JPH0562125B2 - - Google Patents

Info

Publication number
JPH0562125B2
JPH0562125B2 JP23883383A JP23883383A JPH0562125B2 JP H0562125 B2 JPH0562125 B2 JP H0562125B2 JP 23883383 A JP23883383 A JP 23883383A JP 23883383 A JP23883383 A JP 23883383A JP H0562125 B2 JPH0562125 B2 JP H0562125B2
Authority
JP
Japan
Prior art keywords
macromonomer
parts
mercaptopropionic acid
polymerization
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23883383A
Other languages
Japanese (ja)
Other versions
JPS60133007A (en
Inventor
Shiro Kojima
Hiroyuki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP23883383A priority Critical patent/JPS60133007A/en
Publication of JPS60133007A publication Critical patent/JPS60133007A/en
Publication of JPH0562125B2 publication Critical patent/JPH0562125B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はマクロモノマーの製造方法に関するも
のである。 従来からグラフト共重合体は工業的には、ラジ
カル重合性官能基をもたない高分子量体の存在下
で、重合開始剤及び重合性単量体を乳化重合、塊
状重合又は懸濁重合することによりほとんど製造
されているが、このグラフト共重合体には多量の
グラフト化されていない重合体が含まれており、
グラフト効率が低いという欠点をもつていた。 一方、有機溶剤中で片末端カルボキシル基を有
する重合体とグリシジル基を有するラジカル重合
性単量体を反応させてなる、ラジカル重合性高分
子量単量体とラジカル重合性単量体を、ラジカル
共重合させて得られるグラフト共重合体には、グ
ラフト化されていない重合体がほとんど含まれ
ず、グラフト効率が極めて高いという特徴をもつ
ている。 しかし、このマクロモノマーを製造する際、反
応中に多量の赤褐色の着色を伴ない、商品価値が
低下するため、反応液の状態で脱色をおこなう必
要があり、工業的製造における障害となつてい
た。 通常、反応液の状態での脱色方法としては、例
えば活性炭による吸着法、及び酸化剤又は還元剤
による処理法等が知られているが、活性炭による
吸着法では充分脱色できず、一方酸化剤及び還元
剤による処理法は、マクロモノマーの変質をもた
らし好ましい方法とはいえない。さらにマクロモ
ノマーに対する貧溶媒、例えばメタノール、エタ
ノール、n−ヘキサンなどに沈殿させて精製する
方法があるが、充分脱色されず、また価格がアツ
プするなどの欠点がある。このように脱色方法が
マクロモノマーの工業的製造における重要な問題
であつた。 本発明者等は、マクロモノマーを製造する際反
応中に多量の赤褐色の着色を伴うという、工業的
製造における致命的な問題点に対し、その着色の
原因について鋭意検討を行なつた。 即ち、従来の製造方法例えば特公昭43−11224
号公報にみられるように有機溶剤中でラジカル重
合性単量体をメルカプト酢酸存在下で、ラジカル
重合させて得られるプレポリマーとグリシジルメ
タクリレートをジメチルラウリルアミン触媒の存
在下で反応させて得られるマクロモノマーの反応
液は、多大の赤褐色の着色を帯びており(比較例
4;ガードナー色数 6)この原因物質を鋭意研
究した結果、メルカプト酢酸が最大の着色原因物
質であると推定し、これについて鋭意検討を行な
つた。その結果カルボキシル基を有する連鎖移動
剤として、ラジカル重合反応で作用しているメル
カプト酢酸を3−メルカプトプロピオン酸又は2
−メルカプトプロピオン酸におきかえることによ
り、分子構造式より推定される以上に着色を大巾
に低下させることが可能となり本発明を完成する
に到つたのである。 即ち、本発明はメルカプトプロピオン酸を連鎖
移動剤として用いてエチレン性不飽和単量体をラ
ジカル重合してなる、前記メルカプトプロピオン
酸に由来するカルボキシル基を片末端に有する片
末端カルボキシル型重合体とグリシジル基を有す
るラジカル重合性単量体を触媒の存在下で反応さ
せることを特徴とするマクロモノマーの製造方法
である。 本発明におけるマクロモノマーとは、分子鎖の
片末端に重合性の官能基を有する比較的低分子量
の重合体(数平均分子量1000〜数万)を意味す
る。 次にメルカプトプロピオン酸に由来するカルボ
キシル基を片末端に有する重合体(以下プレポリ
マーという)の製造方法について述べる。 使用されるエチレン性不飽和単量体(以下モノ
マーという)としては、例えばスチレン、ビニル
トルエン、酢酸ビニル、メタクリル酸アルキル
The present invention relates to a method for producing macromonomers. Traditionally, graft copolymers have been produced industrially by emulsion polymerization, bulk polymerization, or suspension polymerization of a polymerization initiator and a polymerizable monomer in the presence of a polymer having no radically polymerizable functional group. However, this graft copolymer contains a large amount of ungrafted polymer;
It had the disadvantage of low grafting efficiency. On the other hand, a radically polymerizable high molecular weight monomer and a radically polymerizable monomer, which are obtained by reacting a polymer having a carboxyl group at one end with a radically polymerizable monomer having a glycidyl group in an organic solvent, are combined into a radically polymerizable monomer. The graft copolymer obtained by polymerization contains almost no non-grafted polymer and has an extremely high grafting efficiency. However, when producing this macromonomer, a large amount of reddish-brown coloring occurs during the reaction, reducing the commercial value, so it is necessary to decolorize the reaction solution, which has been an obstacle in industrial production. . Generally, methods for decolorizing the reaction solution include adsorption using activated carbon and treatment using an oxidizing agent or reducing agent.However, the adsorption method using activated carbon cannot achieve sufficient decolorization; The treatment method using a reducing agent is not a preferable method because it causes deterioration of the macromonomer. Furthermore, there is a method of purifying the macromonomer by precipitation in a poor solvent such as methanol, ethanol, n-hexane, etc., but this method has drawbacks such as insufficient decolorization and increased cost. As described above, the decolorization method has been an important problem in the industrial production of macromonomers. The inventors of the present invention have conducted extensive research into the cause of the coloring, which is a fatal problem in industrial production, in which a large amount of reddish-brown coloring occurs during the reaction when producing a macromonomer. That is, conventional manufacturing methods such as Japanese Patent Publication No. 43-11224
As seen in the publication, a macro is obtained by reacting a prepolymer obtained by radical polymerization of a radically polymerizable monomer in an organic solvent in the presence of mercaptoacetic acid with glycidyl methacrylate in the presence of a dimethyl lauryl amine catalyst. The monomer reaction solution had a large amount of reddish-brown coloring (Comparative Example 4; Gardner color number 6).As a result of intensive research into the causative agent, we estimated that mercaptoacetic acid was the most causative agent of the coloring, and we We conducted a thorough study. As a result, as a chain transfer agent having a carboxyl group, mercaptoacetic acid acting in a radical polymerization reaction can be replaced with 3-mercaptopropionic acid or 2-mercaptopropionic acid.
- By replacing it with mercaptopropionic acid, it became possible to reduce the coloration to a greater extent than estimated from the molecular structure formula, which led to the completion of the present invention. That is, the present invention relates to a single-end carboxyl type polymer having a carboxyl group derived from mercaptopropionic acid at one end, which is obtained by radical polymerizing an ethylenically unsaturated monomer using mercaptopropionic acid as a chain transfer agent. This is a method for producing a macromonomer, which is characterized by reacting a radically polymerizable monomer having a glycidyl group in the presence of a catalyst. The macromonomer in the present invention means a relatively low molecular weight polymer (number average molecular weight of 1,000 to several tens of thousands) having a polymerizable functional group at one end of the molecular chain. Next, a method for producing a polymer having a carboxyl group derived from mercaptopropionic acid at one end (hereinafter referred to as prepolymer) will be described. Examples of the ethylenically unsaturated monomers (hereinafter referred to as monomers) used include styrene, vinyltoluene, vinyl acetate, and alkyl methacrylates (

【式】Rは炭素数1〜18のアル キル基)、アクリル酸アルキル(CH2=CH−
COOR、Rは炭素数1〜18のアルキル基)、N−
ビニルピロリドン、等の単独又は2種以上の混合
物が使用されるが、カルボキシル基等のグリシジ
ル基と反応性の基を有するモノマーは好ましくな
い。 また、使用しうる有機溶剤としては、ラジカル
重合させて得られたプレポリマーを溶解するもの
で、かつ反応中において不活性なものであればよ
く、例えばベンゼン、トルエン、キシレン、トリ
フロロトルエン、クロルベンゼン、酢酸エチル、
酢酸プロピル、酢酸ブチル、酢酸メトキシエチ
ル、酢酸エトキシエチル、ジオキサン、メチルイ
ソブチルケトン、シクロヘキサノン、N,N−ジ
メチルホルムアミド、などの単独又は2種以上の
混合物が使用される。 プレポリマーの分子量としては、製造されたマ
クロモノマーがラジカル重合性を損うことがない
範囲であればよく、好ましい分子量としては数平
均分子量1000〜数万である。連鎖移動剤として
は、メルカプトプロピオン酸即ち2−メルカプト
プロピオン酸又は3−メルカプトプロピオン酸を
用いるが、その使用量はモノマー100重量部に対
し、0.2〜12重量部が好ましく、0.5〜12重量部が
特に好ましい。0.2重量部未満では高分子量の重
合体となりやすく、また重合性が悪くなる傾向が
あり、一方12重量部を越えると分子量が1000未満
となりやすく不適当である。 重合開始剤としては、ベンゾイルパーオキシ
ド、ラウロイルパーオキシド等のパーオキシド系
及びアゾビスイソブチロニトリル(以下AIBNと
称する)、アゾビスジメチルバレロニトリル等の
アゾビス系が使用しうるが、好ましくはアゾビス
系の重合開始剤が使用される。 本発明におけるプレポリマーの製造方法は、連
鎖移動剤としてメルカプトプロピオン酸を用い、
有機溶剤中でモノマーを常法によりラジカル重合
させる方法である。 本発明におけるマクロモノマーの製造に用いら
れるグリシジル基を有するラジカル重合性単量体
としてはグリシジルメタクリレート、グリシジル
アクリレート等があげられ、又触媒としては三級
アミン、四級アンモニウム塩及び四級ホスホニウ
ム塩が好ましく、四級アンモニウム塩及び四級ホ
スホニウム塩がさらに好ましい。具体的にはトリ
エチルアミン、トリプロピルアミン、テトラメチ
ルエチレンジアミン、ジメチルラウリルアミン、
トリエチルベンジルアンモニウムクロライド、ト
リメチルセチルアンモニウムブロマイド、テトラ
ブチルアンモニウムブロマイド、トリメチルベン
ジルアンモニウムクロライド、トリフエニルブチ
ルホスホニウムブロマイド、テトラブチルホスホ
ニウムブロマイドなどが好適に使用される。 本発明におけるマクロモノマーの製造方法とし
ては、メルカプトプロピオン酸存在下でラジカル
重合させて得られたプレポリマーの反応液のまま
の状態で、又は場合によつては沈澱精製した後、
再度有機溶剤にとかした状態にして、プレポリマ
ー濃度30〜60重量%、触媒濃度0.1〜5重量%及
びグリシジル基を有するラジカル重合性単量体プ
レポリマーのカルボキシル基当量の1〜3倍当量
使用し、反応温度70〜150℃で加熱反応させるこ
とにより、マクロモノマーを含む反応液を得る。
さらに又、好ましくはグリシジル基を有するラジ
カル重合性単量体の重合を防止するために重合防
止剤、例えばハイドロキノン、ハイドロキノンモ
ノメチルエーテル等を50〜500ppmに添加すると
よい。 本発明によれば、脱色剤を使用することなく、
脱色剤を使用した場合に比べて着色が極めて少な
いマクロモノマーが工業的に用意に製造可能とな
り、さらにはこのマクロモノマーを使用したグラ
フト効率の高いグラフト共重合体も着色が極めて
少なくなり、その工業的価値は極めて大きいもの
である。 以下に実施例及び比較例をあげて本発明をさら
に具体的に説明する。 なお各例における部は重量部を、%は重量%を
意味し、またハーゼン色数及びガードナー色数は
JIS K−6901に従つて測定した。 実施例 1 撹拌機、還流冷却器、滴下ロート、温度計、及
びN2ガス吹込口を備えたガラスフラスコに溶剤
として酢酸ブチル105.5部を仕込み、N2ガス導入
下80〜85℃にてメチルメタクリレート(以下
MMAと略記する)100部、3−メルカプトプロ
ピオン酸3.5部及びAIBN2部の混合溶液を4時間
かかつて連続的に滴下して重合を行なつた。その
後、同温度で2時間加熱した後95℃で1時間加熱
して重合を終了した。 得られたプレポリマーの反応液の酸価を測定し
たところ0.147mg当量/gであつた。又、130℃1
時間加熱減量によるプレポリマー濃度は50%であ
つた。 ついで、この反応液200部に対してグリシジル
メタクリレート5.4部(1.3倍当量/COOH)、触
媒としてテトラブチルアンモニウムブロマイド1
部(0.49%)及び重合防止剤としてハイドロキノ
ンモノメチルエーテル0.04部(200ppm)を加え、
反応温度95℃にて8時間反応させた。 得られた末端メタクリレート型メチルメタクリ
レートマクロモノマーの反応液の酸価測定したと
ころ、0.001mg当量/g以下であり、酸価の減少
にもとづく反応率は99%以上であつた。又、反応
液の着色はハーゼン色数50であつた。 GPCによるマクロモノマーのポリスチレン換
算数平均分子量は2820であり、重量平均分子量は
4620であつた。 さらに得られたマクロモノマーの反応液60部、
MMA60部、アクリル酸10部、AIBN3部及びメ
チルエチルケトン267部を仕込み70℃にてラジカ
ル重合したところ、重量平均分子量26000のグラ
フトポリマーが得られ、未反応のマクロモノマー
は検出されなかつた。 実施例2〜10及び比較列1〜4 実施例1と同様の方法により実施した結果を表
−1に示した。
[Formula] R is an alkyl group having 1 to 18 carbon atoms), alkyl acrylate (CH 2 = CH-
COOR, R is an alkyl group having 1 to 18 carbon atoms), N-
Vinylpyrrolidone or the like may be used alone or in a mixture of two or more, but monomers having a group reactive with a glycidyl group such as a carboxyl group are not preferred. In addition, the organic solvent that can be used is one that dissolves the prepolymer obtained by radical polymerization and is inert during the reaction, such as benzene, toluene, xylene, trifluorotoluene, chloride, etc. benzene, ethyl acetate,
Propyl acetate, butyl acetate, methoxyethyl acetate, ethoxyethyl acetate, dioxane, methyl isobutyl ketone, cyclohexanone, N,N-dimethylformamide, and the like may be used alone or in a mixture of two or more. The molecular weight of the prepolymer may be within a range that does not impair the radical polymerizability of the produced macromonomer, and the preferred molecular weight is a number average molecular weight of 1,000 to several tens of thousands. As the chain transfer agent, mercaptopropionic acid, that is, 2-mercaptopropionic acid or 3-mercaptopropionic acid, is used, and the amount used is preferably 0.2 to 12 parts by weight, and 0.5 to 12 parts by weight, based on 100 parts by weight of the monomer. Particularly preferred. If it is less than 0.2 parts by weight, the polymer tends to have a high molecular weight and the polymerizability tends to be poor, while if it exceeds 12 parts by weight, the molecular weight tends to be less than 1000, which is unsuitable. As the polymerization initiator, peroxide type such as benzoyl peroxide and lauroyl peroxide, and azobis type such as azobisisobutyronitrile (hereinafter referred to as AIBN) and azobisdimethylvaleronitrile can be used, but azobis type is preferable. A polymerization initiator is used. The method for producing a prepolymer in the present invention uses mercaptopropionic acid as a chain transfer agent,
This is a method in which monomers are radically polymerized in an organic solvent using a conventional method. Examples of the radically polymerizable monomer having a glycidyl group used in the production of the macromonomer in the present invention include glycidyl methacrylate and glycidyl acrylate, and examples of the catalyst include tertiary amines, quaternary ammonium salts, and quaternary phosphonium salts. Preferably, quaternary ammonium salts and quaternary phosphonium salts are more preferable. Specifically, triethylamine, tripropylamine, tetramethylethylenediamine, dimethyllaurylamine,
Triethylbenzylammonium chloride, trimethylcetylammonium bromide, tetrabutylammonium bromide, trimethylbenzylammonium chloride, triphenylbutylphosphonium bromide, tetrabutylphosphonium bromide, and the like are preferably used. The method for producing the macromonomer in the present invention includes using the reaction solution of a prepolymer obtained by radical polymerization in the presence of mercaptopropionic acid as it is, or after purification by precipitation in some cases.
The prepolymer concentration is 30 to 60% by weight, the catalyst concentration is 0.1 to 5% by weight, and an equivalent of 1 to 3 times the carboxyl group equivalent of the radically polymerizable monomer prepolymer having a glycidyl group is used after it is dissolved in an organic solvent again. Then, a reaction solution containing a macromonomer is obtained by carrying out a heating reaction at a reaction temperature of 70 to 150°C.
Furthermore, it is preferable to add a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, etc. in an amount of 50 to 500 ppm in order to prevent polymerization of the radically polymerizable monomer having a glycidyl group. According to the present invention, without using a bleaching agent,
It is now possible to easily produce a macromonomer industrially that has very little coloration compared to when a decolorizing agent is used, and graft copolymers that use this macromonomer and have high grafting efficiency also have very little coloration, making it possible to manufacture them industrially. Its value is extremely large. EXAMPLES The present invention will be explained in more detail below with reference to Examples and Comparative Examples. In each example, parts mean parts by weight, % means weight %, and the Hazen color number and Gardner color number are
Measured according to JIS K-6901. Example 1 A glass flask equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer, and an N2 gas inlet was charged with 105.5 parts of butyl acetate as a solvent, and methyl methacrylate was added at 80 to 85°C while introducing N2 gas. (below
Polymerization was carried out by continuously dropping a mixed solution of 100 parts of MMA), 3.5 parts of 3-mercaptopropionic acid, and 2 parts of AIBN over a period of 4 hours. Thereafter, the mixture was heated at the same temperature for 2 hours and then heated at 95°C for 1 hour to complete the polymerization. The acid value of the resulting prepolymer reaction solution was measured and found to be 0.147 mg equivalent/g. Also, 130℃1
The prepolymer concentration due to time heating loss was 50%. Next, 5.4 parts of glycidyl methacrylate (1.3 times equivalent/COOH) and 1 part of tetrabutylammonium bromide as a catalyst were added to 200 parts of this reaction solution.
(0.49%) and 0.04 parts (200 ppm) of hydroquinone monomethyl ether as a polymerization inhibitor,
The reaction was carried out at a reaction temperature of 95°C for 8 hours. When the acid value of the resulting reaction solution of the terminal methacrylate type methyl methacrylate macromonomer was measured, it was 0.001 mg equivalent/g or less, and the reaction rate based on the decrease in the acid value was 99% or more. The reaction solution was colored with a Hazen color number of 50. The polystyrene equivalent number average molecular weight of the macromonomer by GPC is 2820, and the weight average molecular weight is
It was 4620. Furthermore, 60 parts of the obtained macromonomer reaction solution,
When 60 parts of MMA, 10 parts of acrylic acid, 3 parts of AIBN, and 267 parts of methyl ethyl ketone were charged and radical polymerized at 70°C, a graft polymer with a weight average molecular weight of 26,000 was obtained, and no unreacted macromonomer was detected. Examples 2 to 10 and Comparative Rows 1 to 4 Table 1 shows the results obtained using the same method as in Example 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 メルカプトプロピオン酸を連鎖移動剤として
用いてエチレン性不飽和単量体をラジカル重合し
てなる、前記メルカプトプロピオン酸に由来する
カルボキシル基を片末端に有する片末端カルボキ
シル型重合体とグリシジル基を有するラジカル重
合性単量体を触媒の存在下で反応させることを特
徴とするマクロモノマーの製造方法。
1 A carboxyl-type polymer at one end, which is obtained by radical polymerizing an ethylenically unsaturated monomer using mercaptopropionic acid as a chain transfer agent, and which has a carboxyl group derived from the mercaptopropionic acid at one end, and a glycidyl group. A method for producing a macromonomer, which comprises reacting a radically polymerizable monomer in the presence of a catalyst.
JP23883383A 1983-12-20 1983-12-20 Preparation of macromonomer Granted JPS60133007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23883383A JPS60133007A (en) 1983-12-20 1983-12-20 Preparation of macromonomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23883383A JPS60133007A (en) 1983-12-20 1983-12-20 Preparation of macromonomer

Publications (2)

Publication Number Publication Date
JPS60133007A JPS60133007A (en) 1985-07-16
JPH0562125B2 true JPH0562125B2 (en) 1993-09-07

Family

ID=17035947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23883383A Granted JPS60133007A (en) 1983-12-20 1983-12-20 Preparation of macromonomer

Country Status (1)

Country Link
JP (1) JPS60133007A (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212415A (en) * 1986-03-13 1987-09-18 Toagosei Chem Ind Co Ltd Production of oligomer
JPH01178512A (en) * 1987-12-29 1989-07-14 Nitto Denko Corp Acrylate macromonomer and preparation thereof
JPH01245001A (en) * 1988-03-28 1989-09-29 Toagosei Chem Ind Co Ltd Production of macromonomer and graft polymer
JP2780722B2 (en) * 1989-10-02 1998-07-30 三井化学株式会社 Acrylic copolymer, its production method and its use
US5618898A (en) * 1992-02-10 1997-04-08 Toagosei Chemical Industry Co., Ltd. Weather-resistant solvent-based coating obtained by polymerization with thioether bond converted to sulfone bond
JP3906493B2 (en) * 1996-05-29 2007-04-18 東亞合成株式会社 Method for producing macromonomer dispersion
FR2750321B1 (en) * 1996-06-28 1998-07-31 Oreal USE IN COSMETICS OF FLEXIBLE SKELETON COPOLYMERS, GRAFT BY HYDROPHOBIC AND RIGID MACROMONOMERS; COMPOSITIONS IMPLEMENTED
US6388026B1 (en) 1997-08-05 2002-05-14 S. C. Johnson Commercial Markets, Inc. Process for the preparation of macromers
TWI403838B (en) 2007-04-11 2013-08-01 Lg Chemical Ltd Photosensitive resin composition comprising a polymer prepared by using macromonomer as alkaly soluble resin
JP5347115B2 (en) 2007-04-24 2013-11-20 綜研化学株式会社 Manufacturing method of adhesive
WO2012093689A1 (en) 2011-01-06 2012-07-12 三菱レイヨン株式会社 Modifier for polyvinylidene fluoride, binder resin composition for batteries, secondary cell electrode, and battery
EP2937367B1 (en) 2012-12-18 2018-06-27 Mitsubishi Chemical Corporation Polymer and production method thereof, molding material and molded product
JP5768928B2 (en) 2012-12-20 2015-08-26 三菱レイヨン株式会社 POLYMER COMPOSITION FOR FORMING POROUS MEMBRANE AND POROUS MEMBRANE
WO2014142311A1 (en) 2013-03-15 2014-09-18 三菱レイヨン株式会社 Resin composition, membrane-forming stock solution, porous membrane, and hollow fiber membrane, water treatment device, electrolyte support, and separator using porous membrane
EP3059269B1 (en) 2013-10-16 2021-03-31 Mitsubishi Chemical Corporation Polymer, production method for same, and molded article
JP6868979B2 (en) * 2016-07-06 2021-05-12 株式会社日本触媒 Acrylic acid ester polymer and its manufacturing method
KR102526940B1 (en) 2017-03-27 2023-05-02 미쯔비시 케미컬 주식회사 Porous membrane, membrane module, water treatment device, and method for producing porous membrane
JP7099467B2 (en) 2017-09-25 2022-07-12 三菱ケミカル株式会社 Hollow fiber membrane
US11498994B2 (en) 2017-11-24 2022-11-15 Mitsubishi Chemical Corporation Block copolymer composition and production method therefor
JP7311032B2 (en) 2020-03-25 2023-07-19 三菱ケミカル株式会社 Polymer composition, lubricating oil additive, viscosity index improver, lubricating oil composition, method for producing polymer composition, and method for producing macromonomer
CN115210279A (en) 2020-03-26 2022-10-18 三菱化学株式会社 Copolymer, resin composition, molded body, film-shaped molded body, and method for producing copolymer
JP7472001B2 (en) 2020-11-13 2024-04-22 日産自動車株式会社 Multi-layer coating method
WO2022114157A1 (en) 2020-11-30 2022-06-02 三菱ケミカル株式会社 Resin composition, molded article, and macromonomer copolymer
JPWO2023068375A1 (en) 2021-10-22 2023-04-27
TW202336104A (en) 2021-12-10 2023-09-16 日商三菱化學股份有限公司 Curable composition, molded body, silicone hydrogel, method for producing silicone hydrogel, and macromonomer

Also Published As

Publication number Publication date
JPS60133007A (en) 1985-07-16

Similar Documents

Publication Publication Date Title
JPH0562125B2 (en)
GB1588877A (en) Free radical polymerisation process
AU666876B2 (en) Latent thiol monomers
JP3256544B2 (en) Method for producing polymer having functional group which may be protected at the terminal
JPH01268709A (en) Macro-monomer containing carboxyl group
US4218370A (en) Azo monomer useful in polymerization systems
US6720429B2 (en) Thiocarbonylthio compound and living free radical polymerization using the same
JP2803277B2 (en) Method for producing styrenic resin
JP2019023319A (en) Block polymer and method for producing the same
JP3087871B2 (en) Method for producing macromonomer having hyperbranched structure
JP2015214614A (en) Block polymer and production method thereof
JPH072954A (en) Production of graft copolymer
JPH11140127A (en) Preparation of acrylic polymer having functional group at both ends
JPH06199938A (en) Production of glutarimide copolymer and its intermediate compound
JP3275714B2 (en) Polymerization initiator for peroxide and vinyl monomers and polymerization method using the same
JPH04213302A (en) Polymerization of vinyl acetate monomer
JPS59187005A (en) Manufacture of mercapto group-terminated polymer
JP2890758B2 (en) Method for producing macromonomer
JP2006176587A (en) Chain transfer agent and polymerization method using the same
US4670520A (en) Method for modifying polyfumaric acid diester
JP4405129B2 (en) Method for producing (meth) acrylic acid polymer
JPH05295015A (en) Production of macromonomer
JPH01132601A (en) Production of macromonomer
JP3958056B2 (en) Vinyl ether group-containing (meth) acrylic acid ester copolymer and method for producing the same
JP4147355B2 (en) Polymerization of unsaturated monomers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees