JPH04249137A - Fiber reinforced resin material - Google Patents

Fiber reinforced resin material

Info

Publication number
JPH04249137A
JPH04249137A JP3033746A JP3374691A JPH04249137A JP H04249137 A JPH04249137 A JP H04249137A JP 3033746 A JP3033746 A JP 3033746A JP 3374691 A JP3374691 A JP 3374691A JP H04249137 A JPH04249137 A JP H04249137A
Authority
JP
Japan
Prior art keywords
reinforced resin
resin material
fiber
synthetic resin
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3033746A
Other languages
Japanese (ja)
Inventor
Kiyotaka Nakai
清隆 中井
Shiyuuji Iida
飯田 修士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP3033746A priority Critical patent/JPH04249137A/en
Publication of JPH04249137A publication Critical patent/JPH04249137A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement

Abstract

PURPOSE:To manufacture the above fiber reinforced resin material of high mechanical strength and without generating delamination. CONSTITUTION:A three-dimensional filler provided with projections in the three- dimensional directions like a tetrapod is interposed in a fiber reinforced resin material composed of laminate reinforced fiber layers and impregnated with synthetic resin together with said synthetic resin. Said projections are in the state of biting into the fiber reinforced layer. As the three-dimensional filler, for example, a zinc oxide whisker is used.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,特に強化繊維層間の強
度に優れた繊維強化樹脂材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced resin material particularly having excellent strength between reinforcing fiber layers.

【0002】0002

【従来技術】繊維強化樹脂材料は,強化繊維層を多層に
積層すると共にこれらの間に合成樹脂を含浸させた複合
材で,FRPとして各種用途に用いられている。例えば
,図8に示すごとく,円筒状の繊維強化樹脂材料90は
,釣竿,パイプ,軽量構造材等として用いられている。 該繊維強化樹脂材料90は,強化繊維層としてのガラス
ロービング9を多層に積層(巻回)すると共にこれらの
間に合成樹脂8を含浸し,該合成樹脂8を加熱硬化させ
たものである。なお,該繊維強化樹脂材料90は,その
内側に円状の空洞93を有する。そして,繊維強化樹脂
材料においては,その機械的特性は,殆ど強化繊維層に
依存している。
BACKGROUND OF THE INVENTION Fiber-reinforced resin materials are composite materials made by laminating multiple layers of reinforcing fibers and impregnating the layers with synthetic resin, and are used in various applications as FRP. For example, as shown in FIG. 8, a cylindrical fiber-reinforced resin material 90 is used for fishing rods, pipes, lightweight structural materials, and the like. The fiber-reinforced resin material 90 is obtained by laminating (winding) glass rovings 9 as reinforcing fiber layers in multiple layers, impregnating a synthetic resin 8 between them, and heat-curing the synthetic resin 8. Note that the fiber reinforced resin material 90 has a circular cavity 93 inside thereof. The mechanical properties of fiber-reinforced resin materials depend mostly on the reinforcing fiber layer.

【0003】0003

【解決しようとする課題】しかしながら,繊維強化樹脂
材料は,図8に示すごとく,積層された強化繊維層の間
において層間剥離95を生じ易く,この層間剥離95を
生ずると繊維強化樹脂材料90の強度は著しく低下して
しまう。この層間剥離95は,図8に示すごとく,繊維
強化樹脂材料90が円筒状体の場合には,その円周に沿
った方向に生ずることが多い。また,布状の強化繊維層
を上下方向に積層した板状の繊維強化樹脂材料(後述す
る図6参照)についても,同様に層間剥離に問題がある
。このように,繊維強化樹脂材料は,軽量,高強度材と
して優れているが,層間剥離という重大な問題をかかえ
ている。
[Problem to be Solved] However, as shown in FIG. 8, fiber-reinforced resin materials tend to cause delamination 95 between the laminated reinforcing fiber layers, and when this delamination 95 occurs, the fiber-reinforced resin material 90 The strength will drop significantly. As shown in FIG. 8, when the fiber-reinforced resin material 90 is cylindrical, this delamination 95 often occurs in the direction along the circumference. Further, a plate-shaped fiber-reinforced resin material (see FIG. 6 described later) in which cloth-shaped reinforcing fiber layers are laminated in the vertical direction also has the problem of delamination. As described above, fiber-reinforced resin materials are excellent as lightweight and high-strength materials, but they suffer from the serious problem of delamination.

