JPH0563534B2 - - Google Patents
Info
- Publication number
- JPH0563534B2 JPH0563534B2 JP61240466A JP24046686A JPH0563534B2 JP H0563534 B2 JPH0563534 B2 JP H0563534B2 JP 61240466 A JP61240466 A JP 61240466A JP 24046686 A JP24046686 A JP 24046686A JP H0563534 B2 JPH0563534 B2 JP H0563534B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- mos
- weight
- nbse
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 102
- 239000002131 composite material Substances 0.000 claims description 73
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 11
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 9
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 claims description 8
- CXRFFSKFQFGBOT-UHFFFAOYSA-N bis(selanylidene)niobium Chemical compound [Se]=[Nb]=[Se] CXRFFSKFQFGBOT-UHFFFAOYSA-N 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 description 91
- 238000006467 substitution reaction Methods 0.000 description 11
- 239000000314 lubricant Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 101100069231 Caenorhabditis elegans gkow-1 gene Proteins 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 229910017944 Ag—Cu Inorganic materials 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Motor Or Generator Current Collectors (AREA)
Description
〔産業上の利用分野〕
この発明は、人工衛星、宇宙機器、真空機器な
ど超高真空中において、相対的に回転、摺動して
電力や電気信号などを伝達するスリツプリングに
用いられる電機用銀系複合ブラシ材料に関するも
のである。
〔従来の技術〕
スリツプリングに要求される特性は、第1に電
力や電気信号を確実に伝達することであり、第2
に長時間安定に作動することである。第1の特性
を満足するためにはブラシ材とリング材の間の接
触抵抗や電気ノイズが小さいことが、第2のそれ
には摩擦抵抗が低く安定であることとブラシ材お
よびリング材の摩耗が小さいことが必要となる。
これらの要求を満たすため従来から導電性およ
び潤滑性に優れた炭素や黒鉛などに導電性を高め
る金属粉末(銀や銅など。以下、Ag、Cuと記
す)を添加した金属黒鉛質ブラシ材が提供されて
きた。これらのブラシ材は通常の使用状態では含
有黒鉛の潤滑性が保持されているが、高温(150
℃以上)、低湿度(2g/m3以下)、真空(10-2torr
以下)状態などでは吸着する水分の不足によつて
粉塵摩耗を起こすことが公知であり、この対策と
して黒鉛と類似の層状構造を持つ固体潤滑剤など
を添加することが提案されている。たとえば、特
公昭36−914号公報には金属と黒鉛の混合粉末に
二硫化モリブデン(以下MoS2と記す)粉末を添
加焼結すること、特開昭58−51483号公報には
MoS2、二硫化タングステン(以下WS2と記す)
のいずれか一種と窒化ホウ素を添加した金属黒鉛
質ブラシ材などの提案がなされている。さらに他
の固体潤滑剤の応用例としては、特開昭53−
58910号公報に示されているものに代表されるCu
系合金粉末とMoS2粉末を混合、大気中ホツトプ
レスまたは成形焼結する複合ブラシ材などが発表
されている。しかしながら、超高真空(10-2torr
以下)で電力や電気信号を伝達する能力をもつブ
ラシ材料は従来から国内ではほとんど発表されて
いない。
一方、国外とくに米国では宇宙開発に伴なう人
工衛星、宇宙船、宇宙機器などの開発過程におい
て超高真空中で使用されるスリツプリングが、
NASAの研究所を中心にその周辺の航空機産業
または人工衛星とその部品の製造会社などで研究
されており、評価試験結果なども一部発表されて
いる。
現在、通信衛星や放送衛星、気象衛星などに搭
載される宇宙機器には超高真空中において数年か
ら10年もの長期に渡つてメンテナンスフリーで電
力や電気信号を伝達することが可能なスリツプリ
ングが必要とされている。これらの要求を満足す
るブラシ材としては、導電率の最も高い銀粉をマ
トリクスとして、これに真空中で潤滑性に優れた
固体潤滑剤を混合添加し、成形焼結した複合材な
どが発表されている。たとえば、LMSC
(Lockeed Missiles & Company)では、
Ag85重量%、MoS215重量%の複合焼結材をブラ
シ材とし、Ag90重量%、Cu10重量%の合金をリ
ング材として超高真空中で評価した摺動特性(摩
耗量、接触抵抗、電気ノイズ)などを発表してい
る。
しかしながら、固体潤滑剤を単に添加すずだけ
では必ずしも摺動特性は改善されず、Ag−固体
潤滑剤の複合焼結材においても固体潤滑剤の添加
量、添加法および複合焼結材の作製法などによつ
てその特性は著しく異なつている。たとえば、J.
C.Andersonは、MoS2を5〜15重量%の範囲で混
合添加しホツトプレス法で作製したAg−MoS2複
合ブラシ材の摺動特性について、ブラシ材の摩耗
はMoS2量が増すにつれて減少するが、電気ノイ
ズはMoS2量が増すにつれて増加すると報告して
いる。一方、コールドプレス法で作製したAg−
MoS2複合ブラシ材においては、MoS2量が多い
方が電気ノイズは小さいが摩耗が多いとも述べて
いる。
したがつて、Ag−固体潤滑剤の複合焼結材の
摺動特性には、固体潤滑剤の添加量、添加法およ
び複合焼結材の作製法などが大きく関連している
ことがわかる。
〔発明が解決しようとする問題点〕
従来例として、従来の技術にもとづき、Ag粉
にMoS2粉を添加した複合焼結ブラシ材をMoS25
〜25重量%の範囲で試作した。表のNo.15〜19に試
作した複合焼結ブラシ材の配合比、密度、密度比
などの特性を示す。
そして、このAg粉にMoS2粉を添加した複合ブ
ラシ材の摺動特性をピン/円板型摩擦試験機およ
びスリツプリングモデル機により評価した。第1
図のA,B,Cの曲線1の各々に、Ag粉にMoS2
粉を15重量%添加したときの複合ブラシ材の通電
電流密度(A/cm2)に対する接触抵抗(mΩ)変
化、電気ノイズ(mV)変化および比摩耗量
(mm2/mm・N)変化を示す。
それによると、電流密度10(A/cm2)程度の低
電流通電領域における接触抵抗、電気ノイズおよ
びブラシ材の比摩耗量は、いづれも小さくおおむ
ね良好であつた。また、摩擦係数も低く、相手材
(AgまたはAg−Cu)の摺動面にはMoS2の付着
層が形成されており、この移着層とブラシ材との
間で良好な潤滑が保持されているものと考えられ
る。しかし、接触抵抗に通電量を増すにつれて
徐々に増加し、電流密度83(A/cm2)では大きな
値を示し好ましくない。通電量を増すことによつ
て絞り抵抗が増加してしまうことが悪影響をおよ
ぼしていると考えられる。しかも、固有抵抗が大
きいMoS2(固有抵抗851Ωcm)の移着膜などを介
して電流を伝達するため、摺動面の状態にもよる
が絞り抵抗の増加が顕著に表れたものと考えられ
る。電気ノイズに関しても、通電量を増すにつれ
て増加し、電流密度83(A/cm2)では電流密度10
(A/cm2)程度の通電時に比べきわめて大きくな
つている。ブラシ材の比摩耗量も、通電量を増す
と大きくなり好ましくない。比摩耗量の増加は、
通電量を増したことにより接触抵抗や電気ノイズ
が大きくなり、電気的な摩耗が増加したためであ
ると考えられる。
なお、Ag粉にMoS2粉を5〜25重量%の範囲で
添加した複合ブラシ材に関しても通電量と接触抵
抗変化、電気ノイズ変化およびブラシ材の比摩耗
量変化の関係を調べたところ、上で示したAg粉
にMoS2粉を15重量%添加した複合ブラシ材と同
様な傾向を示した。
以上より、Ag粉にMoS2粉を5〜25重量%の範
囲で添加した複合ブラシ材においては、低電流通
電時には接触抵抗、電気ノイズ、ブラシ材の比摩
耗量および摩擦係数はいづれも小さく良好である
ものの、通電量を増すとMoS2の固有抵抗が大き
いため絞り抵抗の増加が顕著となり、接触抵抗お
