Effect]

本発明装置にあつては、これによつてクラツド
材の同一被測定点における超音波肉厚測定系の測
定値と渦電流肉厚測定系の測定値とを同時に得ら
れることとなる。
With the apparatus of the present invention, the measured values of the ultrasonic wall thickness measuring system and the eddy current wall thickness measuring system can be obtained at the same time at the same measurement point of the cladding material.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づき
具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明装置の模式図であり、図中Pは
クラツド管、1は測定ヘツド部を示している。
FIG. 1 is a schematic diagram of the apparatus of the present invention, in which P indicates a clad pipe and 1 indicates a measuring head.

クラツド管Pは、例え炭素鋼製の母材P1の外
周にオーステナイト系等のステンレス鋼製のクラ
ツド材P2を冶金接合せしめてある。測定ヘツド
部1は水室2aを備えたハウジング2に管全肉厚
を測定するためのプローブである超音波用発受信
器3、クラツド材肉厚を測定するための電磁誘導
用の第1のコイル4、超音波の伝播媒質である水
の温度補正を行なうための電磁誘導用の第2のコ
イル5とを備えており、測定対象物であるクラツ
ド管P表面と所定の間隔を隔ててこれと対向して
配置され、クラツド管Pをスパイラル状に移動さ
せつつ測定を連続的に行なうようになつている。
The clad pipe P is made by metallurgically joining a clad material P 2 made of stainless steel such as austenitic steel to the outer periphery of a base material P 1 made of carbon steel. The measuring head section 1 includes a housing 2 equipped with a water chamber 2a, an ultrasonic transmitter/receiver 3 which is a probe for measuring the total wall thickness of the pipe, and a first probe for electromagnetic induction for measuring the wall thickness of the cladding material. It is equipped with a coil 4 and a second coil 5 for electromagnetic induction to correct the temperature of water, which is the propagation medium of ultrasonic waves, and is arranged at a predetermined distance from the surface of the clad tube P, which is the object to be measured. The cladding tube P is disposed opposite to the cladding tube P, and measurements are continuously performed while moving the cladding tube P in a spiral manner.

ハウジング2はその内部中央に上、下方向に長
い水室2aを備えており、水室2aの側部には2
本の給水管2bが連結され、また水室2aの下端
にはクラツド管Pに面して開口するノズル2cを
形成してある。発受信器3は水室2aの上部壁
に、超音波の伝播方向がノズル2cの中心を通し
てクラツド管Pの表面と直交するよう配設され、
また第1のコイル4はノズル2cの外周にこれと
同心に、更に第2のコイル5は第1のコイル4に
近い下方の給水管2bの外周に、これと同心状に
夫々配設されており、前記プローブ3には超音波
肉厚測定系Aが、また第1、第2コイル4,5に
は渦電流肉厚測定系Bが夫々接続せしめられてい
る。
The housing 2 is provided with a water chamber 2a that is long upwardly and downwardly in the center thereof, and has two water chambers on the sides of the water chamber 2a.
A water supply pipe 2b is connected thereto, and a nozzle 2c opening facing the cladding pipe P is formed at the lower end of the water chamber 2a. The transmitter/receiver 3 is disposed on the upper wall of the water chamber 2a so that the propagation direction of the ultrasonic wave passes through the center of the nozzle 2c and is perpendicular to the surface of the clad pipe P.
Further, the first coil 4 is arranged concentrically around the outer periphery of the nozzle 2c, and the second coil 5 is arranged concentrically with the outer periphery of the lower water supply pipe 2b near the first coil 4. An ultrasonic wall thickness measuring system A is connected to the probe 3, and an eddy current wall thickness measuring system B is connected to the first and second coils 4 and 5, respectively.

(超音波肉厚測定系A) クロツク回路11から発せられたクロツクパル
スがゲート回路12に入力されるとゲート回路1
2は切替手段を構成するフリツプフロツプ回路3
1から入力される信号に基づいてオン/オフ制御
されており、クロツクパルスを渦電流肉厚測定系
Bの出力と互い違いとなるよう所定のタイミング
で発振回路13に出力するようにしてある。発振
回路13は指令信号に基づいて発受信器3に発振
信号を出力し、発受信器3から超音波を発せしめ
る。超音波は水室2a内の水柱内を伝播して被検
物たるクラツド管Pのクラツド材P2表面の直径
略1mmの領域内に直角に入射する。
(Ultrasonic wall thickness measurement system A) When the clock pulse emitted from the clock circuit 11 is input to the gate circuit 12, the gate circuit 1
2 is a flip-flop circuit 3 constituting a switching means;
The on/off control is performed based on the signal input from eddy current thickness measuring system B, and the clock pulses are outputted to the oscillation circuit 13 at predetermined timings so as to alternate with the output of the eddy current wall thickness measuring system B. The oscillation circuit 13 outputs an oscillation signal to the transmitter/receiver 3 based on the command signal, causing the transmitter/receiver 3 to emit ultrasonic waves. The ultrasonic waves propagate in the water column in the water chamber 2a and are incident at right angles into an area approximately 1 mm in diameter on the surface of the cladding material P2 of the cladding pipe P, which is the object to be inspected.

クラツド材P2に入射された超音波はクラツド
管Pにおけるクラツド材P2の表面及び母材P1
内面にて夫々一部が反射され、第2図イに示す如
き夫々の反射波S,B1は再び水室2a内の水中
を伝播して発受信器3にて捉えられる。
A portion of the ultrasonic waves incident on the cladding material P 2 is reflected by the surface of the cladding material P 2 and the inner surface of the base material P 1 in the cladding pipe P, and the respective reflected waves S, as shown in FIG. B 1 propagates through the water in the water chamber 2a again and is captured by the transmitter/receiver 3.

発受信器3で捉えられた反射波は電気信号に変
換されて増幅器14で増幅された後、比較器15
に入射され、予め定めてある基準値と比較され、
クラツド材P2の外表面及び母材P1の内表面から
の反射波S,B1のみを抽出しこれをタイミング
発生回路16に入力する。
The reflected wave captured by the transmitter/receiver 3 is converted into an electrical signal and amplified by the amplifier 14, and then sent to the comparator 15.
and is compared with a predetermined reference value,
Only the reflected waves S and B 1 from the outer surface of the cladding material P 2 and the inner surface of the base material P 1 are extracted and input into the timing generation circuit 16 .

タイミング発生回路16は第2図ロに示す如く
反射波S,B1間の両立上がり間の時間tに相当
する長さのゲート信号としてT/A(タイミン
グ・アナログ)変換器17に出力し、ここでアナ
ログ信号に変換された後、A/D(アナログ・デ
イジタル)変換器18でデイジタル信号に変換さ
れ、中央制御装置(CPU)30へ出力する。
The timing generation circuit 16 outputs a gate signal having a length corresponding to the time t between the rises of the reflected waves S and B1 to the T/A (timing analog) converter 17 as shown in FIG. After being converted into an analog signal here, it is converted into a digital signal by an A/D (analog-digital) converter 18 and output to a central control unit (CPU) 30.

(渦電流肉厚測定系B) 21は発振器であつて、その発振信号はゲート
回路22に入力される。ゲート回路22はフリツ
プフロツプ回路31から入力された信号に基づい
てオン/オフ制御され、超音波による肉厚測定信
号とタイミングをずらして発振器21からの信号
を増幅器23、ブリツジ回路24を経て第1、第
2のコイル4,5に出力する。
(Eddy current thickness measurement system B) 21 is an oscillator, and its oscillation signal is input to the gate circuit 22. The gate circuit 22 is controlled to be on/off based on the signal input from the flip-flop circuit 31, and the signal from the oscillator 21 is sent to the first gate via the amplifier 23 and the bridge circuit 24 with timing shifted from the ultrasonic wall thickness measurement signal. It outputs to the second coils 4 and 5.

コイル4に電流が通流されると被検物であるク
ラツド材P2の表面と直交する向きの磁界が形成
され、これによつてクラツド材P2の表面に渦電
流が誘起され、またコイル5に電流が通流される
と給水管2b内の水の流動方向と同じ向きの磁界
が形成される。
When a current is passed through the coil 4, a magnetic field is formed in a direction perpendicular to the surface of the cladding material P2 , which is the object to be tested.This induces an eddy current on the surface of the cladding material P2 , and the coil 5 When a current is passed through the water supply pipe 2b, a magnetic field is formed in the same direction as the flow direction of the water in the water supply pipe 2b.

リフトオフ量及びクラツド材P2の肉厚が変化
すると第1のコイル4のインピーダンスが変化
し、また水温が変化すると、第1及び第2のコイ
ル4,5の温度が変化してインピーダンスが変化
する。第1、第2のコイル4,5はブリツジ回路
24における相隣する2辺に相互に直列状態とな
るよう接続せしめられ、測定ヘツド部1の直前に
設けた図示しないフオトセンサ等の検出器によつ
てクラツド管Pの先端が検出され、しかも第1の
コイル4が空芯状態、即ち第1のコイル4にクラ
ツド管Pが対向しない状態のときに給水管2bに
水を流し、ノズル2cから水を噴射しながらブリ
ツジ回路24が平衡状態となるよう調整される。
When the lift-off amount and the wall thickness of the cladding material P 2 change, the impedance of the first coil 4 changes, and when the water temperature changes, the temperatures of the first and second coils 4 and 5 change, and the impedance changes. . The first and second coils 4 and 5 are connected in series to two adjacent sides of the bridge circuit 24, and are detected by a detector such as a photo sensor (not shown) provided immediately before the measurement head 1. When the tip of the clad pipe P is detected and the first coil 4 is in an empty core state, that is, when the clad pipe P is not facing the first coil 4, water is flowed into the water supply pipe 2b, and water is poured from the nozzle 2c. The bridge circuit 24 is adjusted to be in an equilibrium state while injecting the fuel.

従つて、ブリツジ回路24からは第1及び第2
のコイル4,5の水温によるインピーダンス変化
が相殺された信号、即ち超音波伝播媒質である水
の温度変化に影響されない信号のみが出力され
る。換言すれば、第1のコイル4にクラツド管P
を対向させ、第1のコイル4のインピーダンスが
変化したときのみ、ブリツジ回路が非平衡状態と
なり、第1のコイル4とクラツド管Pとの離間寸
法及びクラツド材P2の厚さに応じた非平衡信号
が増幅器25を経て同期検波回路26へ出力され
る。
Therefore, from the bridge circuit 24, the first and second
Only a signal in which impedance changes caused by the water temperature of the coils 4 and 5 are canceled out, that is, a signal that is unaffected by temperature changes in water, which is an ultrasonic propagation medium, is output. In other words, the clad pipe P is connected to the first coil 4.
The bridge circuit enters an unbalanced state only when the impedance of the first coil 4 is changed and the unbalanced state occurs depending on the distance between the first coil 4 and the cladding pipe P and the thickness of the cladding material P2 . The balanced signal is outputted to the synchronous detection circuit 26 via the amplifier 25.

同期検波回路26は入力信号を位相解析してX
軸方向及びY軸方向の2つの信号に分けて位相回
転器27へ出力し、位相回転器27からは第3図
に示す如く予め位相回転器27、増幅器25を基
準片を用いて調整することにより、リフトオフ量
の振幅をY軸方向信号VYとして、また予め発振
器21の周波数を調整してクラツド材P2の肉厚
変化によるインピーダンス変化をX軸方向信号
VXとして表すように設定してある。
The synchronous detection circuit 26 analyzes the phase of the input signal and
The signal is divided into two signals in the axial direction and the Y-axis direction and output to the phase rotator 27, and from the phase rotator 27, the phase rotator 27 and the amplifier 25 are adjusted in advance using a reference piece as shown in FIG. By adjusting the frequency of the oscillator 21 in advance, the amplitude of the lift-off amount is used as a Y-axis signal V
It is set to be expressed as V X.

位相回転器27のX,Y軸方向の各信号はA/
D変換器28にてデイジタル信号に変換され、中
央制御装置30へ出力される。中央制御装置30
は超音波肉厚測定系Aからの入力に基づいてクラ
ツド管Pの全肉厚Dを算出し、また渦電流肉厚測
定系Bからの入力に基づいてクラツド管Pにおけ
るクラツド材P2の肉厚DP2を算出し、全肉厚Dか
らクラツド材P2の肉厚DP2を減算して母材P1の肉
厚DP1を算出し、これらをD/A変換器32を通
じてアナログ信号として図示しないチヤートにデ
ータ出力することとなる。
Each signal in the X and Y axis directions of the phase rotator 27 is A/
It is converted into a digital signal by the D converter 28 and output to the central control device 30. Central control device 30
calculates the total wall thickness D of the cladding pipe P based on the input from the ultrasonic wall thickness measurement system A, and calculates the total wall thickness D of the cladding material P 2 in the cladding pipe P based on the input from the eddy current wall thickness measurement system B. The thickness D P2 is calculated, and the wall thickness D P2 of the clad material P 2 is subtracted from the total wall thickness D to calculate the wall thickness D P1 of the base material P 1 , and these are sent as an analog signal through the D/A converter 32. Data will be output to a chart (not shown).

中央制御装置30により演算過程の概略を示す
と次のとおりである。
An outline of the calculation process performed by the central controller 30 is as follows.

クラツド管Pの全肉厚Dは第2図ロに示す如く
反射波S,B1間の時間tと伝播媒質中の音速と
の積として求められる。またクラツド管Pにおけ
るクラツド材P2の肉厚DP2は第3図にしめされる
信号VXに相応する値dと、リフトオフ補正量Δd
との和として下記(1)式の如く表される。
The total wall thickness D of the cladding tube P is determined as the product of the time t between the reflected waves S and B1 and the speed of sound in the propagation medium, as shown in FIG. 2B. Also, the wall thickness D P2 of the cladding material P 2 in the cladding pipe P is determined by the value d corresponding to the signal V
It is expressed as the sum of the equation (1) below.

DP2=d+Δd ……(1) いま厚さdと信号VXとの換算式を下記(2)式の
如く表すとすると d=AVX 2+BVX+C ……(2) 但しA,B,C……係数 補正量Δdは厚さdの値の範囲で夫々異なり、
次の如く定められる。
D P2 = d + Δd ... (1) Now, if we express the conversion formula between thickness d and signal V X as shown in equation (2) below, d = AV X 2 + BV C...Coefficient The correction amount Δd varies depending on the range of the thickness d,
It is defined as follows.

第4図はリフトオフ量と、補正値との関係を異
なるクラツド厚さについて夫々示したグラフであ
り、横軸にリフトオフ量を、また縦軸に補正値を
採つて示してある。
FIG. 4 is a graph showing the relationship between the lift-off amount and the correction value for different cladding thicknesses, with the horizontal axis representing the lift-off amount and the vertical axis representing the correction value.

このグラフから明らかなように、基準肉厚に対
し、これよりも測定対象物の肉厚が小さくなると
補正値は大きく、逆に測定対象物の肉厚が大きく
なると補正値は小さくなる関係にあることが解
る。従つて測定対象物の肉厚をd1〜d2,d2〜d3
……do-1〜doの如くに分けて夫々の領域において
下式に示す如き補正値Δd1,Δd2……Δdnを求め、
リフトオフ補正を行えばよいこととなる。
As is clear from this graph, the correction value increases when the thickness of the object to be measured is smaller than the reference thickness, and conversely, the correction value decreases as the thickness of the object to be measured increases. I understand. Therefore, the wall thickness of the object to be measured is d 1 - d 2 , d 2 - d 3 ,
...Divide it into d o-1 ~ d o and find the correction values Δd 1 , Δd 2 ... Δd n as shown in the formula below in each region,
All that is required is to perform lift-off correction.

即ち d1≦d<d2では Δd1=A1VY 2+B1VY+C1 d2≦d<d3では Δd2=A2VY 2+B2VY+C2 〓 〓 〓 do-1≦d<doではΔdn=AnVY 2+BnVY+Cn なお、本実施例では給水管2bの外周に第2の
コイル5を設け、肉厚測定用の第1のコイル4の
水温による温度変化に伴うインピーダンス変化を
補正するようにしてあるが、これに替えて水温を
一定範囲内に制御し、第2のコイル5を省略し、
ブリツジ回路24の相隣する2辺のうち第2のコ
イル5に相当する部分に第1のコイル4と同一の
インピーダンスを持つ素子を接続してもよい。ま
た、水温変化が無視できる場合は、水温制御をも
省略することができる。更に、本実施例ではフリ
ツプフロツプ回路31とゲート回路12,22と
により超音波肉厚測定系と渦電流肉厚測定系とを
交互に切換えて測定するようにしてあるが、両測
定系の測定周波数が大きく異なつたり、渦電流肉
厚測定系で得られる信号が大きく、両測定系の相
互干渉が発生しないときはこれらの回路を省略
し、常時両測定系で測定するようにしてもよい。
That is, when d 1 ≦ d < d 2 , Δd 1 = A 1 V Y 2 + B 1 V Y + C 1 d 2 ≦ d < d 3 , Δ d 2 = A 2 V Y 2 + B 2 V Y + C 2 〓 〓 〓 d o -1 ≦d<d o , Δd n =A n V Y 2 +B n V Y +C nIn addition, in this embodiment, the second coil 5 is provided around the outer periphery of the water supply pipe 2b, and the first coil for wall thickness measurement is The impedance change caused by the temperature change of the coil 4 is corrected, but instead of this, the water temperature is controlled within a certain range, and the second coil 5 is omitted.
An element having the same impedance as the first coil 4 may be connected to a portion of the two adjacent sides of the bridge circuit 24 corresponding to the second coil 5. Moreover, if the water temperature change can be ignored, water temperature control can also be omitted. Furthermore, in this embodiment, the flip-flop circuit 31 and the gate circuits 12 and 22 are used to alternately switch between the ultrasonic wall thickness measurement system and the eddy current wall thickness measurement system. If the eddy current wall thickness measurement system has a large difference or the signal obtained by the eddy current wall thickness measurement system is large and mutual interference between the two measurement systems does not occur, these circuits may be omitted and measurements may be always performed using both measurement systems.

〔効果〕〔effect〕

以上の如き本発明装置にあつては、内部に水室
を有し、先端に前記水室に供給される水を被測定
点表面に向けて噴射するノズルを有するハウジン
グ内に、前記ノズルと同心状にその外周に配設さ
れ、超音波肉厚測定系のプローブによる被測定点
と同一の被測定点表面に対し、これと直交する向
きに磁界を形成する渦電流肉厚測定系のコイルを
設けてあるから、同一被測定点におけるクラツド
材、母材夫々の肉厚及び全肉厚を同時に測定する
ことが出来、また両測定系相互の影響を排除出来
て測定精度の大幅な向上が図れ、更に測定ヘツド
自体も小型コンパクト化出来る等、本発明は優れ
た効果を奏するものである。
In the device of the present invention as described above, the housing has a water chamber inside and a nozzle at the tip of which injects the water supplied to the water chamber toward the surface of the point to be measured. The coil of the eddy current wall thickness measurement system is arranged around the outer periphery of the eddy current wall thickness measurement system and forms a magnetic field in a direction perpendicular to the surface of the same point to be measured as the point to be measured by the probe of the ultrasonic wall thickness measurement system. Because of this, it is possible to simultaneously measure the wall thickness of the cladding material and the base material, as well as the total wall thickness, at the same measurement point, and the mutual influence of both measurement systems can be eliminated, greatly improving measurement accuracy. Furthermore, the present invention has excellent effects such as being able to make the measuring head itself smaller and more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の測定ヘツド部と共に示す
測定系のブロツク図、第2図は超音波測定系によ
る全肉厚測定の説明図、第3図はリフトオフ量と
クラツド材肉厚の変化による出力信号を位相解析
した態様を示す説明図、第4図はリフトオフ量と
補正値との関係を示す説明図である。 1……測定ヘツド、2……ハウジング、2a…
…水室、3……超音波発受信器、4……第1のコ
イル、5……第2のコイル、15……比較器、2
6……同期検波回路、27……位相回転器、30
……中央制御装置、P……クラツド管、P1……
母材、P2……クラツド材、A……超音波肉厚測
定系、B……渦電流肉厚測定系。
Fig. 1 is a block diagram of the measurement system shown together with the measurement head of the device of the present invention, Fig. 2 is an explanatory diagram of total wall thickness measurement using an ultrasonic measurement system, and Fig. 3 shows changes in lift-off amount and cladding material thickness. FIG. 4 is an explanatory diagram showing a mode in which the phase of the output signal is analyzed, and FIG. 4 is an explanatory diagram showing the relationship between the lift-off amount and the correction value. 1...Measuring head, 2...Housing, 2a...
...Water chamber, 3...Ultrasonic transmitter/receiver, 4...First coil, 5...Second coil, 15...Comparator, 2
6... Synchronous detection circuit, 27... Phase rotator, 30
... Central control unit, P ... Clad tube, P 1 ...
Base material, P 2 ... clad material, A ... ultrasonic wall thickness measurement system, B ... eddy current wall thickness measurement system.

Claims (1)

【特許請求の範囲】[Claims] 1 クラツド材の肉厚と母材の肉厚とを加えた全
肉厚を測定する超音波肉厚測定系と、クラツド材
の肉厚を測定する渦電流肉厚測定系とを具備する
肉厚測定装置において、内部に水室を有し、先端
に前記水室に供給される水を被測定点表面に向け
て噴射するノズルを有するハウジングと、該ハウ
ジングの基端側に設けられ、前記水室中の水及び
ノズルから噴射される水流を通じて被測定点との
間で、その伝播方向が被測定点表面と直交する向
きの超音波を送受信する超音波肉厚測定系のプロ
ーブと、前記ハウジング内であつてその先端に設
けたノズルと同心状にその外周に配設され、前記
プローブによる被測定点と同一の被測定点表面に
対し、これと直交する向きに磁界を形成する渦電
流肉厚測定系のコイルとを具備する測定ヘツド部
を、クラツド材の表面と間隔を隔てて対向配置し
たことを特徴とする肉厚測定装置。
1 A wall thickness system equipped with an ultrasonic wall thickness measurement system that measures the total wall thickness including the wall thickness of the clad material and the wall thickness of the base material, and an eddy current wall thickness measurement system that measures the wall thickness of the clad material. The measuring device includes a housing that has a water chamber inside and has a nozzle at its tip that injects the water supplied to the water chamber toward the surface of the point to be measured; A probe of an ultrasonic wall thickness measurement system that transmits and receives ultrasonic waves whose propagation direction is orthogonal to the surface of the point to be measured between the probe and the point to be measured through water in a room and a water stream jetted from a nozzle, and the housing. An eddy current layer is arranged on the outer periphery of the nozzle concentrically with the nozzle provided at the tip of the nozzle, and forms a magnetic field in a direction perpendicular to the surface of the same point to be measured as the point to be measured by the probe. 1. A wall thickness measuring device characterized in that a measuring head portion including a thickness measuring coil is disposed facing the surface of a cladding material with a gap therebetween.
JP22113188A 1988-09-02 1988-09-02 Thickness measuring apparatus Granted JPH0267909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22113188A JPH0267909A (en) 1988-09-02 1988-09-02 Thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22113188A JPH0267909A (en) 1988-09-02 1988-09-02 Thickness measuring apparatus

Publications (2)

Publication Number Publication Date
JPH0267909A JPH0267909A (en) 1990-03-07
JPH0563722B2 true JPH0563722B2 (en) 1993-09-13

Family

ID=16761941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22113188A Granted JPH0267909A (en) 1988-09-02 1988-09-02 Thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0267909A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113358A (en) * 1990-03-28 1992-05-12 Barber-Colman Company Web caliper measuring system
EP1244907A1 (en) * 1999-12-23 2002-10-02 KLA-Tencor Corporation In-situ metalization monitoring using eddy current measurements and optical measurements

Also Published As

Publication number Publication date
JPH0267909A (en) 1990-03-07

Similar Documents

Publication Publication Date Title
US5796009A (en) Method for measuring in a fluid with the aid of sing-around technique
JPS6239885B2 (en)
JP3129563B2 (en) Ultrasonic measurement method and device
US5349860A (en) Apparatus for measuring the thickness of clad material
CN109540266B (en) Magnetostrictive liquid level meter and liquid level measurement method
JPH0563722B2 (en)
US4285053A (en) Acoustic method and apparatus for measuring micron and submicron distances
JPH1048009A (en) Ultrasound temperature current meter
JP3117372B2 (en) Ultrasonic distance measuring device
JP2008185441A (en) Ultrasonic flowmeter
JPH03167418A (en) Clad-thickness measuring apparatus
JPH0334562B2 (en)
JP2840656B2 (en) Peak detection type ultrasonic thickness gauge
JPH0236162B2 (en)
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
JPH0627804B2 (en) Distance measurement method using ultrasonic measuring device
JPH02183117A (en) Displacement detector
JP4287539B2 (en) Ultrasonic flow meter
JPH07318436A (en) Temperature distribution measuring method for high temperature object and ultrasonic wave sensor therefor
JPH0119086B2 (en)
RU2034236C1 (en) Ultrasound echo thickness gage
JP2004294302A (en) Wall thickness measuring method and steel pipe manufacturing method using this method
JPS636619A (en) Coordinate input device
JPS58211667A (en) Ultrasonic flowmeter
JP5398377B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080913

EXPY Cancellation because of completion of term