【0004】かかる層間剥離の問題に対処するため,強
化繊維層に対してその長手方向と直角方向にガラス繊維
等の短繊維を,ジェット流で三次元的に配列させる方法
が提案されている(特公平2−2986号公報)。しか
しながら,この方法は,設備の大型化を伴い,また複雑
形状品,円筒状品,大厚みの繊維強化樹脂材料に対して
は実施が困難である。そこで,発明者らは,層間剥離対
策として種々の検討を重ね,本発明をなすに至った。本
発明は,かかる問題点に鑑み,層間剥離を防止でき,機
械的強度に優れた繊維強化樹脂材料を提供しようとする
ものである。
In order to deal with this problem of delamination, a method has been proposed in which short fibers such as glass fibers are three-dimensionally arranged in a jet stream in a direction perpendicular to the longitudinal direction of the reinforcing fiber layer ( (Special Publication No. 2-2986). However, this method requires larger equipment and is difficult to implement for products with complex shapes, cylindrical shapes, and thick fiber-reinforced resin materials. Therefore, the inventors conducted various studies as a countermeasure against delamination and came up with the present invention. In view of these problems, the present invention aims to provide a fiber-reinforced resin material that can prevent delamination and has excellent mechanical strength.

【0005】[0005]

【課題の解決手段】本発明は,強化繊維層を多層状に積
層すると共に,これらの間に合成樹脂を含浸させてなる
繊維強化樹脂材料において,積層された強化繊維層の間
にはテトラポット状のごとく三次元方向に突起を有する
三次元フィラーを上記合成樹脂と共に介在させてなり,
かつ上記三次元フィラーはその針状突起が強化繊維層の
中に食い込んだ状態にあることを特徴とする繊維強化樹
脂材料にある。本発明において最も注目すべきことは,
積層した強化繊維層の間に上記三次元フィラーを,合成
樹脂と共に介在させたこと,及び三次元フィラーの突起
は強化繊維層の中に食い込んだ状態にあることである。
[Means for solving the problems] The present invention provides a fiber-reinforced resin material in which reinforcing fiber layers are laminated in a multi-layered manner and a synthetic resin is impregnated between them. A three-dimensional filler having protrusions in three-dimensional directions like a shape is interposed with the above synthetic resin,
The three-dimensional filler is a fiber-reinforced resin material characterized in that its acicular protrusions bite into the reinforcing fiber layer. The most noteworthy thing about this invention is that
The three-dimensional filler is interposed together with the synthetic resin between the laminated reinforcing fiber layers, and the protrusions of the three-dimensional filler are wedged into the reinforcing fiber layers.

【0006】三次元フィラーとしては,三方向以上に突
出した突起を有する材料を用いる。そして,該三次元フ
ィラーの大きさは,その針状突起間の最大距離が10μ
m以上のものを用いることが好ましい。10μm未満で
は,強度向上への寄与が少ない。上記三次元フィラーと
しては,例えば酸化亜鉛のウィスカがある。該ウィスカ
は,後述する図3に示すごとく,テトラポット状に4方
向等の突出した針状突起を有している。また,該三次元
フィラーは,合成樹脂に対して0.05〜5%(重量比
)用いることが好ましい。0.05%未満では,強化繊
維層間に食い込む三次元フィラーの量が少なく強度向上
が充分でない。一方,5%を越えても,それに見合う強
度向上を得難い。
[0006] As the three-dimensional filler, a material having protrusions protruding in three or more directions is used. The size of the three-dimensional filler is such that the maximum distance between its needle-like protrusions is 10 μm.
It is preferable to use one of m or more. When the thickness is less than 10 μm, there is little contribution to strength improvement. Examples of the three-dimensional filler include zinc oxide whiskers. As shown in FIG. 3, which will be described later, the whisker has acicular protrusions that protrude in four directions in a tetrapod shape. Further, the three-dimensional filler is preferably used in an amount of 0.05 to 5% (weight ratio) based on the synthetic resin. If it is less than 0.05%, the amount of three-dimensional filler that bites in between the reinforcing fiber layers is small, and the strength improvement is not sufficient. On the other hand, even if it exceeds 5%, it is difficult to obtain a commensurate increase in strength.

【0007】[0007]

【作用及び効果】本発明においては,積層した強化繊維
層の間に合成樹脂と共に三次元フィラーを介在させてお
り,該三次元フィラーの突起が強化繊維層の中に食い込
んだ状態にある。そして,本発明の繊維強化樹脂材料は
,強度,特に曲げ強度,曲げ弾性率が高い。このように
高い強度が得られる理由は,明確ではないが,次の理由
によるものと思われる。即ち,上記三次元フィラーが強
化繊維層と合成樹脂の間を接続する役割を果たして強度
を向上させると共に,該三次元フィラーが合成樹脂のマ
トリクス中にも多数介在して該マトリクス自体の強度を
向上させるものと思われる。また,そのため層間剥離が
生じ難い。以上のごとく,本発明によれば,層間剥離を
防止でき,機械的強度に優れた繊維強化樹脂材料を提供
することができる。
[Operations and Effects] In the present invention, a three-dimensional filler is interposed together with a synthetic resin between the laminated reinforcing fiber layers, and the protrusions of the three-dimensional filler are wedged into the reinforcing fiber layers. The fiber-reinforced resin material of the present invention has high strength, particularly high bending strength and bending modulus. The reason why such high strength is obtained is not clear, but it is thought to be due to the following reasons. That is, the three-dimensional filler plays a role of connecting between the reinforcing fiber layer and the synthetic resin to improve the strength, and a large number of the three-dimensional filler is also present in the synthetic resin matrix to improve the strength of the matrix itself. It seems that it is possible to do so. In addition, delamination is therefore less likely to occur. As described above, according to the present invention, it is possible to provide a fiber-reinforced resin material that can prevent delamination and has excellent mechanical strength.

【0008】[0008]

【実施例】実施例1 本発明にかかる繊維強化樹脂材料につき,図1〜図7を
用いて説明する。本例の繊維強化樹脂材料10は,図1
に示すごとく,強化繊維層1を多層状に積層すると共に
,これらの間に合成樹脂2を含浸させてなり,また積層
された強化繊維層1の間には多数の三次元フィラー3を
介在させてなる。そして,該三次元フィラー3の針状突
起31は,強化繊維層1の中に食い込んだ状態にある。 上記三次元フィラー3は,図3に示すごとく,テトラポ
ット状のごとく三次元方向に伸長した針状突起31を有
する。なお,該図3は,後述する酸化亜鉛ウィスカのS
EM写真(走査型電子顕微鏡写真,倍率1000倍)を
転記したものである。
EXAMPLES Example 1 A fiber-reinforced resin material according to the present invention will be explained with reference to FIGS. 1 to 7. The fiber reinforced resin material 10 of this example is shown in FIG.
As shown in the figure, reinforcing fiber layers 1 are laminated in a multilayered manner, and a synthetic resin 2 is impregnated between them, and a large number of three-dimensional fillers 3 are interposed between the laminated reinforcing fiber layers 1. It becomes. The needle-like protrusions 31 of the three-dimensional filler 3 are in a state of digging into the reinforcing fiber layer 1. As shown in FIG. 3, the three-dimensional filler 3 has acicular protrusions 31 extending in the three-dimensional direction like a tetrapod shape. Note that FIG. 3 shows the S of zinc oxide whiskers, which will be described later.
This is a transcription of an EM photograph (scanning electron micrograph, magnification: 1000x).

【0009】また,上記強化繊維層1は,図2に示すご
とく,多数の強化繊維(例えばガラス繊維)11を束ね
たロービングである。そして,このロービングを,図5
に示すごとく,巻回,積層して繊維強化樹脂材料の骨格
部分を形成している。このことからも知られるように,
図1は,図2に示した強化繊維層1の積層部分の断面を
示している。また,上記繊維強化樹脂材料10を製造す
るに当たっては,図4に示すごとく液体状態の合成樹脂
2中に三次元フィラー3を添加,分散させた合成樹脂浴
25を準備する。そして,数千〜数万本の強化繊維を束
ねた強化繊維層(ロービング)1を,ボビン110より
引出し,合成樹脂浴25中に浸漬し,該強化繊維層1の
周囲に合成樹脂2を含浸させる。そして,これに続けて
該強化繊維層1を巻き取り棒4により積層状に巻きつけ
る。
The reinforcing fiber layer 1 is a roving made by bundling a large number of reinforcing fibers (for example, glass fibers) 11, as shown in FIG. Then, this roving is shown in Figure 5.
As shown in the figure, the fiber-reinforced resin material is wound and laminated to form the skeleton. As can be seen from this,
FIG. 1 shows a cross section of the laminated portion of the reinforcing fiber layer 1 shown in FIG. Further, in manufacturing the fiber reinforced resin material 10, a synthetic resin bath 25 is prepared in which a three-dimensional filler 3 is added and dispersed in a liquid synthetic resin 2, as shown in FIG. Then, a reinforcing fiber layer (roving) 1 made up of thousands to tens of thousands of reinforcing fibers is pulled out from the bobbin 110, immersed in a synthetic resin bath 25, and a synthetic resin 2 is impregnated around the reinforcing fiber layer 1. let Subsequently, the reinforcing fiber layer 1 is wound in a layered manner using a winding rod 4.

【0010】上記の巻き付けは通常の方法と同様に,図
5に示すごとく,巻き取り棒4の周囲に一定のピッチで
巻き付けた後,その先端部で折り返して再び元の方向へ
巻き付け,再度先端部へ巻き付けていくという折り返し
巻き付け方法により行う。巻き付け後は,合成樹脂を加
熱硬化し,中心部にある上記巻き取り棒4を引き抜く。 これにより,同図に示すごとく,空洞14を有する円筒
状の繊維強化樹脂材料10が得られる。なお,同図には
,この繊維強化樹脂材料10を輪切りにしたリング10
1を示した。このリング101は後述するごとく,層間
剥離試験に供するものである。
The above-mentioned winding is carried out in the same way as the usual method, as shown in FIG. This is done using the fold-back method of wrapping around the area. After winding, the synthetic resin is heated and hardened, and the winding rod 4 located at the center is pulled out. As a result, as shown in the figure, a cylindrical fiber-reinforced resin material 10 having a cavity 14 is obtained. In addition, the same figure shows a ring 10 made by cutting this fiber-reinforced resin material 10 into rings.
1 was shown. This ring 101 is used for a delamination test, as will be described later.

【0011】そして,上記繊維強化樹脂材料10の製造
において重要なことは,合成樹脂浴25中にロービング
状の強化繊維層1を浸漬して,合成樹脂2を含浸させる
際に,合成樹脂浴中の三次元フィラー3も強化繊維層1
の表面に付着されていくことである。そして,該三次元
フィラー3は,強化繊維層1を巻き付けていく間に,該
強化繊維層1の間に取り込まれていき,強化繊維層1の
間に食い込んでいく。これにより,上記図1に示した繊
維強化樹脂材料10が得られる。
What is important in the production of the fiber-reinforced resin material 10 is that when the roving-shaped reinforcing fiber layer 1 is immersed in the synthetic resin bath 25 to impregnate it with the synthetic resin 2, The three-dimensional filler 3 is also the reinforcing fiber layer 1
It is attached to the surface of the surface. Then, while the reinforcing fiber layer 1 is being wound, the three-dimensional filler 3 is taken in between the reinforcing fiber layers 1 and bites into the spaces between the reinforcing fiber layers 1. As a result, the fiber-reinforced resin material 10 shown in FIG. 1 is obtained.

【0012】上記のごとく,本例の繊維強化樹脂材料1
0は,図1に示すごとく,強化繊維層1の間に合成樹脂
2と共に三次元フィラー3が介在し,該三次元フィラー
3の針状突起31が強化繊維層1へ食い込んだ状態にあ
る。そのため,積層された強化繊維層1の間の機械的強
度が向上し,層間剥離を防止することができる。なお,
上記においては,強化繊維層としての束状のロービング
を円筒状に積層した繊維強化樹脂材料について示したが
,本発明は,図6に示すごとく,布状の強化繊維層15
を多層状に積層してなる板状繊維強化樹脂材料について
も適用しうることは勿論である。
As mentioned above, the fiber reinforced resin material 1 of this example
0, as shown in FIG. 1, the three-dimensional filler 3 is interposed between the reinforcing fiber layers 1 together with the synthetic resin 2, and the needle-like protrusions 31 of the three-dimensional filler 3 are biting into the reinforcing fiber layer 1. Therefore, the mechanical strength between the laminated reinforcing fiber layers 1 is improved, and delamination can be prevented. In addition,
In the above description, a fiber-reinforced resin material in which bundle-like rovings are laminated in a cylindrical shape as a reinforcing fiber layer has been described, but as shown in FIG.
Of course, the present invention can also be applied to a plate-shaped fiber-reinforced resin material formed by laminating multiple layers.

【0013】実施例2 本発明にかかる繊維強化樹脂材料(試料No.1,2)
を作製した。また,比較のため,三次元フィラーを用い
ていない繊維強化樹脂材料(試料No.C1,C2)も
作製した。これらにつき,曲げ強度(kg/mm),曲
げ弾性率(kg/mm2 )を測定した。その結果を,
表に示す。即ち,本発明にかかる試料1は,まず強化繊
維層としてガラスロービング(旭ファイバーガラス社製
ER2310)を用いた。また,合成樹脂としては,エ
ポキシ樹脂(チバガイギー社製,LY5052とHY5
052とを10:3.8で配合)を用いた。
Example 2 Fiber-reinforced resin material according to the present invention (sample Nos. 1 and 2)
was created. For comparison, fiber-reinforced resin materials (sample Nos. C1 and C2) without using three-dimensional fillers were also produced. For these, bending strength (kg/mm) and bending elastic modulus (kg/mm2) were measured. The result is
Shown in the table. That is, in Sample 1 according to the present invention, glass roving (ER2310 manufactured by Asahi Fiber Glass Co., Ltd.) was first used as the reinforcing fiber layer. In addition, as synthetic resins, epoxy resins (manufactured by Ciba Geigy, LY5052 and HY5
052 in a ratio of 10:3.8) was used.

【0014】また,三次元フィラーとしては,上記図3
に示した酸化亜鉛ウィスカ(松下産業機器社製,パナテ
トラ)を用いた。このものは,ほぼ4方向に向かう針状
突起を有しており,その全長は平均30μmであった。 そして,該三次元フィラーは合成樹脂500重量部に対
して1重量部(0.2%)用いた。そして,この合成樹
脂と三次元フィラーとの混合浴中に,上記実施例1に示
したごとく,ロービングを浸漬して,これらを含浸,付
着させ,外径50mmの鉄パイプに巻き付けた。巻き付
けは,前記図5に示すごとく,巻角度45度,ピッチ1
50mmで,長さ方向に進み,500mm進んだところ
で折り返して,元の位置へ戻る。次に,1回目の横の部
分から再びスタートして同様に500mm進んで戻る。 そして,鉄パイプが一様にロービングで覆われた時を1
プライとし,全部で3プライの積層巻き付けを行った。
[0014] In addition, as a three-dimensional filler, the above-mentioned figure 3
The zinc oxide whiskers shown in (manufactured by Matsushita Industrial Equipment Co., Ltd., Panatetra) were used. This one had needle-like protrusions extending in approximately four directions, and the total length was 30 μm on average. The three-dimensional filler was used in an amount of 1 part by weight (0.2%) based on 500 parts by weight of the synthetic resin. Then, as shown in Example 1 above, the roving was immersed in the mixed bath of the synthetic resin and the three-dimensional filler to impregnate and adhere to it, and then wrapped around an iron pipe having an outer diameter of 50 mm. The winding was performed at a winding angle of 45 degrees and a pitch of 1, as shown in Figure 5 above.
Proceed in the length direction at 50 mm, turn around after 500 mm, and return to the original position. Next, start again from the side section where you ran the first time and go 500mm in the same way and return. Then, when the iron pipe is uniformly covered with roving,
A total of 3 plies were laminated and wrapped.

【0015】その後,120℃,60分間の加熱を行っ
て,合成樹脂を加熱硬化させた。次いで,鉄パイプを抜
き取り,円筒状の繊維強化樹脂材料を得た。次に,この
繊維強化樹脂材料の強度を測定するため,図5の下方に
示すごとく,リング101に切断した。そして,図7に
示すごとく,該リング101を,圧縮試験機5の治具5
1,52の間にセットした。圧縮試験において,上記治
具52の下降スピードは5mm/分とした。そして,リ
ング101の直径方向に荷重をかけて,繊維強化樹脂材
料内に層間剥離を生じたときの最大荷重より,曲げ強度
と曲げ弾性率を算出した。
[0015] Thereafter, heating was performed at 120°C for 60 minutes to heat and harden the synthetic resin. Next, the iron pipe was extracted to obtain a cylindrical fiber-reinforced resin material. Next, in order to measure the strength of this fiber-reinforced resin material, it was cut into rings 101 as shown in the lower part of FIG. Then, as shown in FIG.
It was set between 1.52. In the compression test, the downward speed of the jig 52 was 5 mm/min. Then, a load was applied in the diametrical direction of the ring 101, and the bending strength and bending elastic modulus were calculated from the maximum load when delamination occurred in the fiber-reinforced resin material.

【0016】また,試料No.2は,合成樹脂に対する
三次元フィラーの割合を0.1%としたもので,その他
は試料No.1と同様である。次に,比較例としての試
料No.C1は,三次元フィラーを用いなかったもので
,その他は試料No.1と同様である。また,試料No
.C2は,上記試料No.1において三次元フィラーの
代わりに,直径約13μm,平均長さ65μmの,直線
状の微細ガラス短繊維(旭ファイバーガラス社製  M
F−T10A)を用いたものである。この短繊維は,合
成樹脂に対して0.2%(重量比)配合した。その他は
,試料No.1と同様である。
[0016] Also, sample No. Sample No. 2 has a ratio of three-dimensional filler to synthetic resin of 0.1%, and the other samples are Sample No. 2. It is the same as 1. Next, as a comparative example, sample No. C1 does not use a three-dimensional filler, and the others are sample No. It is the same as 1. Also, sample No.
.. C2 is the sample No. In 1, instead of the three-dimensional filler, linear fine short glass fibers (manufactured by Asahi Fiberglass Co., Ltd. M) with a diameter of about 13 μm and an average length of 65 μm
F-T10A). This short fiber was blended at 0.2% (weight ratio) with respect to the synthetic resin. Others are sample No. It is the same as 1.

【0017】測定結果を表に示す。表より知られるごと
く,本発明にかかる試料No.1,2は,比較例試料N
o.C1,C2に比して,曲げ強度が約110kg/m
m,また曲げ弾性率が約4800kg/mm2 といず
れも高い値を示している。このように,本発明にかかる
繊維強化樹脂材料は高い機械的強度を有している。
The measurement results are shown in the table. As can be seen from the table, sample No. according to the present invention. 1 and 2 are comparative sample N
o. Compared to C1 and C2, bending strength is approximately 110 kg/m
m and flexural modulus of about 4800 kg/mm2, both of which are high values. Thus, the fiber reinforced resin material according to the present invention has high mechanical strength.

【0018】[0018]

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1における繊維強化樹脂材料の断面説明
図。
FIG. 1 is an explanatory cross-sectional diagram of a fiber-reinforced resin material in Example 1.

【図2】実施例1における強化繊維層の積層状態の斜視
図。
FIG. 2 is a perspective view of a laminated state of reinforcing fiber layers in Example 1.

【図3】実施例1における三次元フィラーとしての酸化
亜鉛ウィスカの拡大図。
FIG. 3 is an enlarged view of zinc oxide whiskers as a three-dimensional filler in Example 1.

【図4】実施例1における繊維強化樹脂材料の製法説明
図。
FIG. 4 is an explanatory diagram of the manufacturing method of the fiber-reinforced resin material in Example 1.

【図5】実施例1における円筒状繊維強化樹脂材料の製
造工程図。
FIG. 5 is a manufacturing process diagram of a cylindrical fiber-reinforced resin material in Example 1.

【図6】実施例1における板状繊維強化樹脂材料の説明
図。
FIG. 6 is an explanatory diagram of a plate-shaped fiber-reinforced resin material in Example 1.

【図7】実施例2における,強度測定説明図。FIG. 7 is an explanatory diagram of strength measurement in Example 2.

【図8】従来の円筒状繊維強化樹脂材料の斜視図。FIG. 8 is a perspective view of a conventional cylindrical fiber-reinforced resin material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  強化繊維層を多層状に積層すると共に
,これらの間に合成樹脂を含浸させてなる繊維強化樹脂
材料において,積層された強化繊維層の間にはテトラポ
ット状のごとく三次元方向に突起を有する三次元フィラ
ーを上記合成樹脂と共に介在させてなり,かつ上記三次
元フィラーはその突起が強化繊維層の中に食い込んだ状
態にあることを特徴とする繊維強化樹脂材料。
Claim 1: In a fiber-reinforced resin material in which reinforcing fiber layers are laminated in multiple layers and a synthetic resin is impregnated between them, there is a three-dimensional space between the laminated reinforcing fiber layers like a tetrapod shape. A fiber-reinforced resin material characterized in that a three-dimensional filler having projections in the direction is interposed together with the synthetic resin, and the projections of the three-dimensional filler are in a state of digging into the reinforcing fiber layer.
JP3033746A 1991-02-01 1991-02-01 Fiber reinforced resin material Pending JPH04249137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3033746A JPH04249137A (en) 1991-02-01 1991-02-01 Fiber reinforced resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3033746A JPH04249137A (en) 1991-02-01 1991-02-01 Fiber reinforced resin material

Publications (1)

Publication Number Publication Date
JPH04249137A true JPH04249137A (en) 1992-09-04

Family

ID=12394983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3033746A Pending JPH04249137A (en) 1991-02-01 1991-02-01 Fiber reinforced resin material

Country Status (1)

Country Link
JP (1) JPH04249137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008912A2 (en) * 1992-10-13 1994-04-28 Ushers Inc. Improved aggregates, and apparatus and method for making same
US5674802A (en) * 1992-10-13 1997-10-07 Ushers, Inc. Shares for catalyst carrier elements, and catalyst apparatuses employing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008912A2 (en) * 1992-10-13 1994-04-28 Ushers Inc. Improved aggregates, and apparatus and method for making same
WO1994008912A3 (en) * 1992-10-13 1994-05-26 Improved aggregates, and apparatus and method for making same
US5433777A (en) * 1992-10-13 1995-07-18 Ushers, Inc. Aggregates and materials employing same
US5674802A (en) * 1992-10-13 1997-10-07 Ushers, Inc. Shares for catalyst carrier elements, and catalyst apparatuses employing same

Similar Documents

Publication Publication Date Title
US7151129B2 (en) Carbon nanofiber-dispersed resin fiber-reinforced composite material
US5641366A (en) Method for forming fiber-reinforced composite
TWI541273B (en) Fiber reinforced plastic bolt and method for producing the same
EP1457596B1 (en) Reinforcing structure
US20210402730A1 (en) Methods of producing thermoplastic composites using fabric-based thermoplastic prepregs
US6592979B1 (en) Hybrid matrix fiber composites
JPS6410330B2 (en)
JPH0718206B2 (en) Method of manufacturing structural rod
KR960000558B1 (en) Oriented prepreg and carbon fiber reinforced composite
TW201412506A (en) Pul-core process with PMI foam core
EP0058783B1 (en) Tubing of hybrid, fibre-reinforced synthetic resin
US7547371B2 (en) Composite architectural column
JP3771360B2 (en) Tubular body made of fiber reinforced composite material
JPH04249137A (en) Fiber reinforced resin material
EP0475412A2 (en) Carbon fiber-reinforced plastic pipe-shaped article and process for producing the same
JP2007216554A (en) Fiber-reinforced synthetic resin pipe
JPH085139B2 (en) FRP hollow product manufacturing method
JPS6161966B2 (en)
JPH0242443Y2 (en)
JPH03161326A (en) Pipe fitted with flange made of fiber reinforced composite material and preparation thereof
US11873590B1 (en) Carbon fiber—carbon nanotube tow hybrid reinforcement with enhanced toughness
JP3137670B2 (en) Composite material
JPS58171945A (en) Multilayer prepreg
WO2023009524A1 (en) Additive manufacturing using continuous-fiber reinforced composites with graphene
JPS5845925A (en) Manufacture of frp pipe with thread