よび電気ノイズが大きくなり、さらには電気的な
摩耗が増加してしまうことがわかる。すなわち、
Ag粉にMoS2粉の固体潤滑剤を単独添加した場合
のAg系複合ブラシ材においては、MoS2の固有抵
抗が大きいことなどのために、低電流から大電流
までの広い範囲の通電領域において、接触抵抗、
電気ノイズ、摩耗特性、摩擦特性の摺動特性を同
時にすべて満足することはできなかつた。
この発明は、かかる問題点を解決するためにな
されたもので、低電流から大電流までの広い範囲
の通電領域において摩擦特性および摩耗特性が良
好で、しかも導電性に優れ、接触抵抗および電気
ノイズの少ない電機用複合ブラシ材料を効率良く
得ることを目的とする。
〔問題点を解決するための手段〕
この発明の電機用複合ブラシ材料は、二硫化モ
リブデンおよび二硫化タングステンの内の少なく
とも1種とセレン化ニオブを含有し、残部銀で構
成されるもので、具体例には、
式:Ag(100-a-b)−(M)a−(NbSe2)b
{式中Mは、二硫化モリブデン(MoS2)および
二硫化タングステン(WS2)の内の少なくとも
一種を表わし、Agは銀、NbSe2はセレン化ニ
オブである。
a,bは重量濃度であり、4≦a≦24、1≦b
≦10および5≦a+b≦25の関係を満足する数
を表わす。}
で示される電機用複合ブラシ材料である。
〔作用〕
この発明における二硫化モリブデンおよび二硫
化タングステンの内の少なくとも一種は、摩擦係
数や比摩耗量を低減し潤滑状態を良好に推移させ
るために添加したものである。セレン化ニオブ
は、固有抵抗5.35×10-4Ωcmと二硫化モリブデン
や二硫化タングステンに比べて著しく小さくかつ
二硫化モリブデンと同様な層状構造をしているこ
とから、主に低電流から大電流までの広い範囲の
通電領域に渡つて接触抵抗や電気ノイズを低減す
るために添加したものである。さらに、二硫化モ
リブデンと二硫化タングステンの内の少なくとも
一種とセレン化ニオブを併用添加することによ
り、電気的な摩耗を低減させるとともに、複合ブ
ラシ材の結合を充分にし、機械的強度を高め、耐
摩耗性を向上させるために添加したものである。
又、上記特許請求の範囲に記載された、a,bお
よびa+bのものを用いることにより、広い範囲
の通電領域にわたつて、上記特性が良好となり、
効率良く特性の良好な複合ブラシ材料を得ること
ができる。
〔実施例〕
この発明に係わる二硫化モリブデン(MoS2)
および二硫化タングステン(WS2)の内の少なく
とも一種の添加量は、4〜24重量%が好ましい。
4重量%未満では摩擦特性と耐摩耗性が悪化し、
24重量%を超えると接触抵抗と電気ノイズがとく
に大電流通電領域において大きくなつてしまう。
また、これらの固体潤滑剤の粒度はとくに定める
ものではないが、均一な分散状態を得るために平
均粒径30μm以下、好ましくは1〜20μmのものを
用いることが望ましい。
セレン化ニオブ(NbSe2)の添加量は、1〜10
重量%が好ましい。1重量%未満では接触抵抗や
電気ノイズおよび比摩耗量の低減の効果があまり
見られず、10重量%を超えるとMoS2との添加比
率にもよるが大電流通電領域における接触抵抗や
全通電領域における電気ノイズおよび比摩耗量が
大きくなつてしまう。なお、粒度は、可及的に小
さい方が良いが、配合、混合時などにおける粉末
の取扱いおよびMoS2やWS2の周辺に固有抵抗の
小さいNbSe2を効率よく分散させ所期の目標を達
成することを考えると、平均粒径0.5〜5μmであ
ることが望ましい。
なお、MoS2およびWS2の内の少なくとも一種
とNbSe2の合計添加量は、5〜25重量%が好まし
い。5重量%未満では摩擦特性、摩耗特性および
電気ノイズ特性が悪化し、25重量%を超えると大
電流通電領域における接触抵抗や電気ノイズが大
きくなり、耐摩耗性も悪化する。
また、上記材料により電機用複合ブラシ材料を
製造するには、公知の方法、たとえば原料粉を混
合成形した後焼結する方法やホツトプレスによる
焼結方法などを用いることができるが、その焼結
雰囲気には原料粉の酸化分解を防止するため不活
性雰囲気あるいは真空雰囲気を用いるようにする
ことが望ましい。
以下実施例によりこの発明を具体的に説明する
が、これに限定されない。なお、表のNo.1〜14に
はこの発明の実施例について、表のNo.20〜26には
比較例について、試作した複合焼結ブラシ材の配
合比、密度、密度比などの特性を示す。
実施例 1
平均粒径10μmのMoS2粉末と平均粒径3μmの
MoS2粉末を適当な割合で湿式混合し、ついで平
均粒径5μmのAg粉末と重量比1〜25%の範囲で
各種混合粉末を同じく湿式法で作用した。これら
の混合粉末を乾燥後電気黒鉛質のカーボン型に入
れ真空ホツトプレス法によつて複合焼結ブラシ材
を試作した。
ホツトプレスは、真空排気(10-5torr台)後、
加熱昇温し800℃で約15分間保持した後350Kg/cm2
まで加圧、そのままの状態で約45分間保持して行
なつた。以後炉冷し500℃で加圧を解除、さらに
常温まで真空中炉冷し複合ブラシ材を得た。これ
らの試作品のうち一部の試料の配合比、密度、密
度比などの特性を表に示す。
これらの複合ブラシ材を2mm×6mm×3mmの直
方体に加工し、相手材に純AgおよびAg−Cuリン
グを選定し、スリツプリングモデルの試験装置を
用いて高真空中(10-7torr台)において接触荷重
1N、摺動速度75mm/s、通電電流密度0〜83
(A/cm2)の条件で摺動試験を行なつた。ブラシ
材とリング材の接触面積は12mm2である。そして真
空中通電状態において摩擦係数、比摩耗量、接触
抵抗、電気ノイズなどの摺動特性を調べた。
その結果を、第1図のA,B,Cの各々に、
Ag粉にMoS2粉とNbSe2粉を合計で15重量%添加
したときの複合ブラシ材の通電電流密度に対する
接触抵抗(mΩ)変化、電気ノイズ(mV)変化
および比摩耗量(mm2/mm・N)変化を示す。第1
図のA,B,Cの曲線2は、Ag−15重量%MoS2
複合ブラシ材のMoS2粉を1重量%だけNbSe2粉
で置換した複合ブラシ材、すなわちAg−14重量
%MoS2−1重量%NbSe2複合ブラシ材の通電電
流密度に対する接触抵抗(mΩ)変化、電気ノイ
ズ(mV)変化および比摩耗量(mm2/mm・N)変
化を示す。同様に第1図のA,B,Cの曲線3
は、Ag−12.5重量%MoS2−2.5重量%NbSe2複合
ブラシ材の通電電流密度に対する接触抵抗(m
Ω)変化、電気ノイズ(mV)変化、比摩耗量
(mm2/mm・N)変化を示し、第1図のA,B,C
の曲線4は、Ag−5重量%MoS2−10重量%
NbSe2複合ブラシ材の通電電流密度に対する接触
抵抗(mΩ)変化、電気ノイズ(mV)変化、比
摩耗量(mm2/mm・N)変化を示す。
その結果を実施例と同様にして得られた上記
MoS2粉をAg粉に単独添加したAg−15重量%
MoS2複合ブラシ材と比較検討すると、接触抵抗
については、第1図のAの曲線1,2,3,4に
示すように、NbSe2を1重量%置換添加しただけ
でも全通電領域において減少している。しかし、
NbSe2を10重量%置換添加した場合は、低電流通
電領域においては接触抵抗は著しく減少している
ものの、大電流通電領域においては接触抵抗が増
加する傾向を示している。
次に、電気ノイズについては、第1図のBの曲
線1,2,3,4に示すように、NbSe2を1重量
%置換添加および2.5重量%置換添加した複合ブ
ラシ材は、MoS2を単独添加した複合ブラシ材と
比較して全通電領域において明らかに小さな値を
示している。また、NbSe2を10重量%置換添加し
た複合ブラシ材は、MoS2を単独添加した複合ブ
ラシ材と比較して電気ノイズは低電流通電領域で
はやや大きいものの大電流通電領域ではかえつて
小さな値を示している。
また、比摩耗量については、第1図のCの曲線
1,2,3,4に示すように、NbSe2を1重量%
置換添加、2.5重量%置換添加および10重量%置
換添加した複合ブラシ材は、MoS2を単独添加し
た複合ブラシ材と比較して全通電領域において小
さくなつている。
第2図のA,B,Cの各々に、Ag粉にMoS2粉
とNbSe2粉を合計で15重量%添加したときの複合
ブラシ材の通電電流密度83(A/cm2)における
NbSe2粉の置換添加量かつMoS2粉末の添加量に
対する接触抵抗(mΩ)変化、電気ノイズ
(mV)変化および比摩耗量(mm2/mm・N)変化
を示す。接触抵抗については、第2図のAに示す
ように、MoS2とNbSe2を併合添加したこの発明
の電機用複合ブラシ材料は、NbSe2置換添加量1
〜15重量%の範囲で、MoS2単独添加の場合と比
較して明らかに小さな値を示しているが、10重量
%を超えると接触抵抗の増加が避けれないため、
1〜10重量%の置換添加が好ましい。
電気ノイズについては、第2図のBに示すよう
に、MoS2とNbSe2を併合添加したこの発明の電
機用複合ブラシ材料は、NbSe2置換添加量1〜10
重量%の範囲で著しく減少している。NbSe2置換
添加量が10重量%を超えるとMoS2の添加量が少
なくなるため摩擦特性が悪化し、電気ノイズも増
加してしまう。
比摩耗量については、第2図のCに示すよう
に、MoS2とNbSe2を併合添加したこの発明の電
機用複合ブラシ材料は、NbSe2置換添加量1〜10
重量%の範囲で低減されている。NbSe2置換添加
量1重量%未満では併合添加の効果があらわれ
ず、置換添加量が10重量%を超えると電気ノイズ
が増加することに伴い電気的な摩耗が増え、比摩
耗量が大きくなり好ましくない。
実施例 2
上記実施例1と同様にして試作したAg粉に
MoS2粉とNbSe2粉を合計で5重量%添加した複
合ブラシ材の通電電流密度に対する接触抵抗(m
Ω)変化、電気ノイズ(mV)変化および比摩耗
量(mm2/mm・N)変化を、上記実施例1と同様に
して評価した。Ag粉にMoS2粉とNbSe2粉を合計
で5重量%添加した複合ブラシ材においても、上
記実施例1で示したAg粉にMoS2粉とNbSe2粉を
合計で15重量%添加した複合ブラシ材と同様に通
電量を増すと接触抵抗、電気ノイズおよび比摩耗
量は増加するものの、MoS2粉をNbSe2粉で置換
添加すると接触抵抗、電気ノイズおよび比摩耗量
は低減された。
第3図のA,B,Cの各々に、Ag粉にMoS2粉
とNbSe2を合計で5重量%添加したときの複合ブ
ラシ材の通電電流密度83(A/cm2)における
NbSe2粉の置換添加量かつMoS2粉の添加量に対
する接触抵抗(mΩ)変化、電気ノイズ(mV)
変化および比摩耗量(mm2/mm・N)変化を示す。
接触抵抗については、第3図のAに示すように、
MoS2とNbSe2を併合添加したこの発明の電機用
複合ブラシ材料は、NbSe2置換添加量が1重量%
以上で、MoS2単独添加の場合と比較して小さな
値を示している。
電気ノイズについては、第3図のBに示すよう
に、MoS2とNbSe2を併合添加したこの発明の電
機用複合ブラシ材料は、NbSe2置換添加量1重量
%でMoS2単独添加の場合と比較して減少してい
る。しかし、MoS2の添加量が4重量%未満にな
ると摩擦特性が悪化することに伴ない電気ノイズ
が増加している。
比摩耗量については、第3図のCに示すよう
に、MoS2とNbSe2を併合添加したこの発明の電
機用複合ブラシ材料は、NbSe2置換添加量1〜4
重量%の範囲でMoS2単独添加の場合と比較して
減少しているが、4重量%を超えるとMoS2添加
量があまりにも少ないため摩擦特性の悪化および
電気ノイズの増加に伴ない比摩耗量が大きくなつ
ている。
すなわち、Ag粉にMoS2粉とNbSe2粉を合計で
5重量%添加したこの発明の電機用複合ブラシ材
料においては、MoS2粉を4重量%、NbSe2粉を
1重量%添加した複合ブラシ材が、全通電領域に
おいてMoS2単独添加の場合と比較して接触抵
抗、電気ノイズ、比摩耗量の特性がすべて良好で
ある。
実施例 3
上記実施例1と同様にして試作したAg粉に
MoS2粉とNbSe粉を合計で25重量%添加した複
合ブラシ材の通電電流密度に対する接触抵抗(m
Ω)変化、電気ノイズ(mV)変化および比摩耗
量(mm2/mm・N)変化を、上記実施例1と同様に
して評価した。Ag粉にMoS2粉とNbSe2粉を合計
で25重量%添加した複合ブラシ材においても、上
記実施例1で示したAg粉にMoS2粉とNbSe2粉を
合計で15重量%添加した複合ブラシ材と同様に通
電量を増すと、接触抵抗、電気ノイズおよび比摩
耗量は増加するものの、MoS2粉をNbSe2粉で置
換添加すると接触抵抗、電気ノイズおよび比摩耗
量は低減された。
第4図のA,B,Cの各々に、Ag粉にMoS2粉
とNbSe2を合計で25重量%添加したときの複合ブ
ラシ材の通電電流密度83(A/cm2)における
NbSe2粉の置換添加量かつMoS2粉の添加量に対
する接触抵抗(mΩ)変化、電気ノイズ(mV)
変化および比摩耗量(mm2/mm・N)変化を示す。
接触抵抗については、第4図のAに示すように、
MoS2とNbSe2を併合添加したこの発明の電機用
複合ブラシ材料は、NbSe2置換添加量が1重量%
以上で、MoS2単独添加の場合と比較して小さな
値を示している。
電気ノイズについては、第4図のBに示すよう
に、MoS2とNbSe2を併合添加したこの発明の電
機用複合ブラシ材料は、NbSe2置換添加量1〜10
重量%の範囲でMoS2単独添加の場合と比較して
減少している。NbSe2置換添加量が10重量%を超
えると摩擦特性が悪化し電気ノイズも増加してい
る。
比摩耗量については、第4図のCに示すよう
に、MoS2とNbSe2を併合添加したこの発明の電
機用複合ブラシ材料は、NbSe2置換添加量1〜20
重量%の範囲でMoS2単独添加の場合と比較して
減少している。しかし、MoS2の添加量が4重量
%未満になると摩擦特性の悪化が著しく、さらに
電気ノイズの増加により電気的な摩耗が増し、比
摩耗量も大きくなつている。
すなわち、Ag粉にMoS2粉とNbSe2粉を合計で
25重量%添加したこの発明の電機用複合ブラシ材
料においては、NbSe2粉を1〜10重量%添加した
複合ブラシ材が、全通電領域においてMoS2単独
添加の場合と比較して接触抵抗、電気ノイズ、比
摩耗量の特性がすべて良好である。
実施例 4
上記実施例1と同様にして試作したAg粉に
MoS2粉を12.5重量%、NbSe2粉を2.5重量%添加
した複合ブラシ材の接触抵抗、電気ノイズおよび
比摩耗量の各特性を、通電電流密度500(A/cm2)
で評価した。その結果、この発明の電機用複合ブ
ラシ材料は、通電電流密度500(A/cm2)において
も、接触抵抗が9(mΩ)、電気ノイズが30
(mV)、比摩耗量が1×10-9(mm2/mm・N)とい
づれも小さく良好である。なお、評価試験装置な
どは上記実施例1と同様である。
また、実施例には示していないが、表に示した
ようにAg粉にMoS2粉とNbSe2粉を合計で5重量
%、15重量%、25重量%添加した以外のもので、
MoS2粉とNbSe2粉の合計添加量が5〜25重量%
でMoS2粉の添加量が4〜24重量%でありかつ
NbSe2粉の添加量が1〜10重量%のもの、および
WS2粉を添加したものも上記実施例と同様な効果
を示す。
また、人工衛星用スリツプリングなどでは地上
試験のために大気中で潤滑性の高い黒鉛を微量添
加(1〜3重量%)したAg系複合ブラシ材を適
用することが公知であるが、この発明の電機用複
合ブラシ材料を適用する場合も同様の処置を施し
て使用してもよい。
[Industrial Application Field] This invention is applicable to electrical equipment used in slip springs that rotate and slide relative to each other in ultra-high vacuum such as artificial satellites, space equipment, vacuum equipment, etc. to transmit power, electrical signals, etc. This invention relates to a silver-based composite brush material. [Prior art] The characteristics required of slip springs are firstly to reliably transmit power and electrical signals, and secondly
It is to operate stably for a long time. In order to satisfy the first characteristic, the contact resistance and electrical noise between the brush material and the ring material must be small.The second characteristic is that the frictional resistance must be low and stable, and the wear of the brush material and the ring material must be low. It needs to be small. To meet these demands, metal-graphite brush materials have traditionally been developed, which are made by adding metal powder (silver, copper, etc., hereinafter referred to as Ag or Cu) to increase conductivity, such as carbon or graphite, which have excellent conductivity and lubricity. has been provided. These brush materials maintain the lubricating properties of the graphite they contain under normal usage conditions, but at high temperatures (150
℃ or higher), low humidity (2g/ m3 or lower), vacuum (10 -2 torr
It is known that dust wear occurs due to a lack of adsorbed moisture in conditions such as (below), and as a countermeasure to this problem, it has been proposed to add a solid lubricant with a layered structure similar to graphite. For example, in Japanese Patent Publication No. 36-914, molybdenum disulfide (hereinafter referred to as MoS 2 ) powder is added and sintered to a mixed powder of metal and graphite, and in Japanese Patent Publication No. 58-51483,
MoS 2 , tungsten disulfide (hereinafter referred to as WS 2 )
Proposals have been made for metal-graphite brush materials containing one of these and boron nitride. Furthermore, as an application example of other solid lubricants,
Cu typified by those shown in Publication No. 58910
Composite brush materials have been announced that are made by mixing MoS 2 alloy powder and MoS 2 powder, hot pressing in the air, or molding and sintering. However, ultra-high vacuum (10 -2 torr
Brush materials that have the ability to transmit power and electrical signals (below) have rarely been announced in Japan. On the other hand, overseas, especially in the United States, slip springs are used in ultra-high vacuum during the development process of artificial satellites, spacecraft, space equipment, etc. associated with space development.
Research is being carried out mainly at NASA research institutes, in the surrounding aircraft industry, and by manufacturers of artificial satellites and their parts, and some evaluation test results have also been published. Currently, space equipment mounted on communication satellites, broadcasting satellites, weather satellites, etc. uses slip springs that can transmit power and electrical signals in ultra-high vacuum for long periods of time ranging from several years to 10 years without maintenance. is needed. As a brush material that satisfies these requirements, a composite material has been announced in which silver powder with the highest conductivity is used as a matrix, a solid lubricant with excellent lubricity is mixed and added to this in a vacuum, and the mixture is formed and sintered. There is. For example, LMSC
(Lockeed Missiles & Company)
The sliding properties (amount of wear, contact resistance, electrical noise), etc. However, simply adding tin to a solid lubricant does not necessarily improve the sliding properties, and even in Ag-solid lubricant composite sintered materials, the amount of solid lubricant added, the method of addition, and the manufacturing method of the composite sintered material, etc. Its characteristics vary significantly depending on the type of material. For example, J.
Regarding the sliding properties of Ag-MoS 2 composite brush material prepared by hot pressing with mixed addition of MoS 2 in the range of 5 to 15% by weight, C. Anderson reported that the wear of the brush material decreased as the amount of MoS 2 increased. reported that the electrical noise increases as the amount of MoS 2 increases. On the other hand, Ag-
Regarding MoS 2 composite brush materials, it is also stated that the higher the amount of MoS 2 , the lower the electrical noise, but the higher the wear. Therefore, it can be seen that the sliding properties of the Ag-solid lubricant composite sintered material are largely related to the amount of solid lubricant added, the method of addition, and the method of manufacturing the composite sintered material. [Problems to be solved by the invention] As a conventional example, based on conventional technology, a composite sintered brush material made by adding MoS 2 powder to Ag powder was made into MoS 2 5
Prototypes were made in the range of ~25% by weight. Nos. 15 to 19 in the table show the properties such as compounding ratio, density, and density ratio of the prototype composite sintered brush materials. The sliding properties of the composite brush material made by adding MoS 2 powder to this Ag powder were evaluated using a pin/disk type friction tester and a slip ring model machine. 1st
In each of curves 1 of A, B, and C in the figure, MoS 2 is added to Ag powder.
Changes in contact resistance (mΩ), electrical noise (mV), and specific wear amount (mm 2 /mm・N) with respect to the current density (A/cm 2 ) of the composite brush material when 15% by weight of powder was added. show. According to the results, contact resistance, electrical noise, and specific wear of the brush material in a low current flow region with a current density of about 10 (A/cm 2 ) were all small and generally good. In addition, the coefficient of friction is low, and an adhesion layer of MoS 2 is formed on the sliding surface of the mating material (Ag or Ag-Cu), and good lubrication is maintained between this transfer layer and the brush material. It is thought that the However, as the amount of current applied to the contact resistance increases, it gradually increases, and at a current density of 83 (A/cm 2 ), it shows a large value, which is not preferable. It is thought that the increase in the aperture resistance due to the increase in the amount of current has an adverse effect. Moreover, because the current is transmitted through a transferred film of MoS 2 (specific resistance: 851 Ωcm), which has a high specific resistance, it is thought that the aperture resistance increases significantly, depending on the condition of the sliding surface. Electrical noise also increases as the amount of current increases, and at a current density of 83 (A/cm 2 ), a current density of 10
(A/cm 2 ) compared to when the current is applied. The specific wear amount of the brush material also increases as the amount of current applied increases, which is not preferable. The increase in specific wear amount is
This is thought to be because contact resistance and electrical noise increased due to the increased amount of current, which increased electrical wear. In addition, when we investigated the relationship between the amount of current applied, changes in contact resistance, changes in electrical noise, and changes in the specific wear amount of the brush material for a composite brush material made by adding MoS 2 powder to Ag powder in a range of 5 to 25% by weight, we found that the above results were obtained. It showed the same tendency as the composite brush material with 15% by weight of MoS 2 powder added to Ag powder shown in . From the above, in the composite brush material made by adding MoS 2 powder to Ag powder in the range of 5 to 25% by weight, the contact resistance, electrical noise, specific wear amount of the brush material, and friction coefficient are all small and good when low current is applied. However, as the amount of current is increased, the specific resistance of MoS 2 is large, so the aperture resistance increases significantly, contact resistance and electrical noise increase, and electrical wear increases. That is,
Ag-based composite brush materials made by adding a solid lubricant of MoS 2 powder to Ag powder only have a high resistance in a wide current carrying range from low current to large current, due to the high specific resistance of MoS 2 . , contact resistance,
It was not possible to simultaneously satisfy the sliding characteristics of electrical noise, wear characteristics, and friction characteristics. This invention was made to solve these problems, and has good friction and wear characteristics in a wide range of current flow ranges from low current to large current, as well as excellent conductivity, reducing contact resistance and electrical noise. The purpose of the present invention is to efficiently obtain a composite brush material for electrical machinery with a small amount of carbon. [Means for Solving the Problems] The composite brush material for electrical machinery of the present invention contains at least one of molybdenum disulfide and tungsten disulfide and niobium selenide, with the balance being silver. Specific examples include the formula: Ag (100-ab) −(M) a −(NbSe 2 ) b {In the formula, M is at least one of molybdenum disulfide (MoS 2 ) and tungsten disulfide (WS 2 ). , where Ag is silver and NbSe 2 is niobium selenide. a, b are weight concentrations, 4≦a≦24, 1≦b
Represents a number that satisfies the relationships of ≦10 and 5≦a+b≦25. } This is a composite brush material for electrical machinery. [Function] At least one of molybdenum disulfide and tungsten disulfide in the present invention is added to reduce the friction coefficient and specific wear amount and maintain a good lubrication state. Niobium selenide has a specific resistance of 5.35×10 -4 Ωcm, which is significantly smaller than molybdenum disulfide and tungsten disulfide, and has a layered structure similar to molybdenum disulfide, so it is mainly used for applications ranging from low current to large current. It is added to reduce contact resistance and electrical noise over a wide current-carrying area. Furthermore, by adding at least one of molybdenum disulfide and tungsten disulfide together with niobium selenide, electrical wear is reduced, the composite brush material is sufficiently bonded, mechanical strength is increased, and durability is increased. It is added to improve wear resistance.
In addition, by using a, b, and a+b as described in the claims above, the above characteristics are good over a wide range of energization range,
A composite brush material with good properties can be obtained efficiently. [Example] Molybdenum disulfide (MoS 2 ) according to this invention
The amount of at least one of tungsten disulfide (WS 2 ) added is preferably 4 to 24% by weight.
If it is less than 4% by weight, the friction properties and wear resistance will deteriorate;
If it exceeds 24% by weight, contact resistance and electrical noise will increase, especially in the region where large currents are applied.
The particle size of these solid lubricants is not particularly limited, but in order to obtain a uniform dispersion state, it is desirable to use particles with an average particle size of 30 μm or less, preferably 1 to 20 μm. The amount of niobium selenide (NbSe 2 ) added is 1 to 10
Weight percent is preferred. If it is less than 1% by weight, there will not be much effect in reducing contact resistance, electrical noise, or specific wear amount, and if it exceeds 10% by weight, the contact resistance in the high current carrying region and the total current carrying amount will decrease, depending on the addition ratio with MoS 2 . The electrical noise and specific wear amount in this area will increase. The particle size should be as small as possible, but it is important to handle the powder during blending and mixing, and to efficiently disperse NbSe 2 , which has low resistivity, around MoS 2 and WS 2 to achieve the desired goal. Considering this, it is desirable that the average particle size is 0.5 to 5 μm. Note that the total amount of at least one of MoS 2 and WS 2 and NbSe 2 added is preferably 5 to 25% by weight. If it is less than 5% by weight, the friction characteristics, wear characteristics, and electrical noise characteristics will deteriorate, and if it exceeds 25% by weight, the contact resistance and electrical noise will increase in the region where large current is applied, and the wear resistance will also deteriorate. In addition, in order to manufacture a composite brush material for electrical machinery using the above materials, known methods such as a method of mixing raw material powder and sintering after molding, or a method of sintering using a hot press, etc. can be used, but the sintering atmosphere is In order to prevent oxidative decomposition of the raw material powder, it is desirable to use an inert atmosphere or a vacuum atmosphere. The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto. In addition, Nos. 1 to 14 of the table show examples of the present invention, and Nos. 20 to 26 of the table show properties such as compounding ratio, density, density ratio, etc. of the prototype composite sintered brush materials for comparative examples. show. Example 1 MoS 2 powder with an average particle size of 10 μm and an average particle size of 3 μm
MoS 2 powder was wet-mixed in an appropriate ratio, and then various mixed powders were mixed with Ag powder having an average particle size of 5 μm at a weight ratio of 1 to 25% by the same wet method. After drying these mixed powders, they were put into an electrographite carbon mold and a composite sintered brush material was prototyped using a vacuum hot press method. After the hot press is evacuated (10 -5 torr level),
350Kg/cm 2 after heating and holding at 800℃ for about 15 minutes
The test was carried out by applying pressure to 100% and keeping it in that state for about 45 minutes. Thereafter, the material was cooled in a furnace, the pressure was released at 500°C, and the material was further cooled in a vacuum in a furnace to room temperature to obtain a composite brush material. The table shows the characteristics of some of these prototypes, such as the blending ratio, density, and density ratio. These composite brush materials were processed into a rectangular parallelepiped of 2 mm x 6 mm x 3 mm, pure Ag and Ag-Cu rings were selected as the mating materials, and they were tested in high vacuum (10 -7 torr level) using a slip ring model testing device. Contact load at
1N, sliding speed 75mm/s, current density 0 to 83
A sliding test was conducted under the condition of (A/cm 2 ). The contact area between the brush material and the ring material is 12 mm2 . Then, the sliding characteristics such as friction coefficient, specific wear amount, contact resistance, and electrical noise were investigated in vacuum and energized state. The results are shown in each of A, B, and C in Figure 1.
Contact resistance ( mΩ ) change, electrical noise ( mV ) change, and specific wear amount (mm 2 / mm・N) Shows change. 1st
Curves 2 of A, B, and C in the figure are Ag-15% by weight MoS 2
Contact resistance (mΩ) change with respect to current density of a composite brush material in which 1% by weight of MoS 2 powder in the composite brush material is replaced with NbSe 2 powder, that is, Ag-14% by weight MoS 2 -1% by weight NbSe 2 composite brush material , shows changes in electrical noise (mV) and changes in specific wear amount (mm 2 /mm・N). Similarly, curve 3 of A, B, and C in Figure 1
is the contact resistance ( m
Ω) change, electrical noise (mV) change, and specific wear amount (mm 2 /mm・N) change, and A, B, and C in Figure 1.
Curve 4 is Ag-5wt% MoS2-10wt %
The graph shows changes in contact resistance (mΩ), electrical noise (mV), and specific wear amount (mm 2 /mm・N) with respect to the current density of the NbSe 2 composite brush material. The above results were obtained in the same manner as in the example.
Ag with MoS 2 powder added alone to Ag powder - 15% by weight
Comparison with MoS 2 composite brush material shows that the contact resistance decreases in the entire energization range even with the addition of 1% by weight of NbSe 2 , as shown in curves 1, 2, 3, and 4 of A in Figure 1. are doing. but,
When 10% by weight of NbSe 2 was substituted and added, although the contact resistance decreased significantly in the low current carrying region, the contact resistance tended to increase in the large current carrying region. Next, regarding electrical noise, as shown in curves 1, 2, 3, and 4 of B in Figure 1, composite brush materials containing 1% by weight of NbSe 2 and 2.5% by weight of NbSe 2 do not contain MoS 2. Compared to the composite brush material added alone, the value is clearly smaller in the entire energization range. In addition, the composite brush material containing 10% by weight of NbSe 2 has a slightly larger electrical noise in the low current range, but it has a smaller value in the high current range compared to the composite brush material containing MoS 2 alone. It shows. Regarding the specific wear amount, as shown in curves 1, 2, 3, and 4 of C in Figure 1, NbSe 2 was added at 1% by weight.
Composite brush materials with substitutional addition, 2.5% by weight substitutional addition, and 10% by weight substitutional addition are smaller in the entire current carrying region compared to composite brush materials with MoS 2 added alone. In each of A, B, and C in Figure 2, the current density of the composite brush material is 83 (A/cm 2 ) when a total of 15% by weight of MoS 2 powder and NbSe 2 powder is added to Ag powder.
Changes in contact resistance (mΩ), electrical noise (mV), and specific wear amount (mm 2 /mm·N) are shown with respect to the replacement amount of NbSe 2 powder and the amount of MoS 2 powder added. As for the contact resistance, as shown in A in Fig. 2, the composite brush material for electrical machinery of the present invention in which MoS 2 and NbSe 2 are added together has an NbSe 2 substitution amount of 1
In the range of ~15 wt%, it shows a clearly smaller value compared to the case of adding MoS2 alone, but if it exceeds 10 wt%, an increase in contact resistance is unavoidable.
A displacement addition of 1 to 10% by weight is preferred. Regarding electrical noise, as shown in Fig. 2B, the composite brush material for electrical machinery of this invention containing MoS 2 and NbSe 2 combined has a NbSe 2 substitution amount of 1 to 10.
There is a significant decrease in the weight percent range. If the amount of NbSe 2 added exceeds 10% by weight, the amount of MoS 2 added will decrease, resulting in poor friction properties and increased electrical noise. Regarding the specific wear amount, as shown in C in Figure 2, the composite brush material for electrical machinery of the present invention containing MoS 2 and NbSe 2 combined has a NbSe 2 substitution amount of 1 to 10.
It has been reduced in the range of % by weight. If the NbSe 2 substitution addition amount is less than 1% by weight, the effect of combined addition will not appear, and if the substitution addition amount exceeds 10% by weight, electrical noise will increase, electrical wear will increase, and the specific wear amount will increase, which is preferable. do not have. Example 2 Ag powder prototyped in the same manner as in Example 1 above
Contact resistance ( m
Ω) change, electrical noise (mV) change, and specific wear amount (mm 2 /mm·N) change were evaluated in the same manner as in Example 1 above. A composite brush material in which a total of 5% by weight of MoS 2 powder and NbSe 2 powder was added to Ag powder was also used. As with the brush material, contact resistance, electrical noise, and specific wear amount increased as the amount of current applied increased, but when MoS 2 powder was replaced with NbSe 2 powder, contact resistance, electrical noise, and specific wear amount were reduced. In each of A, B, and C in Fig. 3, the current density of the composite brush material is 83 (A/cm 2 ) when a total of 5% by weight of MoS 2 powder and NbSe 2 is added to Ag powder.
Changes in contact resistance (mΩ) and electrical noise (mV) with respect to the amount of NbSe 2 powder added and the amount of MoS 2 powder added
Changes in specific wear amount (mm 2 /mm・N) are shown.
Regarding the contact resistance, as shown in A in Figure 3,
The composite brush material for electrical machinery of this invention in which MoS 2 and NbSe 2 are added together has a NbSe 2 substitution addition amount of 1% by weight.
The above shows a smaller value compared to the case where MoS 2 is added alone. Regarding electrical noise, as shown in Fig. 3B, the composite brush material for electrical machinery of the present invention in which MoS 2 and NbSe 2 are jointly added is superior to the case where MoS 2 is added alone at a NbSe 2 substitution amount of 1% by weight. It has decreased in comparison. However, when the amount of MoS 2 added is less than 4% by weight, the frictional properties deteriorate and electrical noise increases. As for the specific wear amount, as shown in C in Fig. 3, the composite brush material for electrical machinery of the present invention in which MoS 2 and NbSe 2 are added together has a NbSe 2 substitution amount of 1 to 4.
The amount is reduced compared to when MoS 2 is added alone in the range of weight %, but when it exceeds 4 weight %, the amount of MoS 2 added is too small, resulting in deterioration of friction properties and increase in electrical noise, resulting in specific wear. The amount is increasing. That is, in the composite brush material for electrical machinery of this invention in which a total of 5% by weight of MoS 2 powder and NbSe 2 powder is added to Ag powder, there is a composite brush material in which 4% by weight of MoS 2 powder and 1% by weight of NbSe 2 powder is added. The contact resistance, electrical noise, and specific wear characteristics of the material are all better than when MoS 2 is added alone in the entire current-carrying range. Example 3 Ag powder prototyped in the same manner as Example 1 above
Contact resistance ( m
Ω) change, electrical noise (mV) change, and specific wear amount (mm 2 /mm·N) change were evaluated in the same manner as in Example 1 above. A composite brush material in which a total of 25% by weight of MoS 2 powder and NbSe 2 powder was added to Ag powder was also used. As with the brush material, contact resistance, electrical noise, and specific wear amount increased when the amount of current applied increased, but when MoS 2 powder was replaced with NbSe 2 powder, contact resistance, electrical noise, and specific wear amount were reduced. In each of A, B, and C in Fig. 4, the current density of the composite brush material is 83 (A/cm 2 ) when a total of 25% by weight of MoS 2 powder and NbSe 2 is added to Ag powder.
Changes in contact resistance (mΩ) and electrical noise (mV) with respect to the amount of NbSe 2 powder added and the amount of MoS 2 powder added
Changes in specific wear amount (mm 2 /mm・N) are shown.
Regarding the contact resistance, as shown in A in Figure 4,
The composite brush material for electrical machinery of this invention in which MoS 2 and NbSe 2 are added together has a NbSe 2 substitution addition amount of 1% by weight.
The above shows a smaller value compared to the case where MoS 2 is added alone. Regarding electrical noise, as shown in Fig. 4B, the composite brush material for electrical machinery of the present invention in which MoS 2 and NbSe 2 are added together has a NbSe 2 substitution amount of 1 to 10.
It is reduced in the range of weight % compared to the case where MoS 2 is added alone. When the amount of NbSe 2- substituted added exceeds 10% by weight, the friction properties deteriorate and electrical noise increases. Regarding the specific wear amount, as shown in Fig. 4C, the composite brush material for electrical machinery of the present invention in which MoS 2 and NbSe 2 are added together has a NbSe 2 substitution amount of 1 to 20.
It is reduced in the range of weight % compared to the case where MoS 2 is added alone. However, when the amount of MoS 2 added is less than 4% by weight, the frictional properties deteriorate significantly, and furthermore, electrical noise increases, electrical wear increases, and the specific wear amount also increases. In other words, a total of 2 MoS powders and 2 NbSe powders are added to Ag powder.
In the composite brush material for electrical machinery of the present invention containing 25% by weight of NbSe 2 powder, the composite brush material containing 1 to 10% by weight of NbSe 2 powder has lower contact resistance and electrical resistance than the case where MoS 2 is added alone in the entire current carrying region. The noise and specific wear characteristics are all good. Example 4 Ag powder prototyped in the same manner as in Example 1 above
The contact resistance, electrical noise, and specific wear amount of a composite brush material containing 12.5% by weight of MoS 2 powder and 2.5% by weight of NbSe 2 powder were measured at a current density of 500 (A/cm 2 ).
It was evaluated by As a result, the composite brush material for electrical machinery of the present invention has a contact resistance of 9 (mΩ) and an electrical noise of 30 even at a current density of 500 (A/cm 2 ).
(mV) and specific wear amount of 1×10 -9 (mm 2 /mm・N), both of which are small and good. Note that the evaluation test equipment and the like are the same as in Example 1 above. In addition, although not shown in the examples, as shown in the table, other than Ag powder with a total of 5% by weight, 15% by weight, and 25% by weight of MoS 2 powder and NbSe 2 powder,
The total amount of MoS 2 powder and NbSe 2 powder added is 5 to 25% by weight.
The amount of MoS 2 powder added is 4 to 24% by weight, and
Those with an added amount of NbSe 2 powder of 1 to 10% by weight, and
The product to which WS 2 powder was added also showed the same effect as in the above example. In addition, it is known to use Ag-based composite brush material to which a small amount (1 to 3% by weight) of graphite, which has high lubricity in the atmosphere, is added for ground tests in slip springs for artificial satellites. When applying the composite brush material for electrical machinery, the same treatment may be applied.
【表】【table】
この発明は以上説明したとおり、電機用複合ブ
ラシ材料として、
式:Ag(100-a-b)−(M)a−(NbSe2)b
{式中Mは、二硫化モリブデン(MoS2)および
二硫化タングステン(WS2)の内の少なくとも
一種を表わし、Agは銀、NbSe2はセレン化ニ
オブである。
a,bは重量濃度であり、4≦a≦24、1≦b
≦10および5≦a+b≦25の関係を満足する数
を表わす。}
で示される材料を用いることにより、低電流通電
領域から大電流通電領域までの広い範囲の通電領
域において、摩擦特性および摩耗特性が良好で、
しかも導電性に優れ、接触抵抗、電気ノイズの少
ない電機用複合ブラシ材料を効率良く得ることが
できる。なお、この発明の電機用複合ブラシ材料
は、例えば低電流通電領域の信号用スリツプリン
グや大電流通電領域の電力用スリツプリングに適
用できる。又、スリツプリングは、人工衛星や宇
宙構造物などが置かれる超高真空中において長時
間優れた摺動特性を保持することができる。ま
た、この発明の電機用複合ブラシ材料は、宇宙空
間のみならず地上における特殊雰囲気中たとえば
真空槽内、窒素ガス雰囲気中あるいは吸着水分子
層の潤滑効果が期待できない乾燥空気中(2g/
cm3以下)などにおいても同様な効果が期待される
ことはいうまでもない。
As explained above, this invention is a composite brush material for electrical machinery, which has the following formula: Ag (100-ab) −(M) a −(NbSe 2 ) b {where M is molybdenum disulfide (MoS 2 ) and disulfide. It represents at least one type of tungsten (WS 2 ), Ag is silver, and NbSe 2 is niobium selenide. a, b are weight concentrations, 4≦a≦24, 1≦b
Represents a number that satisfies the relationships of ≦10 and 5≦a+b≦25. } By using the material shown in , it has good friction and wear characteristics in a wide range of current carrying areas from low current carrying areas to large current carrying areas.
Moreover, it is possible to efficiently obtain a composite brush material for electrical machinery that has excellent conductivity, low contact resistance, and low electrical noise. The composite brush material for electrical machinery of the present invention can be applied, for example, to a signal slip ring in a low current carrying area and a power slip ring in a large current carrying area. In addition, slip rings can maintain excellent sliding characteristics for a long time in ultra-high vacuum where artificial satellites, space structures, etc. are placed. In addition, the composite brush material for electrical machinery of the present invention can be used not only in space but also in special atmospheres on the ground, such as in a vacuum chamber, in a nitrogen gas atmosphere, or in dry air where the lubricating effect of the adsorbed water molecular layer cannot be expected (2 g/
It goes without saying that a similar effect is expected for particles (cm 3 or less).
第1図は、この発明の実施例のAg粉にMoS2粉
とNbSe2粉を合計で15重量%添加した電機用複合
ブラシ材料と従来のものの接触抵抗と電気ノイズ
および比摩耗量を比較するための通電電流密度
(A/cm2)による接触抵抗(mΩ)変化、電気ノ
イズ(mV)変化および比摩耗量(mm2/mm・N)
変化を示す特性図である。第1図において曲線1
は従来例の特性、曲線2,3,4はこの発明の実
施例の電機用複合ブラシ材料の特性である。
第2図の各々は、この発明の実施例のAg粉に
MoS2とNbSe2粉を合計で15重量%添加した電機
用複合ブラシ材料と従来のものの通電電流密度83
(A/cm2)における接触抵抗と電気ノイズおよび
比摩耗量を比較するためのNbSe2添加量および
MoS2添加量による接触抵抗(mΩ)変化、電気
ノイズ(mV)変化および比摩耗量(mm2/mm・
N)変化を示す特性図である。第2図において、
点1はAg粉にMoS2粉を単独添加したものの特
性、実線5はこの発明の実施例の電機用複合ブラ
シ材料の特性である。
第3図の各々は、この発明の実施例のAg粉に
MoS2粉とNbSe2粉を合計で5重量%添加した電
機用複合ブラシ材料と従来のものの通電電流密度
83(A/cm2)における接触抵抗と電気ノイズおよ
び比摩耗量を比較するためのNbSe2添加量および
MoS2添加量による接触抵抗(mΩ)変化、電気
ノイズ(mV)変化および比摩耗量(mm2/mm・
N)変化を示す特性図である。第3図において、
点1はAg粉にMoS2粉を単独添加したものの特
性、点6はこの発明の実施例の電機用複合ブラシ
材料の特性である。
第4図の各々は、この発明の実施例のAg粉に
MoS2粉とNbSe2粉を合計で25重量%添加した電
機用複合ブラシ材料と従来のものの通電電流密度
83(A/cm2)における接触抵抗と電気ノイズおよ
び比摩耗量を比較するためのNbSe2添加量および
MoS2添加量による接触抵抗(mΩ)変化、電気
ノイズ(mV)変化および比摩耗量(mm2/mm・
N)変化を示す特性図である。第4図において、
点1はAg粉にMoS2粉を単独添加したものの特
性、実線7はこの発明の実施例の電機用複合ブラ
シ材料の特性である。
Figure 1 compares the contact resistance, electrical noise, and specific wear of a composite brush material for electrical machinery in which a total of 15% by weight of MoS 2 powder and NbSe 2 powder is added to Ag powder according to an embodiment of the present invention and a conventional material. Contact resistance (mΩ) change, electrical noise (mV) change, and specific wear amount (mm 2 /mm・N) due to current density (A/cm 2 )
FIG. 3 is a characteristic diagram showing changes. In Figure 1, curve 1
curves 2, 3, and 4 are the characteristics of the composite brush material for electrical machinery according to the embodiments of the present invention. Each of FIG. 2 shows the Ag powder of the embodiment of this invention.
Composite brush material for electrical machinery with a total of 15% by weight of MoS 2 and NbSe 2 powder added and the current density of the conventional one: 83
The amount of NbSe 2 added and
Changes in contact resistance (mΩ), electrical noise (mV), and specific wear amount (mm 2 /mm・) depending on the amount of MoS 2 added
N) is a characteristic diagram showing changes. In Figure 2,
Point 1 is the characteristic of MoS 2 powder added alone to Ag powder, and solid line 5 is the characteristic of the composite brush material for electrical machinery according to the embodiment of the present invention. Each of FIG. 3 shows the Ag powder of the embodiment of this invention.
Composite brush material for electrical machinery with a total of 5% by weight of MoS 2 powder and NbSe 2 powder added and the current density of the conventional brush material
83 (A/cm 2 ) to compare the contact resistance, electrical noise , and specific wear amount.
Changes in contact resistance (mΩ), electrical noise (mV), and specific wear amount (mm 2 /mm・) depending on the amount of MoS 2 added
N) is a characteristic diagram showing changes. In Figure 3,
Point 1 is the characteristic of the MoS 2 powder added alone to Ag powder, and point 6 is the characteristic of the composite brush material for electrical machinery according to the embodiment of this invention. Each of FIG. 4 shows the Ag powder of the embodiment of this invention.
Current density of composite brush material for electrical machinery with a total of 25% by weight of MoS 2 powder and NbSe 2 powder added and conventional brush material
83 (A/cm 2 ) to compare the contact resistance, electrical noise , and specific wear amount.
Changes in contact resistance (mΩ), electrical noise (mV), and specific wear amount (mm 2 /mm・) depending on the amount of MoS 2 added
N) is a characteristic diagram showing changes. In Figure 4,
Point 1 is the characteristic of the MoS 2 powder added alone to the Ag powder, and solid line 7 is the characteristic of the composite brush material for electrical machinery according to the embodiment of the present invention.
Claims (1)
二硫化タングステン(WS2)の内の少なくとも
一種を表わし、Agは銀、NbSe2はセレン化ニ
オブである。 a,bは重量濃度であり、4≦a≦24、1≦b
≦10および5≦a+b≦25の関係を満足する数
を表わす。} で示されることを特徴とする電機用複合ブラシ材
料。[Claims] 1 Formula: Ag (100-ab) −(M) a −(NbSe 2 ) b {In the formula, M is one of molybdenum disulfide (MoS 2 ) and tungsten disulfide (WS 2 ). Ag represents silver, and NbSe 2 represents niobium selenide. a, b are weight concentrations, 4≦a≦24, 1≦b
Represents a number that satisfies the relationships of ≦10 and 5≦a+b≦25. } A composite brush material for electrical machinery characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24046686A JPS6396230A (en) | 1986-10-09 | 1986-10-09 | Composite brush material for electric use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24046686A JPS6396230A (en) | 1986-10-09 | 1986-10-09 | Composite brush material for electric use |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6396230A JPS6396230A (en) | 1988-04-27 |
JPH0563534B2 true JPH0563534B2 (en) | 1993-09-10 |
Family
ID=17059927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24046686A Granted JPS6396230A (en) | 1986-10-09 | 1986-10-09 | Composite brush material for electric use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6396230A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1061445A (en) * | 1996-06-14 | 1998-03-03 | Toyota Motor Corp | Supercharger for internal combustion engine |
JP4991983B2 (en) * | 2001-03-24 | 2012-08-08 | 克忠 渡邉 | Sliding contact structure |
CN106119584B (en) * | 2016-08-03 | 2018-04-03 | 江苏大学 | A kind of silver-colored chromium base electrical contact self-lubricating composite and preparation method thereof |
CN107312949B (en) * | 2017-06-26 | 2019-11-01 | 中南大学 | Nanocomposite lubricates ultra-low abrasion sky day contact material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0355036A (en) * | 1989-07-22 | 1991-03-08 | Hitachi Medical Corp | Apparatus for revolution of support in x-ray photographing apparatus |
-
1986
- 1986-10-09 JP JP24046686A patent/JPS6396230A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0355036A (en) * | 1989-07-22 | 1991-03-08 | Hitachi Medical Corp | Apparatus for revolution of support in x-ray photographing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS6396230A (en) | 1988-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3782446B2 (en) | High-strength, high-temperature, self-lubricating composite material and manufacturing method thereof | |
KR100419327B1 (en) | Low resistivity materials with improved wear performance for electrical current transfer and methods for preparing same | |
US4425247A (en) | Composite self-lubricating material | |
EP0075002A4 (en) | High load carrying polymide lubricative composites. | |
US3300667A (en) | Electrically conductive solid lubricant members and process and apparatus employing them | |
US20140001916A1 (en) | Contact brush | |
CN108330332B (en) | Wide-temperature-range nickel-based self-lubricating composite material and preparation method thereof | |
KR20100049605A (en) | Lead-free, sintered sliding bearing material and sintering powder for producing the latter | |
JP2795374B2 (en) | Sliding material | |
JPH0563534B2 (en) | ||
CN111748719B (en) | Wide-temperature-range self-lubricating VN-Ag2MoO4Composite material and preparation method thereof | |
US3303370A (en) | Electrically conductive solid lubricant members and process and apparatus employing them | |
JP2539246B2 (en) | Sintered alloy bearing material and manufacturing method thereof | |
US3427244A (en) | Solid lubricant composites | |
US4256489A (en) | Low wear high current density sliding electrical contact material | |
CN111961944B (en) | Wide-temperature-range self-lubricating VN-AgMoS2Composite material and preparation method thereof | |
JPH0355036B2 (en) | ||
JPS62151539A (en) | Element for roll bearing | |
US3405063A (en) | Solid lubricant composition and process for its preparation | |
US3523079A (en) | Electrically conductive solid lubricant members and process and apparatus employing them | |
JPS6362470B2 (en) | ||
JPH0357064B2 (en) | ||
EP4389318A1 (en) | Method of producing a composite material for a slip ring brush | |
JPH09149503A (en) | Current collecting sliding member | |
JP5424121B2 (en) | Sliding material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees | ||
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |