JPH0563306B2 - - Google Patents

Info

Publication number
JPH0563306B2
JPH0563306B2 JP1064434A JP6443489A JPH0563306B2 JP H0563306 B2 JPH0563306 B2 JP H0563306B2 JP 1064434 A JP1064434 A JP 1064434A JP 6443489 A JP6443489 A JP 6443489A JP H0563306 B2 JPH0563306 B2 JP H0563306B2
Authority
JP
Japan
Prior art keywords
roll
metal plate
laminated
cooled
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1064434A
Other languages
Japanese (ja)
Other versions
JPH02241737A (en
Inventor
Michihiro Funaki
Takahiro Nasuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1064434A priority Critical patent/JPH02241737A/en
Publication of JPH02241737A publication Critical patent/JPH02241737A/en
Publication of JPH0563306B2 publication Critical patent/JPH0563306B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、優れた耐食性及び密着性を有する
ラミネート金属板を低温予熱で製造する方法に関
するものである。 (従来の技術) 従来、優れた耐食性及び密着性を有するラミネ
ート金属板を製造するに際して、金属板表面に樹
脂を連続的に被覆する場合、予熱してある金属板
に押出機で溶融混練された熱可塑性樹脂を、Tダ
イから押し出す方法が知られている(特開昭57−
203545号公報)。第2図は特開昭57−203545号公
報に具体的に開示されたラミネート金属板の製造
方法を示したものであり、加熱ロール9に巻き付
けられ、冷却ロール10に巻き付けられ、かつ上
記加熱ロール9と上記冷却ロール10で圧接され
た予熱してある金属板3表面と冷却ロール10と
の界面に押出機4を経て、Tダイ5より溶融した
熱可塑性樹脂6を流下して、金属板3に熱可塑性
樹脂6を連続的に被覆する。樹脂が被覆された金
属板(ラミネート金属板)8は上記ロール10下
流の水冷槽、冷却ロール等の冷却装置(図示せ
ず)を通して巻き取りが行われる。 また上記加熱ロール9を通常のニツプロールと
し、ニツプロールの上流側に誘導加熱式やガス加
熱式などの予熱装置を配置して、金属を予熱する
ようにしたラミネート金属板製造方法も知られて
いる。 なお、冷却ロール10は通常安価で、熱伝導性
が良く、冷却性能の良好な、鉄や銅などの金属製
水冷ロールが用いられ、さらに樹脂との接触面を
鏡面として、樹脂の表面状態を良好にするために
上記金属製水冷ロールの表面を硬質クロムメツキ
したものも用いられている。 またニツプロールは通常、圧着性、耐熱性の良
好なシリコンゴム、クロロプレンゴム、ポリ4ふ
つ化エチレンゴムなどのゴム製ニツプロールが用
いられている。 (発明が解決しようとする課題) このような従来法でラミネート金属板を製造す
る場合、金属板の予熱温度を高めて、樹脂が金属
板に被覆された後、上記冷却装置で巻き取り可能
温度、例えば常温まで強制冷却されるまで、でき
るだけ高温で保持することが密着性を向上させる
ために必要である。 一方、エネルギーコスト面からは、低温予熱で
密着性に優れたラミネート金属板を製造すること
が最良であるが、従来法では樹脂被覆直後に冷却
ロールにより樹脂を被覆された金属板が冷却され
るようになつているため、予熱温度が低い場合に
は、冷却装置で強制冷却されるまでの金属板の温
度が低くなるので、密着性の優れたラミネート金
属板を製造することができないという問題点があ
る。 本発明は優れた性能(耐食性、密着性)のラミ
ネート金属板を低温予熱で製造することができる
ラミネート金属板の製造方法を提供するものであ
る。 (課題が解決するための手段) 本発明の要旨は次の通りである。 金属板を予熱後、ニツプロールと非冷却或いは
加熱ロールの間〓へ、上記ニツプロールに巻き付
けず、上記非冷却或いは加熱ロールに巻き付けて
至らせ、上記ニツプロールと上記金属板の間〓に
押出機を経て、Tダイより溶融した熱可塑性樹脂
を流下して金属板に樹脂を上記ニツプロールにて
ラミネートし、ラミネート後のラミネート金属板
を上記ニツプロールに巻き付けず、上記非冷却或
いは加熱ロールに巻き付けて非冷却或いは加熱ロ
ールを通過させることを特徴とするラミネート金
属板の製造方法。 本発明では、金属板として、鋼板(箔を含む)、
アルミニウム板(箔を含む)またはこれらの金属
板の表面に次のいずれかの表面処理すなわち Sn、Zn、Al、Pb、Ni、CrまたはCuのめつ
き 上記に示す金属の2種以上の複合めつき 上記に示す金属の1種以上を含む合金めつ
き 上記に示す金属の1種以上を主成分とする
複合めつき を施したものなどが挙げられ、さらに上記金属板
にクロム酸塩あるいはリン酸塩処理したものも使
用できる。 また本発明で被覆に用いる熱可塑性樹脂とはポ
リエステル樹脂、ポリオレフイン樹脂、塩化ビニ
ル樹脂、ポリカーボネート樹脂などが代表的であ
る。 以下、本発明について詳細に説明する。 本発明は、第1図に示すように、図示しない予
熱装置で予熱された金属板3を金属製、ゴム製等
の非冷却あるいは加熱ロール1に巻き付け、上記
ロール1に巻き付いている金属板3に例えばシリ
コンゴム、クロロプレンゴム、ポリ4ふつ化エチ
レンゴムなどのゴム製のニツプロール2を圧接
し、金属板3表面と上記ニツプロール2の界面に
押出機4を経て、Tダイ5より溶融した熱可塑性
樹脂6を流下して金属板3にラミネートさせ、例
えば上記ロール1下流の例えば水スプレーノズル
を配備してなる冷却装置7にて例えば常温まで冷
却してラミネート金属板8を得るものである。 このような本発明法によれば、ラミネート金属
板8が非冷却あるいは加熱ロール1に巻き付いて
いるので、冷却ロール10に巻き付いている従来
法よりも、ロール巻き付きによる温度低下量が大
幅に減少し、樹脂が被覆された後、強制冷却され
るまでのラミネート金属板8の温度(以下、ラミ
ネート金属板の保熱温度という)が大幅に高くな
る。先に述べたように金属板3の予熱温度が低
く、ラミネート金属板の保熱温度が低いと優れた
密着性は得られないので、優れた密着性を得るた
めの保熱温度を確保するためには、従来法ではロ
ール巻き付きによる温度低下が大きいので、金属
板の予熱温度を大きく高める必要があるが、本発
明法ではロール巻き付きによる温度低下が小さい
ので、従来法ほど予熱温度を高める必要がない。
即ち、本発明棒によれば、優れた密着性を得る保
熱温度を確保するために必要な予熱温度を従来法
に比べて大幅に低下することができる。 なお第1図図示のラミネート金属板の製造装置
例では、ニツプロール2としてゴム製ニツプロー
ルを採用しているが、ニツプロール2には予熱さ
れた金属板3が巻き付いていないので、例えば
鉄、銅等の金属製水冷ロールを採用しても上記作
用効果を得ることができる。 また上記装置例では冷却ライン長を短くするた
めに、水スプレー式冷却装置7を設けて、ラミネ
ート金属板8を常温まで冷却するように構成して
いるが、ライン長に制約がない場合は、自然放冷
によつて冷却するように構成してもよい。 さらに上記製造装置例ではTダイより熱可塑性
樹脂のみを流下しているが、2台の押出機を使つ
て、熱可塑性樹脂及び接着性熱可塑性樹脂を共押
出してもよい。 (実施例) 実施例 1 第1図の非冷却ロール1として外径450mmの非
冷却ゴム製ロールを用い、ニツプロール2とし
て、外径300mmのシリコンゴム製ニツプロールを
使用したラミネート金属板製造装置を使用して、
金属板3として厚み0.2mmの電解クロム酸処理鋼
板を用い、この鋼板を230℃に予熱した後、上記
鋼板表面と上記ニツプロールとの界面に押出機を
経て、Tダイよりポリエチレンテレフタレートを
溶融押出流下した。溶融樹脂の温度は280℃、被
覆厚みは50μmであり、ラインスピードは50m/
minであり、また圧接後、鋼板を非冷却ロール1
に巻き付ける角度は90゜である。さらにラミネー
トされた鋼板は圧接後3秒で、非冷却ロール1下
流の冷却装置7に到達し水スプレーで常温まで冷
却し、乾燥してから巻き取り、ラミネート鋼板を
得た。 実施例 2 第1図の非冷却ロール1として外径450mmの非
冷却鉄製ロールを用い、他は実施例1と同一の条
件で操業し、ラミネート鋼板を製造した。 実施例 3 第1図の加熱ロール1として外径450mmのもの
を用い、他は実施例1と同一の条件で操業し、ラ
ミネート鋼板を製造した。なお加熱ロールにおけ
る自然放冷を補うために、加熱ロールの表面温度
は鋼板予熱温度より20℃高めた温度に設定した。 従来例 1 第2図の加熱ロール9として外径300mmのもの
を用い、冷却ロール10として外径450mmの硬質
クロムメツキ仕上げした鉄製水冷ロールを採用し
たラミネート金属板製造装置を使用し、上記実施
例と同様に0.2mmの電解クロム酸処理鋼板を230℃
に予熱した後、溶融樹脂の温度は280℃、被覆厚
みは50μm、ラインスピードは50m/minで圧接
後、鋼板を水冷ロールに巻き付ける角度は90゜で、
上記鋼板表面と上記水冷ロールとの界面に、押出
機を経てTダイよりポリエチレンテレフタレート
を溶融押出流下して、ラミネートし、圧接後3秒
で、水冷ロール10下流の冷却装置に到達し水ス
プレーで常温まで冷却し、乾燥してから巻き取
り、ラミネート鋼板を得た。 従来例 2 第2図の加熱ロール9をニツプロールとし、こ
のニツプロールとして上記実施例に用いた外径
300mmのシリコンゴム製ニツプロールを用い、上
記従来例と同様の条件でラミネート鋼板を製造し
た。 実施例 4、5、6 実施例1、2、3の予熱温度を200℃に変更し
てラミネート鋼板を製造した。 従来例 3、4 従来例1、2の予熱温度を200℃に変更してラ
ミネート鋼板を製造した。 実施例 7、8、9 実施例1、2、3の予熱温度を170℃に変更し
てラミネート鋼板を製造した。 従来例 5、6 従来例1、2の予熱温度を170℃に変更してラ
ミネート鋼板を製造した。 上記実施例、従来例で得られたラミネート鋼板
について性能試験を次の通り行つた。 密着性……180℃剥離試験(引張速度;100
mm/min) 耐食性……35℃、5%食塩水を1500時間噴霧 結果は5段階にて、次の基準によつて評価し
た。 5…非常に良好、3…良好、1…不良 性能評価結果を、ロール条件、予熱温度、圧接
ラミネート後強制冷却までの平均温度(保熱温
度)と共に第1表に示す。 なお実施例1〜9のゴム製ニツプロール2のみ
を外径300mmの鉄製水冷ロールに変更してラミネ
ート鋼板を製造し、密着性、耐食性を調査したと
ころ、第1表に示す実施例1〜9と同等の密着
性、耐食性が得られた。また製造時の保熱温度も
第1表に示す実施例1〜9と同等の保熱温度であ
つた。 第1表から本発明法によれば、従来法よりも低
温予熱で密着性、耐食性の優れたラミネート鋼板
が得られることが明らかである。
(Industrial Application Field) The present invention relates to a method for producing a laminated metal plate having excellent corrosion resistance and adhesion by low-temperature preheating. (Prior art) Conventionally, when manufacturing a laminated metal plate with excellent corrosion resistance and adhesion, when continuously coating the surface of the metal plate with resin, a preheated metal plate was melt-kneaded using an extruder. A method of extruding thermoplastic resin through a T-die is known (Japanese Patent Application Laid-Open No. 1983-1999).
Publication No. 203545). FIG. 2 shows a method for producing a laminated metal plate specifically disclosed in Japanese Patent Application Laid-Open No. 57-203545, in which the laminated metal plate is wound around a heating roll 9, wound around a cooling roll 10, and The melted thermoplastic resin 6 is flowed down from the T-die 5 through the extruder 4 onto the interface between the preheated surface of the metal plate 3 which has been pressure-welded by the cooling roll 10 and the cooling roll 10, and the metal plate 3 is continuously coated with thermoplastic resin 6. The resin-coated metal plate (laminated metal plate) 8 is wound up through a cooling device (not shown) such as a water cooling tank or a cooling roll downstream of the roll 10. Also known is a method for manufacturing a laminated metal plate in which the heating roll 9 is a normal nip roll, and a preheating device such as an induction heating type or a gas heating type is disposed upstream of the nip roll to preheat the metal. Note that the cooling roll 10 is usually a water-cooled roll made of metal such as iron or copper, which is inexpensive, has good thermal conductivity, and has good cooling performance.Furthermore, the surface in contact with the resin is mirror-finished to improve the surface condition of the resin. In order to improve the performance, the metal water-cooled rolls whose surfaces are plated with hard chrome are also used. Further, as the nip roll, a nip roll made of rubber such as silicone rubber, chloroprene rubber, or polytetrafluoroethylene rubber, which has good pressure bonding properties and heat resistance, is usually used. (Problem to be Solved by the Invention) When manufacturing a laminated metal plate using such a conventional method, the preheating temperature of the metal plate is increased to coat the metal plate with resin, and then the temperature at which it can be rolled up using the cooling device described above is increased. In order to improve adhesion, it is necessary to maintain the temperature as high as possible until it is forcedly cooled to room temperature, for example. On the other hand, from an energy cost perspective, it is best to manufacture laminated metal plates with excellent adhesion through low-temperature preheating, but in the conventional method, the resin-coated metal plate is cooled by a cooling roll immediately after resin coating. Therefore, if the preheating temperature is low, the temperature of the metal plate will be low until it is forcibly cooled by the cooling device, making it impossible to produce laminated metal plates with excellent adhesion. There is. The present invention provides a method for producing a laminated metal plate that can produce a laminated metal plate with excellent performance (corrosion resistance, adhesion) by low-temperature preheating. (Means for Solving the Problems) The gist of the present invention is as follows. After preheating the metal plate, the metal plate is placed between the nip roll and the non-cooled or heated roll, without being wrapped around the nip roll, and wound around the non-cooled or heated roll, and between the nip roll and the metal plate via an extruder. The molten thermoplastic resin is flowed down from the die and the resin is laminated on the metal plate with the above-mentioned Nippro roll, and the laminated metal plate after lamination is not wrapped around the above-mentioned Nippro roll, but is wound around the above-mentioned non-cooled or heated roll. A method for manufacturing a laminated metal plate, characterized by passing through the laminated metal plate. In the present invention, the metal plate includes a steel plate (including foil),
Any of the following surface treatments on the surface of aluminum plates (including foils) or these metal plates: Sn, Zn, Al, Pb, Ni, Cr, or Cu plating. Composite plating of two or more of the above metals. Alloy plating containing one or more of the metals listed above Composite plating containing one or more of the metals listed above as a main component. Salt-treated products can also be used. The thermoplastic resin used for coating in the present invention is typically polyester resin, polyolefin resin, vinyl chloride resin, polycarbonate resin, or the like. The present invention will be explained in detail below. As shown in FIG. 1, a metal plate 3 preheated by a preheating device (not shown) is wound around an uncooled or heated roll 1 made of metal, rubber, etc. A nip roll 2 made of rubber such as silicone rubber, chloroprene rubber, polytetrafluoroethylene rubber, etc. is pressed onto the nip roll 2, and a molten thermoplastic is applied to the interface between the surface of the metal plate 3 and the nip roll 2 through an extruder 4 and a T-die 5. The resin 6 is flowed down and laminated onto the metal plate 3, and then cooled to room temperature, for example, in a cooling device 7 provided with, for example, a water spray nozzle downstream of the roll 1, to obtain a laminated metal plate 8. According to the method of the present invention, since the laminated metal plate 8 is uncooled or wrapped around the heating roll 1, the amount of temperature drop due to roll wrapping is significantly reduced compared to the conventional method in which the laminated metal plate 8 is wrapped around the cooling roll 10. After being coated with the resin, the temperature of the laminated metal plate 8 until it is forcedly cooled (hereinafter referred to as the heat retention temperature of the laminated metal plate) becomes significantly high. As mentioned earlier, if the preheating temperature of the metal plate 3 is low and the heat retention temperature of the laminated metal plate is low, excellent adhesion cannot be obtained. In the conventional method, the temperature drop due to roll wrapping is large, so it is necessary to significantly increase the preheating temperature of the metal plate, but in the method of the present invention, the temperature drop due to roll wrapping is small, so it is not necessary to increase the preheating temperature as much as in the conventional method. do not have.
That is, according to the rod of the present invention, the preheating temperature required to ensure a heat retention temperature that provides excellent adhesion can be significantly lowered compared to the conventional method. In the example of the manufacturing apparatus for laminated metal plates shown in FIG. 1, a rubber nip roll is used as the nip roll 2, but since the preheated metal plate 3 is not wrapped around the nip roll 2, for example, iron, copper, etc. Even if a metal water-cooled roll is used, the above effects can be obtained. Further, in the above example of the device, in order to shorten the cooling line length, a water spray type cooling device 7 is provided to cool the laminated metal plate 8 to room temperature, but if there is no restriction on the line length, It may be configured to cool by natural cooling. Further, in the above manufacturing apparatus example, only the thermoplastic resin flows down from the T-die, but the thermoplastic resin and the adhesive thermoplastic resin may be co-extruded using two extruders. (Example) Example 1 A laminated metal plate manufacturing apparatus was used in which a non-cooled rubber roll with an outer diameter of 450 mm was used as the non-cooled roll 1 in FIG. 1, and a silicone rubber nip roll with an outer diameter of 300 mm was used as the nip roll 2. do,
An electrolytic chromic acid treated steel plate with a thickness of 0.2 mm is used as the metal plate 3. After preheating this steel plate to 230°C, polyethylene terephthalate is melted and extruded from a T-die through an extruder to the interface between the surface of the steel plate and the Nipro roll. did. The temperature of the molten resin is 280℃, the coating thickness is 50μm, and the line speed is 50m/
min, and after pressure welding, the steel plate is rolled 1
The angle at which it is wrapped is 90°. Furthermore, the laminated steel plate reached the cooling device 7 downstream of the uncooled roll 1 in 3 seconds after being pressed, was cooled to room temperature by water spray, dried, and then wound up to obtain a laminated steel plate. Example 2 A laminated steel plate was manufactured by using an uncooled iron roll having an outer diameter of 450 mm as the uncooled roll 1 shown in FIG. 1, and otherwise operating under the same conditions as in Example 1. Example 3 A laminated steel plate was manufactured by using the heating roll 1 shown in FIG. 1 with an outer diameter of 450 mm, and otherwise operating under the same conditions as in Example 1. In order to compensate for natural cooling in the heating roll, the surface temperature of the heating roll was set at a temperature 20°C higher than the steel plate preheating temperature. Conventional Example 1 A laminated metal plate manufacturing apparatus was used, in which the heating roll 9 shown in Fig. 2 had an outer diameter of 300 mm, and the cooling roll 10 had an outer diameter of 450 mm and a hard chrome-plated iron water-cooled roll. Similarly, a 0.2 mm electrolytic chromic acid treated steel plate was heated to 230°C.
After preheating, the temperature of the molten resin was 280℃, the coating thickness was 50μm, the line speed was 50m/min, and the steel plate was wound around a water-cooled roll at an angle of 90℃.
Polyethylene terephthalate is melted and extruded from a T-die through an extruder onto the interface between the steel plate surface and the water-cooled roll, and is laminated. 3 seconds after pressure welding, it reaches the cooling device downstream of the water-cooled roll 10 and is sprayed with water. It was cooled to room temperature, dried, and then rolled up to obtain a laminated steel plate. Conventional Example 2 The heating roll 9 in Fig. 2 is a nip roll, and the outside diameter of the nip roll used in the above embodiment is
A laminated steel plate was manufactured using a 300 mm silicone rubber nip roll under the same conditions as in the conventional example. Examples 4, 5, and 6 Laminated steel plates were manufactured by changing the preheating temperature of Examples 1, 2, and 3 to 200°C. Conventional Examples 3 and 4 Laminated steel plates were manufactured by changing the preheating temperature of Conventional Examples 1 and 2 to 200°C. Examples 7, 8, and 9 Laminated steel plates were manufactured by changing the preheating temperature of Examples 1, 2, and 3 to 170°C. Conventional Examples 5 and 6 Laminated steel plates were manufactured by changing the preheating temperature of Conventional Examples 1 and 2 to 170°C. Performance tests were conducted on the laminated steel plates obtained in the above examples and conventional examples as follows. Adhesion...180℃ peel test (tensile speed: 100
mm/min) Corrosion resistance: Sprayed with 5% saline at 35°C for 1500 hours The results were evaluated in 5 stages according to the following criteria. 5...Very good, 3...Good, 1...Poor The performance evaluation results are shown in Table 1 together with roll conditions, preheating temperature, and average temperature (heat retention temperature) after pressure lamination until forced cooling. In addition, when only the rubber nip roll 2 of Examples 1 to 9 was changed to an iron water-cooled roll with an outer diameter of 300 mm and laminated steel plates were manufactured and the adhesion and corrosion resistance were investigated, the results showed that Examples 1 to 9 shown in Table 1 Equivalent adhesion and corrosion resistance were obtained. The heat retention temperature during production was also the same as that of Examples 1 to 9 shown in Table 1. From Table 1, it is clear that according to the method of the present invention, a laminated steel sheet with superior adhesion and corrosion resistance can be obtained with lower temperature preheating than the conventional method.

【表】 (発明の効果) 以上詳述したように本発明法によれば、優れた
耐食性、密着性を有するラミネート金属板を低温
予熱で製造することができる。
[Table] (Effects of the Invention) As detailed above, according to the method of the present invention, a laminated metal plate having excellent corrosion resistance and adhesion can be produced by low-temperature preheating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の説明図、第2図は従来法の
説明図である。 1…非冷却あるいは加熱ロール、2…ニツプロ
ール、3…金属板、4…押出機、5…Tダイ、6
…熱可塑性樹脂、7…冷却装置、8…ラミネート
金属板、9…加熱ロール、10…冷却ロール。
FIG. 1 is an explanatory diagram of the method of the present invention, and FIG. 2 is an explanatory diagram of the conventional method. 1...Non-cooled or heated roll, 2...Nippro roll, 3...Metal plate, 4...Extruder, 5...T die, 6
...Thermoplastic resin, 7... Cooling device, 8... Laminated metal plate, 9... Heating roll, 10... Cooling roll.

Claims (1)

【特許請求の範囲】[Claims] 1 金属板を予熱後、ニツプロールと非冷却或い
は加熱ロールの間〓へ、上記ニツプロールに巻き
付けず、上記非冷却或いは加熱ロールに巻き付け
て至らせ、上記ニツプロールと上記金属板の間〓
に押出機を経て、Tダイより溶融した熱可塑性樹
脂を流下して金属板に樹脂を上記ニツプロールに
てラミネートし、ラミネート後のラミネート金属
板を上記ニツプロールに巻き付けず、上記非冷却
或いは加熱ロールに巻き付けて非冷却或いは加熱
ロールを通過させることを特徴とするラミネート
金属板の製造方法。
1. After preheating the metal plate, wrap it between the nip roll and the non-cooled or heated roll without wrapping it around the nip roll, and wrap it around the non-cooled or heated roll, and between the nip roll and the metal plate.
After passing through the extruder, the molten thermoplastic resin is flowed down from the T-die and the resin is laminated onto the metal plate using the above Nip roll, and the laminated metal plate after lamination is not wrapped around the above Nip roll, but is placed on the non-cooled or heated roll. A method for manufacturing a laminated metal sheet, which comprises winding the sheet and passing it through uncooled or heated rolls.
JP1064434A 1989-03-16 1989-03-16 Manufacture of laminated metal plate Granted JPH02241737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1064434A JPH02241737A (en) 1989-03-16 1989-03-16 Manufacture of laminated metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1064434A JPH02241737A (en) 1989-03-16 1989-03-16 Manufacture of laminated metal plate

Publications (2)

Publication Number Publication Date
JPH02241737A JPH02241737A (en) 1990-09-26
JPH0563306B2 true JPH0563306B2 (en) 1993-09-10

Family

ID=13258167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1064434A Granted JPH02241737A (en) 1989-03-16 1989-03-16 Manufacture of laminated metal plate

Country Status (1)

Country Link
JP (1) JPH02241737A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592508A (en) * 1991-10-01 1993-04-16 Nippon Steel Metal Prod Co Ltd Metallic sheet coated with resin film and production thereof
JP2007044943A (en) * 2005-08-09 2007-02-22 Jfe Steel Kk Laminated metal sheet and its manufacturing method
JP5664529B2 (en) * 2011-11-15 2015-02-04 Jfeスチール株式会社 LAMINATED METAL PLATE MANUFACTURING METHOD AND LAMINATED METAL PLATE

Also Published As

Publication number Publication date
JPH02241737A (en) 1990-09-26

Similar Documents

Publication Publication Date Title
DK166265B (en) Method for the manufacture of a laminated material, apparatus for the manufacture of a laminated material and such material
JP3080657B2 (en) Method and apparatus for manufacturing thermoplastic resin-coated metal sheet
TW201836857A (en) Method for manufacturing laminate, apparatus for manufacturing laminate, and laminate
JPH0563306B2 (en)
JP3913777B2 (en) Method and apparatus for coating metal strip and product thereof
JPS6360726A (en) Manufacture of highly transparent plastic film or sheet
JP2620122B2 (en) Laminated metal sheet manufacturing equipment
JPH10138316A (en) Manufacture of resin/metal laminated material
US3505147A (en) Process of coating a preheated metal web with a graft copolymer of polyethylene and a monomer having a reactive carboxyl group
JP2971391B2 (en) Method and apparatus for manufacturing resin-coated metal sheet
JPH01301317A (en) Manufacture of laminated metallic sheet
JPH03158235A (en) Manufacture of laminated metal sheet
JP3060249B2 (en) Manufacturing method of laminated metal sheet
JPH10209583A (en) Flexible metal foil polyimide laminate
JP3470526B2 (en) Production method of double-sided resin-coated metal laminate
JPH11100006A (en) Roll for extrusion laminate
JPH069833Y2 (en) Equipment for manufacturing resin-coated metal plates
JPH01271215A (en) Manufacturing device of laminated metallic sheet
JP3392760B2 (en) Manufacturing method of chemical resistant sheet
JP2553910B2 (en) Method for manufacturing resin-coated metal plate
JP2005349787A (en) Manufacturing method of resin coated metal sheet excellent in adhesion of resin
JPH0679801A (en) Manufacture of resin coated metal sheet
JPS63214426A (en) Laminating of thermoplastic resin film on metallic sheet
JP2968413B2 (en) Method for producing thermoplastic coated metal sheet
JP3048781B2 (en) Manufacturing method of laminated metal sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 16