JPH0562678B2 - - Google Patents

Info

Publication number
JPH0562678B2
JPH0562678B2 JP61267736A JP26773686A JPH0562678B2 JP H0562678 B2 JPH0562678 B2 JP H0562678B2 JP 61267736 A JP61267736 A JP 61267736A JP 26773686 A JP26773686 A JP 26773686A JP H0562678 B2 JPH0562678 B2 JP H0562678B2
Authority
JP
Japan
Prior art keywords
pipe
fiber
layer
cracks
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61267736A
Other languages
Japanese (ja)
Other versions
JPS63125883A (en
Inventor
Hiroyuki Kosuda
Hideo Fukuda
Naohiro Kooryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP61267736A priority Critical patent/JPS63125883A/en
Publication of JPS63125883A publication Critical patent/JPS63125883A/en
Publication of JPH0562678B2 publication Critical patent/JPH0562678B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、繊維強化樹脂製パイプに関するもの
である。更に詳しくは、クラツクのない繊維強化
樹脂製パイプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a fiber-reinforced resin pipe. More specifically, the present invention relates to a crack-free fiber-reinforced resin pipe.

〔従来技術及び問題点〕[Prior art and problems]

従来、高強度、高弾性繊維を強化材とした、い
わゆるFRPは様々の形態にて広く活用されてい
る。このうちFRPパイプは用途により軸方向の
力(引張、圧縮、曲げ等)と周方向の力(内圧、
外圧、つぶし)にも耐えることが要求されるた
め、強化繊維を軸方向と周方向に配向させること
が必要となる場合が多い。
Conventionally, so-called FRP, which uses high-strength, high-modulus fiber as a reinforcing material, has been widely used in various forms. Of these, FRP pipes have axial forces (tension, compression, bending, etc.) and circumferential forces (internal pressure,
Because the reinforcing fibers are required to withstand external pressure and crushing, it is often necessary to orient the reinforcing fibers in the axial and circumferential directions.

このように、周方向と軸方向に強化繊維が配向
したFRPパイプにおいては、クラツクが発生し
やすく、これら欠陥がパイプの性能を低下せしめ
ていた。
As described above, in an FRP pipe in which reinforcing fibers are oriented in the circumferential direction and the axial direction, cracks are likely to occur, and these defects degrade the performance of the pipe.

この傾向は、当該パイプの肉厚/内半径の比率
が1/10以上のとき顕著である。
This tendency is remarkable when the ratio of wall thickness/inner radius of the pipe is 1/10 or more.

ここでクラツクとは、当該パイプを軸と直角に
切断した場合、当該切断面において円弧上にみら
れる円周面の剥離(第1図等における5)と、そ
の他の半径方向、軸方向に層間或いは強化繊維に
沿つて発生する亀裂(第2図等における6)とに
大別できる。ここで前者をタイプAのクラツク、
後者をタイプBのクラツクと呼ぶことにする。
Cracks here refer to peeling of the circumferential surface (5 in Fig. 1, etc.) that is observed on an arc at the cut surface when the pipe is cut at right angles to the axis, and other cracks between layers in the radial and axial directions. Alternatively, cracks can be broadly classified into cracks that occur along reinforcing fibers (6 in FIG. 2, etc.). Here, the former is a type A crack,
We will call the latter type B crack.

これらのクラツクを防止するためにマトリツク
ス樹脂に高伸度の樹脂を使用したり、或いは各層
の様々な構成が検討されているが、いまだ充分な
成果を得るに至つていない。本発明者等は、さき
に、特開昭57−2750号公報、特開昭57−2751号公
報等において、スクリムクロスを層間に介在させ
る方法、周方向・軸方向に配向した層厚を細分割
し、薄い層を交互に配置する方法を提案した。こ
れらの方法によると、タイプBの半径方向や軸方
向に発生するクラツクの防止に効果が顕著であ
り、また、タイプAの円周面に発生するクラツク
の防止にも効果が認められるが、その後、タイプ
AのクラツクにもタイプBのクラツクにも、とも
に一層顕著な防止効果を有するFRPパイプが望
まれてきた。
In order to prevent these cracks, the use of a resin with high elongation as the matrix resin or various configurations of each layer have been considered, but no satisfactory results have yet been achieved. The present inventors previously described a method of interposing scrim cloth between layers, and a method of thinning the layer thickness oriented in the circumferential direction and the axial direction, in Japanese Patent Application Laid-open Nos. 57-2750 and 57-2751, etc. We proposed a method of dividing the material and placing thin layers alternately. These methods are significantly effective in preventing cracks that occur in the radial and axial directions of type B, and are also effective in preventing cracks that occur on the circumferential surface of type A. There has been a desire for an FRP pipe that has a more pronounced effect in preventing both type A cracks and type B cracks.

〔発明の目的〕[Purpose of the invention]

本発明は、この要望にこたえるべく、周方向と
軸方向を繊維強化した2方向強化FRPパイプに
おいて、半径方向や軸方向クラツクのみならず、
円周面のクラツクの発生もないパイプを提供する
ものである。
In order to meet this demand, the present invention has developed a two-way reinforced FRP pipe that is fiber-reinforced in the circumferential and axial directions.
To provide a pipe free from cracks on the circumferential surface.

〔発明の構成〕[Structure of the invention]

本発明は、軸方向と周方向に繊維強化された肉
厚/内半径の比率が1/10以上の繊維強化樹脂製
パイプにおいて、強化繊維の巻き角度がパイプ軸
方向に対して 外層:±5°〜±15° 内層:±60°〜90℃ よりなる2層構造としたことを特徴とする繊維強
化樹脂製パイプである。
The present invention is a fiber-reinforced resin pipe that is fiber-reinforced in the axial and circumferential directions and has a wall thickness/inner radius ratio of 1/10 or more. This is a fiber-reinforced resin pipe characterized by having a two-layer structure consisting of °~±15° inner layer: ±60°~90°C.

本発明の2層構造の繊維強化樹脂製パイプは、
成形時クラツクの発生がなく、軸方向の力(引
張、圧縮、曲げ等)のみならず、周方向の力(内
圧、外圧、つぶし)にも優れた特性をもつ繊維強
化樹脂製パイプである。
The two-layered fiber-reinforced resin pipe of the present invention is
This is a fiber-reinforced resin pipe that does not generate cracks during molding and has excellent properties against not only axial forces (tension, compression, bending, etc.) but also circumferential forces (internal pressure, external pressure, crushing).

本発明において強化繊維とは、炭素繊維、ガラ
ス繊維のほかに、通常FRPの製造に用いられる
無機繊維、勇気繊維の1種又は2種以上の組合せ
からなるものをいうが、特に、炭素繊維の如く熱
膨脹係数の小さいものに、本発明は有効である。
In the present invention, the reinforcing fiber refers to one or a combination of two or more of carbon fiber, glass fiber, inorganic fiber, and courage fiber that are usually used in the production of FRP. The present invention is effective for materials having a small coefficient of thermal expansion.

本発明の繊維強化樹脂製パイプは、通常の繊維
強化樹脂製パイプの製作方法、即ち、フイラメン
トワインデイング法、プルトルージヨン法、プリ
プレグを用いたシートワインデイング法等によつ
て得ることができる。マトリツクス樹脂は、通常
の繊維強化樹脂に用いられるものであれば特に制
限されることはない。パイプには、その用途によ
つてはテーパーを付与することも可能である。
The fiber-reinforced resin pipe of the present invention can be obtained by a conventional manufacturing method for fiber-reinforced resin pipes, such as a filament winding method, a pultrusion method, and a sheet winding method using prepreg. The matrix resin is not particularly limited as long as it is used for ordinary fiber-reinforced resins. The pipe may also be tapered depending on its use.

強化繊維の配向角度は、パイプ軸心を含む平面
を投影面として、強化繊維を正射影したときの繊
維とパイプ軸心との交角を意味するもので、時計
回り方向を(+)、その逆方向を(−)とする。
The orientation angle of reinforcing fibers refers to the intersection angle between the reinforcing fibers and the pipe axis when the reinforcing fibers are orthogonally projected onto a plane containing the pipe axis, and the clockwise direction is (+) and vice versa. Let the direction be (-).

2層構造は、主に軸方向の負荷を負担する外側
の層と周方向の負荷を負担する内側の層とを有す
る構造物を指すものであり、用途によつては外
層、内層にスクリムクロス等を介在させることも
できる。
A two-layer structure refers to a structure that has an outer layer that mainly bears the load in the axial direction and an inner layer that bears the load in the circumferential direction.Depending on the application, scrim cloth is used for the outer layer and the inner layer. It is also possible to intervene.

本発明は、周方向と軸方向を強化した繊維強化
樹脂製パイプにおいてクラツクが発生しない構成
を得るものである。そのためには、外層を軸方向
強化し内層を周方向強化することが必要である。
ここで、内外層の周、軸の強化方向が逆転する
と、層間(円周面)に剥離が発生してしまう。
The present invention provides a structure in which cracks do not occur in a fiber-reinforced resin pipe reinforced in the circumferential direction and the axial direction. For this purpose, it is necessary to strengthen the outer layer in the axial direction and the inner layer in the circumferential direction.
Here, if the reinforcing directions of the circumference and axis of the inner and outer layers are reversed, peeling occurs between the layers (circumferential surface).

更に、本発明において外層は、パイプ軸方向に
対して強化繊維の配向角度が±5°〜±5°であるこ
とが必要である。外層の強化繊維の配向角度がパ
イプ軸方向に対して±5°未満であると外層にクラ
ツクが発生し、±15°超では、軸方向の性能が著し
く低下してしまう。従つて、外層はパイプ軸方向
に対して強化繊維の巻き角度が±5°〜±15°であ
ることが必要である。
Furthermore, in the present invention, it is necessary that the reinforcing fibers in the outer layer have an orientation angle of ±5° to ±5° with respect to the axial direction of the pipe. If the orientation angle of the reinforcing fibers in the outer layer is less than ±5° with respect to the axial direction of the pipe, cracks will occur in the outer layer, and if it exceeds ±15°, the performance in the axial direction will deteriorate significantly. Therefore, it is necessary that the reinforcing fibers in the outer layer have a winding angle of ±5° to ±15° with respect to the axial direction of the pipe.

内層の強化繊維の配向角度がパイプ軸方向に対
して±60°未満では周方向の性能が著しく低下す
る。±60°〜90°の範囲において本発明の目的が達
成できる。
If the orientation angle of the reinforcing fibers in the inner layer is less than ±60° with respect to the axial direction of the pipe, the performance in the circumferential direction will be significantly reduced. The object of the present invention can be achieved within the range of ±60° to 90°.

〔発明の効果〕〔Effect of the invention〕

本発明の炭素繊維強化樹脂製パイプは、クラツ
クがなく、しかも軸方向の力(引張、圧縮、曲げ
等)のみならず周方向の力(内圧、外圧、つぶ
し)にも優れた特性をもつ繊維強化樹脂製パイプ
である。
The carbon fiber reinforced resin pipe of the present invention is made of fibers that are crack-free and have excellent properties against not only axial force (tensile, compression, bending, etc.) but also circumferential force (internal pressure, external pressure, crushing). This is a reinforced resin pipe.

〔実施例及び比較例〕[Examples and comparative examples]

実施例 1 単繊維数6000本のアクリル系炭素繊維束〔東邦
レーヨン(株)製〕にジグリシジルエーテルビスフエ
ノールA系エポキシ樹脂〔商品名エピコート828
油化シエルエポキシ(株)製〕100重量部、無水メチ
ルハイミツク酸〔日立化成工業(株)製〕90重量部、
2−エチル−4−メチルイミダゾール1重量部か
らなる樹脂組成物を、樹脂含量36重量%で含浸さ
せつつ直径30mmのマンドレルにフイラメントワイ
ンド法により巻回した。
Example 1 A diglycidyl ether bisphenol A-based epoxy resin [trade name Epicote 828] was added to an acrylic carbon fiber bundle with 6000 single fibers [manufactured by Toho Rayon Co., Ltd.].
100 parts by weight of Yuka Ciel Epoxy Co., Ltd., 90 parts by weight of methyl hymic anhydride (manufactured by Hitachi Chemical Co., Ltd.),
A resin composition consisting of 1 part by weight of 2-ethyl-4-methylimidazole was impregnated with a resin content of 36% by weight and wound around a mandrel having a diameter of 30 mm by a filament winding method.

内層は2mmの圧さで繊維を90°方向に配向させ、
外層は4mmの厚さで、繊維をパイプ軸に対して±
10°傾けた2層構造で長さ400mmのパイプを製作し
た。
The inner layer has fibers oriented in a 90° direction with a pressure of 2 mm.
The outer layer is 4mm thick and the fibers are aligned ±
A pipe with a length of 400 mm was manufactured with a two-layer structure tilted at 10 degrees.

このパイプの中央部をパイプ軸に対して直角に
切断し、かつ軸方向にも切断し、その断面を観察
したが、クラツクは見出せなかつた。このモデル
図を第3図に示した。
The central part of this pipe was cut at right angles to the pipe axis and also in the axial direction, and the cross section was observed, but no cracks were found. This model diagram is shown in Figure 3.

比較例 1 実施例1と同様の手順で、内層2mmの厚さで繊
維を90°方向に配向させ、外層は4mmの厚さで、
繊維を0°方向に配向させた2層構造のパイプを製
作した。実施例1と同様の手順で、パイプ中央部
を切断し、その断面を観察した。
Comparative Example 1 Using the same procedure as in Example 1, the inner layer had a thickness of 2 mm and the fibers were oriented in the 90° direction, and the outer layer had a thickness of 4 mm.
A two-layered pipe with fibers oriented in the 0° direction was fabricated. The central part of the pipe was cut in the same manner as in Example 1, and the cross section thereof was observed.

その結果、外層部にクラツクが数ケ所発見され
た。このモデル図を第4図に示した。
As a result, several cracks were discovered in the outer layer. This model diagram is shown in Figure 4.

比較例 2 実施例1と同様の手順で、内層は4mmの厚さで
繊維をパイプ軸方向に対して±10°傾けて配向さ
せ、外層は2mmの厚さで繊維を90°方向に配向さ
せた2層構造のパイプを製作した。実施例1と同
様の手順で、パイプ中央部を切断し、その断面を
観察した。
Comparative Example 2 Using the same procedure as in Example 1, the inner layer was 4 mm thick and the fibers were oriented at an angle of ±10° with respect to the pipe axis direction, and the outer layer was 2 mm thick and the fibers were oriented at 90°. A pipe with a two-layer structure was manufactured. The central part of the pipe was cut in the same manner as in Example 1, and the cross section thereof was observed.

その結果、外層と内層との境界面と内層にクラ
ツクが数ケ所発見された。このモデル図を第5図
に示した。
As a result, several cracks were discovered on the interface between the outer layer and the inner layer and on the inner layer. This model diagram is shown in FIG.

比較例 3 実施例1と同様の手順で、内層は0.5mmの厚さ
で繊維を90°方向に配向させ、その外側は1mmの
厚さで繊維をパイプ軸に対し±10°に配向させ、
この繰返しを4回行い8層構造のパイプを製作し
た。実施例1と同様の手順で、パイプ中央部を切
断し、その断面を観察した。
Comparative Example 3 Using the same procedure as in Example 1, the inner layer had a thickness of 0.5 mm and the fibers were oriented in the 90° direction, and the outer layer had a thickness of 1 mm and the fibers were oriented at ±10° with respect to the pipe axis.
This process was repeated four times to produce a pipe with an eight-layer structure. The central part of the pipe was cut in the same manner as in Example 1, and the cross section thereof was observed.

その結果、周方向に配向させた層の内側の境界
面にラツクが数ケ所発見された。このモデル図を
第6図に示した。
As a result, several racks were found on the inner boundary surface of the circumferentially oriented layers. This model diagram is shown in Figure 6.

第3〜6図からも明らかなごとく、本発明によ
るパイプ構成がクラツク防止に大きく寄与してい
ることがわかる。
As is clear from FIGS. 3 to 6, it can be seen that the pipe structure according to the present invention greatly contributes to preventing cracks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は各クラツチの定義図を示す。第3
図は実施例1の、第4図は比較例1の、第5図は
比較例2の、第6図は比較例3の、それぞれモデ
ル図を示す。 1:パイプ、2:強化繊維が軸に対し±60°〜
90°に配向した層、3:軸に対し±5°〜±15°に配
向した層、4:軸方向(0°)に配向した層、5:
タイプAのクラツク、6:タイプBのクラツク。
Figures 1 and 2 show definition diagrams of each clutch. Third
The figure shows a model diagram of Example 1, FIG. 4 shows a model diagram of Comparative Example 1, FIG. 5 shows a model diagram of Comparative Example 2, and FIG. 6 shows a model diagram of Comparative Example 3. 1: Pipe, 2: Reinforced fiber at ±60° to the axis
Layer oriented at 90°, 3: Layer oriented at ±5° to ±15° with respect to the axis, 4: Layer oriented in the axial direction (0°), 5: Layer oriented at axial direction (0°).
Type A crack, 6: Type B crack.

Claims (1)

【特許請求の範囲】 1 軸方向と周方向に繊維強化された肉厚/内半
径の比率が1/10以上の繊維強化樹脂製パイプに
おいて、強化繊維の巻き角度がパイプ軸方向に対
して 外層:±5°〜±15° 内層:±60°〜90℃ よりなる2層構造としたことを特徴とする繊維強
化樹脂製パイプ。 2 強化繊維が炭素繊維である特許請求の範囲1
に記載の繊維強化樹脂製パイプ。
[Scope of Claims] 1. In a fiber-reinforced resin pipe that is fiber-reinforced in the axial and circumferential directions and has a wall thickness/inner radius ratio of 1/10 or more, the outer layer has a winding angle of reinforcing fibers with respect to the axial direction of the pipe. A fiber-reinforced resin pipe characterized by a two-layer structure consisting of: ±5° to ±15° Inner layer: ±60° to 90°C. 2 Claim 1 in which the reinforcing fiber is carbon fiber
The fiber-reinforced resin pipe described in .
JP61267736A 1986-11-12 1986-11-12 Pipe made of fiber reinforced resin Granted JPS63125883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61267736A JPS63125883A (en) 1986-11-12 1986-11-12 Pipe made of fiber reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61267736A JPS63125883A (en) 1986-11-12 1986-11-12 Pipe made of fiber reinforced resin

Publications (2)

Publication Number Publication Date
JPS63125883A JPS63125883A (en) 1988-05-30
JPH0562678B2 true JPH0562678B2 (en) 1993-09-08

Family

ID=17448860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61267736A Granted JPS63125883A (en) 1986-11-12 1986-11-12 Pipe made of fiber reinforced resin

Country Status (1)

Country Link
JP (1) JPS63125883A (en)

Also Published As

Publication number Publication date
JPS63125883A (en) 1988-05-30

Similar Documents

Publication Publication Date Title
US4605385A (en) Fibre reinforced plastics power transmission shaft
JP2888664B2 (en) Optical tube made of CFRP
JPH0562678B2 (en)
JPH0425689A (en) High strength fiber reinforced plastic pipe
EP0577409A1 (en) Pipe-like fiber-reinforced plastic structural material and method of manufacturing the same
JPH0740488A (en) Fiber reinforced resin tubular material
JPH1122720A (en) Frp-made roll
CN111805938A (en) Heat-proof bearing integrated structure for aircraft and forming method thereof
JPH0422996Y2 (en)
JPH04201244A (en) Pipe structure made of fiber reinforced composite material
JPH0541546A (en) Fiber-reinforced resin made multiple cylinder and manufacture thereof and heat insulation support structure based on its application
JPH02113170A (en) Piston pin
JPH02296953A (en) Composite structural member and manufacture thereof
JPH0349349Y2 (en)
CN106696305A (en) Manufacturing technology of carbon fiber loading rod and carbon fiber loading rod
JP3412918B2 (en) Continuous fiber reinforced plastic tube
JP3278985B2 (en) FRP cylinder
JP2000179757A (en) Fiber reinforced plastic pipe
JPH0297791A (en) Resin compound pipe
JP2001061374A (en) Fishing rod
JPH063100A (en) Outer shell structure of underwater running body
JPH07166648A (en) Truss member
JPH0338108B2 (en)
JPH04198226A (en) Corrosion-resistant reinforced resin pipe
JPH04249137A (en) Fiber reinforced resin material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees