JPH01132601A - Production of macromonomer - Google Patents

Production of macromonomer

Info

Publication number
JPH01132601A
JPH01132601A JP28929387A JP28929387A JPH01132601A JP H01132601 A JPH01132601 A JP H01132601A JP 28929387 A JP28929387 A JP 28929387A JP 28929387 A JP28929387 A JP 28929387A JP H01132601 A JPH01132601 A JP H01132601A
Authority
JP
Japan
Prior art keywords
macromonomer
reaction
polymerization
parts
prepolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28929387A
Other languages
Japanese (ja)
Inventor
Takashi Tsuda
隆 津田
Takashiro Azuma
東 貴四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP28929387A priority Critical patent/JPH01132601A/en
Publication of JPH01132601A publication Critical patent/JPH01132601A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

PURPOSE:To produce a highly pure macromonomer, by reacting a linear polymer having a functional group on one end with a vinyl compound in a specified solvent in the presence of a polymerization inhibitor, while blowing a gas containing molecular oxygen into the reaction mixture. CONSTITUTION:A vinyl monomer (e.g., styrene) is polymerized at 50-90 deg.C for several hr in the presence of water, a dispersant and a surfactant. The formed polymer is reacted with 0.8-5.0mol, per mol of said functional group, of a vinyl compound having a group reactive with said functional group [e.g., glycidyl (meth)acrylate] at room temperature to 150 deg.C in the presence of 10-2000ppm of a polymerization inhibitor (e.g., phenothiazine) and 0.1-3wt.%, based on the reaction solution, catalyst (e.g., tert. amine) while blowing a gas containing molecular oxygen into the reaction mixture.

Description

【発明の詳細な説明】 (イ)発明の目的 〔産業上の利用分野〕 本発明は、それ自体或いはそれから得られるグラフトポ
リマーが、各種高分子材料の高機能化の為の有力な素材
となるマクロモノマーの製造方法に関するものである。
[Detailed Description of the Invention] (a) Purpose of the Invention [Field of Industrial Application] The present invention provides that the present invention itself or the graft polymer obtained therefrom becomes a powerful material for improving the functionality of various polymeric materials. This invention relates to a method for producing macromonomers.

〔従来の技術とその問題点〕[Conventional technology and its problems]

各種高分子材料の高機能化の為に、ブロックポリマーや
グラフトポリマーを利用する試みはかなり以前から行わ
れており、かかる目的で使用されるブロックポリマー或
いはグラフトポリマーとしては、イオン重合によって製
造されたブロックポリマーや幹とするポリマーの存在下
に幹ポリマーとは異種の単量体”単位からなる技ポリマ
ーを形成すべく単量体′をラジカル重合して得られるグ
ラフトポリマー等が知られている。
Attempts have been made to use block polymers and graft polymers for a long time to improve the functionality of various polymeric materials, and the block polymers and graft polymers used for this purpose are manufactured by ionic polymerization. Graft polymers obtained by radical polymerization of monomers in the presence of a block polymer or a backbone polymer to form a technical polymer composed of monomer units different from the backbone polymer are known.

しかしながら、イオン重合によるブロックポリマーにお
いては、製造可能なポリマーの種類、つまりその化学構
造が比較的狭い範囲に限られ、多様なポリマー構造のブ
ロックポリマーが求められるという現実の要求に対応し
きれないという問題があった。また、前記方法によって
製造されるグラフトポリマーに関しては、例えば■枝及
び幹成分のホモポリマーの含有量が多い、■枝幹両成分
の分子量、組成のコントロールが困難である等の問題点
があった。
However, with block polymers produced by ionic polymerization, the types of polymers that can be produced, that is, their chemical structures, are limited to a relatively narrow range, and it is difficult to meet the actual demand for block polymers with diverse polymer structures. There was a problem. In addition, the graft polymer produced by the above method has problems such as: (1) high content of homopolymer in the branch and trunk components, and (2) difficulty in controlling the molecular weight and composition of both the branch and trunk components. .

これに対して、Milkovichらの研究によるマク
ロモノマーを使用する方法によって得られるグラフトポ
リマーが最近注目を浴びている。マクロモノマーとは分
子末端に重合性官能基を有するオリゴマーまたはポリマ
ーを意味し、例えば末端に官能基を有する直鎖状重合体
を製造する工程(重合反応)、および該官能基と反応し
うる反応性基とビニル重合性基の両方を分子内に有する
化合物と前記直鎖状重合体との反応(以下マクロモノマ
ー化反応という)によりマクロモノマーを製造する工程
からなる製造方法等により得ることができ、彼等は、こ
れと他の共重合性単量体とを共重合することによりグラ
フトポリマーを製造する方法を提案している(例えば特
公昭50−116586号公報)。
On the other hand, graft polymers obtained by a method using macromonomers as researched by Milkovich et al. have recently attracted attention. Macromonomer refers to an oligomer or polymer having a polymerizable functional group at the end of the molecule, for example, a process for producing a linear polymer having a functional group at the end (polymerization reaction), and a reaction capable of reacting with the functional group. It can be obtained by a manufacturing method comprising a step of manufacturing a macromonomer by a reaction between a compound having both a vinyl polymerizable group and a vinyl polymerizable group in the molecule and the linear polymer (hereinafter referred to as macromonomerization reaction). They proposed a method for producing a graft polymer by copolymerizing this and other copolymerizable monomers (for example, Japanese Patent Publication No. 116586/1986).

マクロモノマーに関しては、他にも多数の提案がなされ
ており、例えば英国ICI社は連鎖移動剤としてメルカ
プト酢酸の存在下に、メチルメタクリレート等のラジカ
ル重合性モノマーを重合させて得た末端カルボン酸型の
オリゴマーと、メタクリル酸グリシジルとを反応させる
ことによってマクロモノマーを製造するという提案を行
っている(特公昭43−11224号公報、特公昭43
−16147号公報等)。
Regarding macromonomers, many other proposals have been made; for example, British company ICI has developed a terminal carboxylic acid type monomer obtained by polymerizing radically polymerizable monomers such as methyl methacrylate in the presence of mercaptoacetic acid as a chain transfer agent. proposed to produce a macromonomer by reacting an oligomer with glycidyl methacrylate (Japanese Patent Publication No. 43-11224,
-16147, etc.).

かかるマクロモノマーを使用する方法によって製造され
るグラフトポリマー(以下マクロモノマー法によるグラ
フトポリマーという)は、構造が明確に規制されたもの
であり、またその製造方法自体が容易であるために、工
業的に重要視され始めている。
Graft polymers produced by methods using such macromonomers (hereinafter referred to as graft polymers produced by macromonomer methods) have clearly regulated structures, and the production method itself is easy, so they are not suitable for industrial use. is beginning to be considered important.

しかしながら、従来行われていたマクロモノマー法によ
るグラフトポリマーの製造方法では、マクロモノマーの
製造段階およびマクロモノマーと他の共重合性モノマー
との重合によるグラフトポリマーの製造段階において、
有機溶剤が反応溶媒として使用されており、該有機溶剤
に起因する毒性による火災や中毒が心配されること並び
にグラフトポリマーを単離するとき、貧溶剤を使用した
沈澱精製や乾燥機を用いた有機溶剤の除去等の操作が必
要であり、製造コストが高くつくため、工業的な製造方
法としては不満足なものであって、製造工程の改良が望
まれていた。
However, in the conventional method for producing a graft polymer using the macromonomer method, in the production stage of the macromonomer and the production stage of the graft polymer by polymerizing the macromonomer and other copolymerizable monomers,
Organic solvents are used as reaction solvents, and there are concerns about fires and poisoning due to the toxicity caused by the organic solvents. Since operations such as removal of the solvent are required and manufacturing costs are high, this method is unsatisfactory as an industrial manufacturing method, and improvements in the manufacturing process have been desired.

(ロ)発明の構成 〔問題点を解決する為の手段〕 本発明者らは、前記問題点に鑑み鋭意検討した結果、マ
クロモノマー製造時のマクロモノマー化反応を、後工程
のグラフトポリマー製造においてマクロモノマーと共重
合させるために使用するとニルモノマー中で行えば、従
来法における問題点を解決できるであろうとの着想を得
て、マクロモノマー化反応それ自体は、ビニルモノマー
からなる溶媒中で円滑に進行することを確認するに至っ
たが、マクロモノマー化反応に適した条件下においては
、ビニルモノマーの重合という望ましくな・い反応が起
きるという新しい問題に遭遇するに至った。そこで更に
検討を進めた結果、マクロモノマー化反応をこれに適し
た温度、例えば前記ビニルモノマーの重合温度近辺の高
い温度で行っても、ビニルモノマーは重合せず、一方マ
クロモノマー化反応はまったく阻害されない技術的手段
を見出し本発明を完成した。
(B) Structure of the Invention [Means for Solving the Problems] As a result of intensive study in view of the above-mentioned problems, the present inventors have determined that the macromonomerization reaction during the production of macromonomers can be carried out in the production of graft polymers in the subsequent process. The macromonomerization reaction itself was carried out smoothly in a solvent consisting of vinyl monomers, based on the idea that problems with conventional methods could be solved by copolymerizing vinyl monomers with vinyl monomers. However, under conditions suitable for macromonomerization reactions, we encountered a new problem: the undesirable polymerization of vinyl monomers. As a result of further investigation, we found that even if the macromonomerization reaction was carried out at an appropriate temperature, for example, at a high temperature close to the polymerization temperature of the vinyl monomer, the vinyl monomer did not polymerize, whereas the macromonomerization reaction was completely inhibited. The present invention was completed by finding a technical means that could not be solved.

即ち、本発明は、片末端に官能基を有する直鎖状重合体
(以下プレポリマーという)と、該官能基と反応性の基
を有するビニル化合物とを、これらの反応によって生成
するマクロモノマーと共重合性であり、かつ該マクロモ
ノマーが可溶性のビニル単量体を溶媒として用い、該溶
媒中で重合禁止剤の存在下に、分子状酸素含有ガスを吹
き込みながら反応させることを特徴とするマクロモノマ
ーの製造方法である。
That is, the present invention combines a linear polymer having a functional group at one end (hereinafter referred to as a prepolymer) and a vinyl compound having a group reactive with the functional group, and a macromonomer produced by the reaction of these. A macro characterized by using a vinyl monomer that is copolymerizable and soluble in the macromonomer as a solvent, and reacting in the solvent in the presence of a polymerization inhibitor while blowing a molecular oxygen-containing gas. This is a method for producing monomers.

なお、本発明におけるマクロモノマーとは、数平均分子
量が1000〜50000であるプレポリマーと、その
分子鎖の片末端にある官能基と反応しうる反応性の基お
よびビニル重合性基の両方を分子内に有する化合物との
反応(マクロモノマー化反応)によって製造されるマク
ロモノマーをいう。
In addition, the macromonomer in the present invention refers to a prepolymer having a number average molecular weight of 1,000 to 50,000, a reactive group that can react with a functional group at one end of its molecular chain, and a vinyl polymerizable group. It refers to a macromonomer produced by reaction with a compound contained in the macromonomer (macromonomerization reaction).

以下、本発明について更に詳しく説明する。The present invention will be explained in more detail below.

〔プレポリマー〕[Prepolymer]

本発明において使用するプレポリマーは、ビニル単量体
単位からなり、片末端に官能基を有する、数平均分子量
が1000〜50000程度の直鎖状重合体であり、か
かるプレポリマーを形成するのに使用できるビニル単量
体としては、酢酸ビニルの如き有機酸のビニルエステル
、スチレン、スチレン置換体並びにビニルピリジン、ビ
ニルナフタレンの如きビニル芳香族化合物、(メタ)ア
クリル酸エステル、(メタ)アクリロニトリル、アクロ
レイン、N−ビニルピロリドン及びN−ビニルカプロラ
クタムの如きN−ビニル化合物、無水マレイン酸の如き
不飽和酸無水物、N−フェニルマレイミドの如きN−置
換マレイミド、塩化ビニル、塩化ビニリデンの如き不飽
和ハロゲン化物等が挙げられ、これらの単量体は単独で
或いは2種類以上併用して使用することができる。
The prepolymer used in the present invention is a linear polymer consisting of vinyl monomer units, having a functional group at one end, and having a number average molecular weight of about 1,000 to 50,000. Vinyl monomers that can be used include vinyl esters of organic acids such as vinyl acetate, styrene, styrene substitutes, vinyl aromatic compounds such as vinylpyridine and vinylnaphthalene, (meth)acrylic acid esters, (meth)acrylonitrile, and acrolein. , N-vinyl compounds such as N-vinylpyrrolidone and N-vinylcaprolactam, unsaturated acid anhydrides such as maleic anhydride, N-substituted maleimides such as N-phenylmaleimide, unsaturated halides such as vinyl chloride and vinylidene chloride. These monomers can be used alone or in combination of two or more.

好ましい単量体としては、プレポリマー中の官能基がプ
レポリマーのマクロモノマー化反応において副反応を起
こし難い点で、スチレン、スチレン置換体、(メタ)ア
クリル酸エステルおよび(メタ)アクリロニトリル等が
挙げられる。
Preferred monomers include styrene, styrene substitutes, (meth)acrylic acid esters, and (meth)acrylonitrile, since the functional groups in the prepolymer are unlikely to cause side reactions in the macromonomerization reaction of the prepolymer. It will be done.

プレポリマーの分子末端に存在すべき官能基としては、
カルボキシル基が好ましく、そのプレポリマーへの導入
は、プレポリマーの製造時に、例えばメルカプト酢酸、
2−メルカプトプロピオン酸および3−メルカプトプロ
ピオン酸等のごときメルカプタン系連鎖移動剤を使用す
ることによって、容易に行うことができる。
The functional groups that should be present at the molecular ends of the prepolymer are:
Carboxyl groups are preferred, and their introduction into the prepolymer can be carried out during the production of the prepolymer, for example by adding mercaptoacetic acid,
This can be easily carried out by using a mercaptan chain transfer agent such as 2-mercaptopropionic acid and 3-mercaptopropionic acid.

本発明におけるプレポリマーの分子量は、これを原料と
して製造されるマクロモノマーが重合性を損なうことが
ない範囲であれば良く、数平均分子量で1000〜50
000であり、好ましくは2000〜40000である
。分子量が1000未満ではポリマー単位としての重合
度が低すぎ、グラフトポリマーを製造した場合に、マク
ロモノマーの物性が該グラフトポリマーの物性に反映さ
れず、一方5ooooを超えるとグラフトポリマー製造
時の重合性が低く、反応系の相分離を起こし易くなる等
の不都合を生じ易い。
The molecular weight of the prepolymer in the present invention may be within a range that does not impair the polymerizability of the macromonomer produced using the prepolymer as a raw material, and the number average molecular weight is 1000 to 50.
000, preferably 2000 to 40000. If the molecular weight is less than 1000, the degree of polymerization as a polymer unit is too low, and when a graft polymer is produced, the physical properties of the macromonomer will not be reflected in the physical properties of the graft polymer. is low, and tends to cause problems such as phase separation of the reaction system.

上記マクロモノマーの数平均分子量は、ゲルパーミェー
ションクロマトグラフィー(以下GPCという)による
ポリスチレン換算分子量であり、測定条件は次のとおり
である。
The number average molecular weight of the macromonomer is a polystyrene equivalent molecular weight determined by gel permeation chromatography (hereinafter referred to as GPC), and the measurement conditions are as follows.

装置:高速液体クロマトグラフィー(例えば東洋曹達工
業■製画品名11LC−802UR)カラム:ポリスチ
レンのゲル(例えば東洋曹達工業■製画品名G4000
H8及びG3000H8)溶出溶媒:テトラヒドロフラ
ン 流出速度: 1.0 ml/lll1n力ラム温度:4
0°C 検出器:R■検出器 プレポリマーの製造法としては、ラジカル重合法および
イオン重合法が挙げられるが、厳密な精製操作の必要が
なく工業的に有利であるという理由から、ラジカル重合
法が好ましい。
Apparatus: High performance liquid chromatography (e.g. Toyo Soda Kogyo ■Product name 11LC-802UR) Column: Polystyrene gel (e.g. Toyo Soda Kogyo ■Product name G4000)
H8 and G3000H8) Elution solvent: Tetrahydrofuran Eflux rate: 1.0 ml/lll1n Ram temperature: 4
0°C Detector: R ■ Methods for producing detector prepolymers include radical polymerization and ionic polymerization, but radical polymerization is preferred because it does not require strict purification operations and is industrially advantageous. Preferably legal.

ラジカル重合法によるプレポリマーの製法において、ラ
ジカル重合開始剤の存在下或いは不存在下で公知の溶液
重合法、バルク重合法、懸濁重合法又はエマルジョン重
合法のいずれの方法も採用できるが、官能基の導入に寄
与する連鎖移動剤が、プレポリマーの分子末端に結合す
る確率が高い点および有機溶病を使用する必要がない点
で、バルク重合法および懸濁重合法が好ましい。
In the method for producing a prepolymer by a radical polymerization method, any of the known solution polymerization methods, bulk polymerization methods, suspension polymerization methods, or emulsion polymerization methods can be employed in the presence or absence of a radical polymerization initiator. The bulk polymerization method and the suspension polymerization method are preferable because there is a high probability that the chain transfer agent that contributes to the introduction of groups will be bonded to the molecular terminal of the prepolymer and there is no need to use an organic solvent.

好ましい重合法である懸濁重合法を例にとってプレポリ
マーの製法を説明すると、例えば所定量の水、分散剤お
よび界面活性剤を仕込んだ重合器中に、撹拌下、重合開
始剤を少量添加してなるビニル単量体を滴下した後、5
0〜90″Cに昇温しで数時間重合する。得られたプレ
ポリマーは濾過、水洗等の操作を経て粉体状で単離する
ことができる。
To explain the prepolymer manufacturing method using suspension polymerization, which is a preferred polymerization method, as an example, a small amount of a polymerization initiator is added to a polymerization vessel containing a predetermined amount of water, a dispersant, and a surfactant under stirring. After dropping the vinyl monomer consisting of 5
The temperature is raised to 0 to 90"C and polymerization is carried out for several hours. The obtained prepolymer can be isolated in powder form through operations such as filtration and water washing.

上記分散剤としては、ポリビニルアルコール、部分ケン
化ポリビニルアルコール、メチルセルロース、ヒドロキ
シエチルセルロース、ヒドロキシプロピルセルロース、
ヒドロキシプロピルメチルセルロース、アクリル酸重合
体、ポリビニルピロリドン、無水マレイン酸−酢酸ビニ
ル共重合体等の合成高分子物質、デンプン、ゼラチン、
アラビアゴム等の天然高分子物質、カルシウム、バリウ
ム、ストロンチウム、マグネシウム、アルミニウム、鉄
又はコバルトの燐酸塩のような難溶性の燐酸金属塩(た
だし2成分以上縮合したポリリン酸を含む)の1種類又
は2種類以上の混合物を挙げることができる。好ましく
用いられる分散剤として、ポリビニルアルコール、部分
ケン化ポリビニルアルコール、メチルセルロース、難溶
性燐酸金属塩がある。
Examples of the dispersant include polyvinyl alcohol, partially saponified polyvinyl alcohol, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose,
Synthetic polymer substances such as hydroxypropyl methylcellulose, acrylic acid polymer, polyvinylpyrrolidone, maleic anhydride-vinyl acetate copolymer, starch, gelatin,
One type of natural polymeric substances such as gum arabic, sparingly soluble phosphate metal salts such as phosphates of calcium, barium, strontium, magnesium, aluminum, iron or cobalt (including polyphosphoric acid condensed with two or more components); Mixtures of two or more types may be mentioned. Preferably used dispersants include polyvinyl alcohol, partially saponified polyvinyl alcohol, methyl cellulose, and sparingly soluble phosphate metal salts.

界面活性剤としては、ドデシルベンゼンスルホン酸ナト
リウム、ナトリウムオクチルスルフアート、ナトリウム
スルホコハク酸のジオクチルエステル、アルカリラウリ
ルスルフアート又は脂肪酸のアルカリ塩等のアニオン系
界面活性剤や、カチオン系、ノニオン系界面活性剤が挙
げられ、これらの1種類又は2種類以上の混合物を使用
することができる。好ましくはドデシルベンゼンスルホ
ン酸ナトリウムが使用される。
Examples of surfactants include anionic surfactants such as sodium dodecylbenzenesulfonate, sodium octyl sulfate, dioctyl ester of sodium sulfosuccinate, alkali lauryl sulfate, or alkali salts of fatty acids, and cationic and nonionic surfactants. Active agents can be mentioned, and one type or a mixture of two or more types of these can be used. Preferably sodium dodecylbenzenesulfonate is used.

重合開始剤としては、−量的に懸濁重合法において使用
されているラジカル重合開始剤である、水不溶性のアゾ
系開始剤や過酸化物開始剤が挙げられるが、メルカプタ
ン系連鎖移動剤との反応を起こさないアゾ系開始剤が好
ましい。アゾ系開始剤としては、2.2−アゾビスイソ
ブチロニトリル(以下AIBNと略記する) 、4.4
−アゾビス−4−シアノバレリックアシド(以下ACV
Aと略記する)、1−アゾビス−1−シクロヘキサンカ
ルボニトリル(以下ACINと略記する)等が挙げられ
る。
Examples of polymerization initiators include water-insoluble azo initiators and peroxide initiators, which are radical polymerization initiators used in suspension polymerization methods, but mercaptan chain transfer agents and An azo initiator that does not cause this reaction is preferred. As the azo initiator, 2.2-azobisisobutyronitrile (hereinafter abbreviated as AIBN), 4.4
-Azobis-4-cyanovaleric acid (ACV)
A), 1-azobis-1-cyclohexanecarbonitrile (hereinafter abbreviated as ACIN), and the like.

〔マクロモノマー化反応〕 本発明のマクロモノマー化反応において使用する、前記
プレポリマーの片末端官能基と反応しうる反応性基を有
するビニル化合物としては、プレポリマーの末端官能基
がカルボキシル基の場合には、カルボキシル基と反応性
の高いエポキシ基とビニル重合性基の双方を有する化合
物が代表例として挙げられ、具体的には、グリシジル(
メタ)アクリレート、アリルグリシジルエーテル、クロ
ルメチルビニルベンゼン等がある。
[Macromonomerization reaction] As the vinyl compound having a reactive group capable of reacting with one end functional group of the prepolymer, which is used in the macromonomerization reaction of the present invention, when the end functional group of the prepolymer is a carboxyl group, Typical examples include compounds that have both an epoxy group that is highly reactive with carboxyl groups and a vinyl polymerizable group. Specifically, glycidyl (
Examples include meth)acrylate, allyl glycidyl ether, and chloromethylvinylbenzene.

上記ビニル化合物は、好ましくはプレポリマーの片末端
官能基に対して0.8〜5.0倍モル、更に好ましくは
0.9〜3.0倍モルとなる割合でプレポリマーと反応
させる。この割合が0.8倍モル以下では、未反応のプ
レポリマーが得られるマクロモノマー中に多量に残り易
いため好ましくなく、5゜0倍モル以上では、得られた
マクロモノマーから製造されるグラフトポリマーの幹成
分に、ビニル化合物単位が不純物的に混入する量が増加
する為好ましくない。
The above-mentioned vinyl compound is reacted with the prepolymer at a ratio of preferably 0.8 to 5.0 times the mole, more preferably 0.9 to 3.0 times the mole of the functional group at one end of the prepolymer. If this ratio is less than 0.8 times the mole, it is not preferable because a large amount of unreacted prepolymer tends to remain in the obtained macromonomer, and if it is more than 5.0 times the mole, the graft polymer produced from the obtained macromonomer This is not preferable because the amount of vinyl compound units mixed in as an impurity in the main component increases.

マクロモノマー化反応において、溶媒として使用される
ビニル単量体としては、生成するマクロモノマーを溶解
することができ、マクロモノマーとの共重合性を有する
ものが使用される。さらに具体的には、プレポリマーの
製造原料として先に例示した単量体の中から、前記の要
件を具備しており、引き続くグラフトポリマー製造の際
に、マクロモノマーと共重合させたいビニル単量体を使
用すればよい。
In the macromonomerization reaction, the vinyl monomer used as a solvent is one that can dissolve the produced macromonomer and has copolymerizability with the macromonomer. More specifically, from among the monomers exemplified above as raw materials for prepolymer production, vinyl monomers that meet the above requirements and that are desired to be copolymerized with the macromonomer during the subsequent production of graft polymers are selected. Just use your body.

プレポリマーとビニル単量体の量的比率は、プレポリマ
ーとビニル単量体の合計量に対し、プレポリマーの量が
5〜70重量%が好ましく、10〜60重量%が更に好
ましい、プレポリマーの仕込み量が5重量%以下では、
グラフトポリマーを製造した場合に、該グラフトポリマ
ーの枝成分となるマクロモノマー成分が不足する為、グ
ラフトポリマーにマクロモノマーの物性が反映しないの
で好ましくな(、またプレポリマーの仕込み量が70重
景%以上になると、溶液粘度が高(なりすぎる結果、マ
クロモノマーの溶液中での自由な分子運動が阻害されマ
クロモノマーが均一な状態で共重合したグラフトポリマ
ーが得られ難いため好ましくない。
The quantitative ratio of the prepolymer to the vinyl monomer is such that the amount of the prepolymer is preferably 5 to 70% by weight, more preferably 10 to 60% by weight, based on the total amount of the prepolymer and the vinyl monomer. If the amount of preparation is less than 5% by weight,
When a graft polymer is produced, there is a shortage of macromonomer components that become branch components of the graft polymer, so the physical properties of the macromonomer are not reflected in the graft polymer, which is undesirable. If the solution viscosity becomes too high, the free molecular movement of the macromonomer in the solution is inhibited, making it difficult to obtain a graft polymer in which the macromonomer is uniformly copolymerized, which is not preferable.

本発明におけるマクロモノマー化反応は、重合禁止剤の
存在下、分子状酸素またはこれを含むガスを反応溶液内
に吹き込みながら行う必要がある。
The macromonomerization reaction in the present invention needs to be carried out in the presence of a polymerization inhibitor while blowing molecular oxygen or a gas containing it into the reaction solution.

重合禁止剤としては、フェノチアジン、ハイドロキノン
或いはハイドロキノンモノメチルエーテル等のような公
知の重合禁止剤が使用でき、その好ましい使用量は20
00ppm+〜10pp+mであり、更に好ましくは1
000ppa+〜10ppmであり、特に好ましくは1
00〜500pp翔である。
As the polymerization inhibitor, known polymerization inhibitors such as phenothiazine, hydroquinone, hydroquinone monomethyl ether, etc. can be used, and the preferred amount used is 20
00ppm+ to 10pp+m, more preferably 1
000ppa+ to 10ppm, particularly preferably 1
00 to 500pp.

上記重合禁止剤の使用量が2000ppmを超えると、
グラフトポリマーを製造する際に重合開始が困難となり
、一方10pp+s未満であると、マクロモノマー化反
応において溶媒であるビニル単量体の重合が起こ修易く
なる。
If the amount of the polymerization inhibitor used exceeds 2000 ppm,
It becomes difficult to initiate polymerization when producing a graft polymer, and on the other hand, if it is less than 10 pp+s, polymerization of the vinyl monomer, which is a solvent, tends to occur in the macromonomerization reaction.

分子状酸素を含むガスの代表例は空気であるが、その他
に酸素を数%含有させた窒素ガス等も用いることができ
、これらのガスの最適吹き込み量は前記重合禁止剤の使
用量および反応温度等により異なっており、具体的な反
応条件に応じて反応系内で重合が発生しないように適宜
決定することができる。
A typical example of a gas containing molecular oxygen is air, but nitrogen gas containing several percent oxygen can also be used, and the optimum amount of these gases to be blown depends on the amount of polymerization inhibitor used and the reaction. It varies depending on the temperature, etc., and can be appropriately determined depending on the specific reaction conditions so that polymerization does not occur within the reaction system.

マクロモノマー化反応においては、例えば末端にカルボ
キシル基を有するプレポリマーとエポキシ基含有ビニル
化合物との反応であれば、反応触媒として、三級アミン
、四級アンモニウム塩等を反応溶液全体に対して0.1
〜3重量%使用することが好ましい。触媒量が0.1重
量%以下では反応速度が遅く、3%重量以上では得られ
るマクロモノマーをグラフトポリマーとして或いは高分
子材料として利用する際の不純物として不都合を生じ易
い為、いずれも好ましくない。
In a macromonomerization reaction, for example, in the case of a reaction between a prepolymer having a terminal carboxyl group and an epoxy group-containing vinyl compound, a tertiary amine, quaternary ammonium salt, etc. is added as a reaction catalyst to the entire reaction solution. .1
It is preferred to use ~3% by weight. If the catalyst amount is less than 0.1% by weight, the reaction rate is slow, and if it is more than 3% by weight, the obtained macromonomer is likely to cause problems as an impurity when used as a graft polymer or as a polymer material, so both are not preferred.

反応温度としては室温〜150℃が好ましく、50〜1
00℃が更に好ましい。反応温度が室温以下では反応速
度が遅く、150℃を越えるととニルモノマーが沸騰し
たり重合反応が起こり易くなる。
The reaction temperature is preferably room temperature to 150°C, and 50 to 1
00°C is more preferred. When the reaction temperature is below room temperature, the reaction rate is slow, and when it exceeds 150°C, the nyl monomer boils and polymerization reaction tends to occur.

〔マクロモノマーの利用〕[Usage of macromonomer]

本発明におけるマクロモノマーは、ビニル単量体溶液と
して得られる。このものはそのままで硬化性組成物とし
て工業的に利用することもでき、また引き続きそのまま
重合させてグラフトポリマーを得るための中間生成物と
して使用することもできる。
The macromonomer in the present invention is obtained as a vinyl monomer solution. This product can be used industrially as a curable composition as it is, or as an intermediate product for obtaining a graft polymer by subsequent polymerization as it is.

本発明によるマクロモノマーからグラフトポリマーを製
造する場合の重合方法としては、有機溶剤を使用しない
点で、バルク重合法、懸濁重合法および乳化重合法が好
ましいが、マクロモノマーは乳化安定性があまり良くな
いので、バルク重合法、懸濁重合法がより適しており、
マクロモノマー化反応において使用するアミン化合物等
の触媒が、水中に溶解して行きグラトポリマー中の残留
量が減少する点で、懸濁重合法が最適である。
When producing a graft polymer from a macromonomer according to the present invention, bulk polymerization, suspension polymerization, and emulsion polymerization are preferred because they do not use organic solvents, but macromonomers have poor emulsion stability. Bulk polymerization method and suspension polymerization method are more suitable.
The suspension polymerization method is optimal because the catalyst such as an amine compound used in the macromonomerization reaction is dissolved in water and the amount remaining in the graft polymer is reduced.

本発明の方法で製造されるマクロモノマーを使用して、
最適の方法である懸濁重合法によってグラフトポリマー
を製造する場合について、以下に説明する。
Using the macromonomer produced by the method of the present invention,
The case where a graft polymer is produced by suspension polymerization, which is the most suitable method, will be explained below.

所定量の水、分散剤および界面活性剤を仕込んり重合器
中に、撹拌下、マクロモノマーのビニル単量体溶液また
はこれに必要に応じてビニル単量体と重合開始剤を追加
した重合性溶液を滴下した後、所定温度に加熱しラジカ
ル重合させる。
Polymerization is performed by charging a predetermined amount of water, a dispersant, and a surfactant into a polymerization vessel with stirring, and adding a vinyl monomer solution of a macromonomer or a vinyl monomer and a polymerization initiator as necessary to this solution. After dropping the solution, it is heated to a predetermined temperature to cause radical polymerization.

ビニル単量体を追加する場合、その種類はマクロモノマ
ー化反応時に使用したビニル単量体と同種のものでも異
種のものでも良く、反応性の官能基を有しているために
、マクロモノマー化反応時に使用出来ないビニル単量体
を、この時点で追加することができる。
When adding a vinyl monomer, it may be of the same type or different type from the vinyl monomer used during the macromonomerization reaction, and since it has a reactive functional group, it is difficult to add a vinyl monomer. Vinyl monomers that cannot be used during the reaction can be added at this point.

なお、上記懸濁重合法において使用する分散剤および界
面活性剤は、前記プレポリマーの懸濁重合法において例
示した具体的化合物を使用することができる。重合開始
剤としては、過酸化ベンゾイル、過酸化ラウロイル、t
−ブチルパーベンゾエート、t−ブチルパーオクトエー
ト等の過酸化物、AIBN、 ACVASACHN等の
アゾ系化合物を用いることができるが、マクロモノマー
中の連鎖移動剤結合部の酸化分解の可能性がない点で、
好ましいものはアゾ系化合物である。
As the dispersant and surfactant used in the suspension polymerization method described above, the specific compounds exemplified in the suspension polymerization method of the prepolymer can be used. As a polymerization initiator, benzoyl peroxide, lauroyl peroxide, t
- Peroxides such as butyl perbenzoate and t-butyl peroctoate, and azo compounds such as AIBN and ACVASACHN can be used, but there is no possibility of oxidative decomposition of the chain transfer agent bond in the macromonomer. in,
Preferred are azo compounds.

重合温度は、30°C〜100°Cが適しており、50
°C〜90°Cであることが更に好ましい0反応部度が
30°C以下では重合速度が小さすぎ、一方100°C
を超えると分散媒体が沸騰し易く懸濁安定性が低下する
ので好ましくない。
Suitable polymerization temperature is 30°C to 100°C, and 50°C to 100°C.
It is more preferable that the temperature is from 0°C to 90°C. If the degree of reaction is less than 30°C, the polymerization rate is too low, while at 100°C
Exceeding this is not preferable because the dispersion medium tends to boil and the suspension stability decreases.

得られた重合体含有水性液を濾過した後、濾別された粉
体を水洗する等して、グラフトポリマーを単離すること
ができる。
After filtering the obtained polymer-containing aqueous liquid, the graft polymer can be isolated by, for example, washing the filtered powder with water.

懸濁重合法或いはバルク重合法により製造したプレポリ
マーを用い、本発明の方法によってマクロモノマーを製
造し、得られるマクロモノマーのビニル単量体溶液を使
用して懸濁重合法によりグラフトポリマーを製造するな
らば、一連の全工程において有機溶剤を使用する必要が
一切ないために、有機溶剤を使用する従来の製造方法と
比べ、製造工程は簡素化され製造コストを低減でき、更
に製造されるグラフトポリマー自体もその品位において
、少なくとも同等の、通常はより優れたものとなる点に
おいて、本発明の価値は大きい。
A macromonomer is produced by the method of the present invention using a prepolymer produced by a suspension polymerization method or a bulk polymerization method, and a graft polymer is produced by a suspension polymerization method using a vinyl monomer solution of the obtained macromonomer. If so, there is no need to use organic solvents in the entire series of steps, so the manufacturing process can be simplified and manufacturing costs can be reduced compared to conventional manufacturing methods that use organic solvents. The value of the present invention is great in that the quality of the polymer itself is at least equivalent, and usually superior.

以上のようにして製造されたグラフトポリマーはそれ自
体で接着剤や塗料、成形材料、エラストマーその他の高
分子材料として利用できる。また改質剤として、利用し
、−船釣な高分子材料の高機能、高性能化の手段として
利用することもできる。
The graft polymer produced as described above can be used by itself as an adhesive, paint, molding material, elastomer, or other polymeric material. It can also be used as a modifier and as a means to improve the functionality and performance of polymeric materials used in boats.

改質剤として用いる例としては、各種高分子材料の表面
及び界面改質剤、ポリマーブレンド相溶化剤、分散剤、
乳化剤、生体適合性材料や選択的透過膜材料等の機能材
料等、グラフトポリマーの持つ界面活性や多相構造を利
用した用途を挙げることができる。
Examples of use as modifiers include surface and interface modifiers for various polymeric materials, polymer blend compatibilizers, dispersants,
Applications that utilize the surface activity and multiphase structure of graft polymers include functional materials such as emulsifiers, biocompatible materials, and selectively permeable membrane materials.

〔参考例、実施例及び応用例〕[Reference examples, working examples and application examples]

以下に参考例、実施例及び応用例を挙げ本発明をより具
体的に説明する。なお各側に記載の%はすべて重量%を
表し、部は重量部を表す。
The present invention will be described in more detail below with reference to reference examples, examples, and application examples. In addition, all the percentages written on each side represent % by weight, and the parts represent parts by weight.

参考例1 メチルメタクリレート単位からなるプレポリ
マー(以下MMAプレポリマーという)の製造■ 撹拌基、還流冷却器9滴下ロート及び温度計を取りつけ
たガラスフラスコに、蒸溜水400部、ポリビニルアル
コール(クラレ■製ポバール420)の5%水溶液4部
、燐酸カルシウム懸濁液(日本化学工業■製スーパータ
イト10) 10部、ドデシルベンゼンスルホン酸ナト
リウム(花王■製エマール2F)の5χ水溶液0.2部
を仕込んだ。メチルメタクリレート(以下MMAと略称
する)98部、3−メルカプトプロピオン酸4.24部
、AIBN O,05部を含む混合溶液を滴下ロートに
入れた。フラスコを加熱昇温しで内液の温度を80°C
に設定した後、滴下ロートよりモノマー混合物を1分か
けて滴下した。80℃で10時間保ち、重合を完結させ
た。この間撹拌機の回転数は300 rpmに保った。
Reference Example 1 Production of a prepolymer consisting of methyl methacrylate units (hereinafter referred to as MMA prepolymer) ■ In a glass flask equipped with a stirring group, a reflux condenser, nine dropping funnels, and a thermometer, 400 parts of distilled water, polyvinyl alcohol (manufactured by Kuraray ■), 4 parts of a 5% aqueous solution of Poval 420), 10 parts of a calcium phosphate suspension (Supertite 10, manufactured by Nihon Kagaku Kogyo ■), and 0.2 parts of a 5χ aqueous solution of sodium dodecylbenzenesulfonate (Emar 2F, manufactured by Kao ■) were prepared. . A mixed solution containing 98 parts of methyl methacrylate (hereinafter abbreviated as MMA), 4.24 parts of 3-mercaptopropionic acid, and 0.05 parts of AIBN O was placed in a dropping funnel. Heat the flask to raise the temperature of the internal liquid to 80°C.
After setting the temperature, the monomer mixture was added dropwise from the dropping funnel over a period of 1 minute. The temperature was maintained at 80° C. for 10 hours to complete the polymerization. During this time, the rotation speed of the stirrer was maintained at 300 rpm.

反応中はブロッキング等の不都合は生じなかった。反応
後、濾過、水洗して、減圧乾燥させ、固体状のMMAプ
レポリマー91部を得た。GPCによるポリスチレン換
算分子量は、Mn=9,400 Mw=20,000で
あった。また、KOI(の0.1規定エタノール溶液を
用いた滴定によって求めた、このMMAプレポリマーの
酸価は、0.169meq/gであった。
No problems such as blocking occurred during the reaction. After the reaction, it was filtered, washed with water, and dried under reduced pressure to obtain 91 parts of solid MMA prepolymer. The polystyrene equivalent molecular weight determined by GPC was Mn=9,400 and Mw=20,000. Further, the acid value of this MMA prepolymer, determined by titration using a 0.1N ethanol solution of KOI, was 0.169 meq/g.

参考例2  MMAプレポリマーの製造■3−メルカプ
トプロピオン酸を2.12部使用すること以外は参考例
1と全く同様の方法で行い、固体状のMMAプレポリマ
ー90部を得た。GPCによるポリスチレン換算分子量
は、Mn=22.OOOMw=43゜000であった。
Reference Example 2 Production of MMA Prepolymer ■ 90 parts of a solid MMA prepolymer was obtained in exactly the same manner as in Reference Example 1 except that 2.12 parts of 3-mercaptopropionic acid was used. The polystyrene equivalent molecular weight by GPC is Mn=22. OOOMw=43°000.

また、酸価は0.0855+meq/gであった。Moreover, the acid value was 0.0855+meq/g.

参考例3  MMAプレポリマーの製造■3−メルカプ
トプロピオン酸を1.06部使用すること以外は参考例
1と全く同様の方法で行い、固体状のMMAプレポリマ
ー91部を得た。GPCによるポリスチレン換算分子量
は、Mn=46.000 Mw=102.000であっ
た。また、酸価は0.0420meq/gであった。
Reference Example 3 Production of MMA Prepolymer ■ 91 parts of a solid MMA prepolymer was obtained in the same manner as in Reference Example 1 except that 1.06 parts of 3-mercaptopropionic acid was used. The polystyrene equivalent molecular weight determined by GPC was Mn=46.000 and Mw=102.000. Moreover, the acid value was 0.0420 meq/g.

参考例4  MMAプレポリマーの製造■撹拌機、還流
冷却器、滴下ロート2本、ガス吹き込み口及び温度計を
備えつけたガラスフラスコに、MMA30部及び3−メ
ルカプトプロピオン酸1.06部を仕込み、一方の滴下
ロート(滴下ロートAとする)にMMA70部、もう一
方の滴下ロート(滴下ロートBとする)にAIBN 1
部、トルエン70部を入れた。窒素ガス導入後フラスコ
を加熱昇温しで反応液を90°Cに保った状態で滴下ロ
ートAを2時間、滴下ロートBを5時間かけて滴下した
。反応系に存在するAIBNを分解する為更に2時間加
熱した。反応液を80°Cで減圧乾燥させ、固体状のM
MAプレポリマー96部を得た。GPCによるポリスチ
レン換算分子量は、Mn・11,000 Mw=22.
200であった。
Reference Example 4 Production of MMA prepolymer - Into a glass flask equipped with a stirrer, a reflux condenser, two dropping funnels, a gas inlet and a thermometer, 30 parts of MMA and 1.06 parts of 3-mercaptopropionic acid were charged. Add 70 parts of MMA to one dropping funnel (referred to as dropping funnel A), and 1 part of AIBN to the other dropping funnel (referred to as dropping funnel B).
and 70 parts of toluene were added. After introducing nitrogen gas, the temperature of the flask was increased to keep the reaction solution at 90° C., and the mixture was added dropwise through dropping funnel A over 2 hours and dropping funnel B over 5 hours. The reaction system was further heated for 2 hours to decompose the AIBN present in the reaction system. The reaction solution was dried under reduced pressure at 80°C to form solid M.
96 parts of MA prepolymer were obtained. The polystyrene equivalent molecular weight by GPC is Mn・11,000 Mw=22.
It was 200.

実施例1 メチルメタクリレート単位からなるマクロモ
ノマー(以下MMAマクロモノマーという)の製造I 撹拌機、還流冷却器、空気導入管及び温度計を取りつけ
たガラスフラスコに、参考例1で製造したMMAプレポ
リマー80部、スチレンモノマー187部、テトラブチ
ルアンモニウムプロミド1.34部、0MA2.32部
、ハイドロキノン七ツメチルエーテル0.05部を仕込
んだ後、フラスコを加熱昇温しで内液の温度を90°C
に設定し、この温度で6時間反応させた。反応中は重合
反応を防ぐため空気をバブリングした。反応後、KOH
の0.1規定エタノール溶液による滴定から酸価を測定
し反応転化率を求めると、98.8%であった。反応液
のGPCチャートに特に変化は見られず、安定にマクロ
モノマーが生成したことがわかった。
Example 1 Production of a macromonomer consisting of methyl methacrylate units (hereinafter referred to as MMA macromonomer) I MMA prepolymer 80 produced in Reference Example 1 was placed in a glass flask equipped with a stirrer, a reflux condenser, an air introduction tube, and a thermometer. After charging 187 parts of styrene monomer, 1.34 parts of tetrabutylammonium bromide, 2.32 parts of 0MA, and 0.05 parts of hydroquinone methyl ether, the flask was heated to raise the temperature of the internal liquid to 90°C.
The temperature was set to 1, and the reaction was carried out at this temperature for 6 hours. During the reaction, air was bubbled to prevent polymerization. After reaction, KOH
The acid value was measured by titration with a 0.1N ethanol solution, and the reaction conversion rate was found to be 98.8%. No particular change was observed in the GPC chart of the reaction solution, indicating that the macromonomer was stably produced.

実施例2  MMAマクロモノマーの製造■プレポリマ
ーとして参考例2で製造したものを80部、GMAを1
.46部使用すること以外は実施例1と全く同様の方法
で行った。反応転化率は98.7%であり、反応液のG
PCチャートに特に変化は見られず、安定にマクロモノ
マーが生成したことがわかった。
Example 2 Production of MMA macromonomer ■ 80 parts of the prepolymer produced in Reference Example 2, 1 part of GMA
.. The procedure was carried out in exactly the same manner as in Example 1 except that 46 parts were used. The reaction conversion rate was 98.7%, and the G of the reaction solution was
No particular change was observed in the PC chart, indicating that the macromonomer was stably produced.

実施例3  MMAマクロモノマーの製造■プレポリマ
ーとして参考例3で製造したものを80部、GMAを0
.96部使用すること以外は実施例1と全く同様の方法
で行った。反応転化率は97.9%であり、反応液のG
PCチャートに特に変化は見られず、安定にマクロモノ
マーが生成したことがわかった。
Example 3 Production of MMA macromonomer■ 80 parts of the prepolymer produced in Reference Example 3 and 0 GMA
.. The procedure was carried out in exactly the same manner as in Example 1 except that 96 parts were used. The reaction conversion rate was 97.9%, and the G of the reaction solution was
No particular change was observed in the PC chart, indicating that the macromonomer was stably produced.

実施例4  MMAマクロモノマーの製造■、 プレポ
リマーとして参考例4で製造したものを80部、GMA
を1.46部使用すること以外は実施例1と全く同様の
方法で行った。反応転化率は97.5%であり、反応液
のGPCチャートに特に変化は見られず、安定にマクロ
モノマーが生成したことがわかった。
Example 4 Production of MMA macromonomer■, 80 parts of the prepolymer produced in Reference Example 4, GMA
Example 1 was carried out in exactly the same manner as in Example 1, except that 1.46 parts of . The reaction conversion rate was 97.5%, and no particular change was observed in the GPC chart of the reaction solution, indicating that the macromonomer was stably produced.

実施例5  MMA’マ゛クロモノマーの製造■スチレ
ンモノマーの替わりにn−ブチルアクリレートを187
部使用すること以外は実施例1と全く同様の方法でおこ
なった。反応転化率は98.5%であり、反応液のGP
Cチャートに特に変化は見られず、安定にマクロモノマ
ーが生成したことがわかった。
Example 5 Production of MMA' micromonomer ■N-butyl acrylate was used instead of styrene monomer.
The procedure was exactly the same as in Example 1, except that the same amount was used. The reaction conversion rate was 98.5%, and the GP of the reaction solution
No particular change was observed in the C chart, indicating that the macromonomer was stably produced.

応用例1 スチレン−MMA  グラフトポリマーの製
造■ 撹拌基、還流冷却器、滴下ロート及び温度計を取りつけ
たガラスフラスコに、蒸溜水400部、ポリビニルアル
コール(クラレ■製ポバール420)の5%水溶液4部
、燐酸カルシウム懸濁液(日本化学工業■製スーパータ
イ) 10) 10部、ドデシルベンゼンスルホン酸す
トリウム(花王■製エマ−・ル2F)の5χ水溶液0.
2部を仕込んだ。実施例2でaJ 造L タM M A
マクロモノマーのスチレンモノマー溶液を100部、A
IBN 0.5部を含む溶液を滴下ロートに入れた。フ
ラスコを加熱昇温しで内液の温度を80°Cに設定した
後、滴下ロートよりモノマー混合物を1分かけて滴下し
た。80℃で10時間保ち、重合を完結させた。この間
撹拌機の回転数は300rpmに保った。反応中はブロ
ッキング等の不都合は生じなかった。反応後、濾過、酸
洗して、減圧乾燥させ、固体状のスチレン−MMAグラ
フトポリマー93部を得た。GPCによるポリスチレン
換算分子量は、Mn=84,000 Mw=400,0
00であった。また、GPCチャートにマクロモノマー
のピークは見られず、効率的にグラフトポリマーが生成
したことが判った。
Application example 1 Production of styrene-MMA graft polymer■ In a glass flask equipped with a stirring group, reflux condenser, dropping funnel, and thermometer, 400 parts of distilled water and 4 parts of a 5% aqueous solution of polyvinyl alcohol (Poval 420 manufactured by Kuraray ■) were added. , 10 parts of calcium phosphate suspension (Super Tie, manufactured by Nihon Kagaku Kogyo ■), 0.0 parts of a 5x aqueous solution of thorium dodecylbenzenesulfonate (Emeru 2F, manufactured by Kao ■).
I prepared the second part. In Example 2, aJ
100 parts of styrene monomer solution of macromonomer, A
A solution containing 0.5 parts of IBN was placed in the dropping funnel. After heating the flask to set the temperature of the internal liquid at 80°C, the monomer mixture was added dropwise from the dropping funnel over 1 minute. The temperature was maintained at 80° C. for 10 hours to complete the polymerization. During this time, the rotation speed of the stirrer was maintained at 300 rpm. No problems such as blocking occurred during the reaction. After the reaction, the mixture was filtered, pickled, and dried under reduced pressure to obtain 93 parts of a solid styrene-MMA graft polymer. Polystyrene equivalent molecular weight by GPC is Mn=84,000 Mw=400.0
It was 00. Furthermore, no macromonomer peak was observed in the GPC chart, indicating that the graft polymer was efficiently produced.

応用例2 スチレン−MMA  グラフトポリマーの製
造■ 撹拌基、還流冷却器9滴下ロート及び温度計を取りつけ
たガラスフラスコに、蒸溜水400部、ポリビニルアル
コール(クラレ■製ポバール420)の5%水溶液4部
、燐酸カルシウム懸濁液(日本化学工業■製スーパータ
イ) 10) 10部、ドデシルベンゼンスルホン酸ナ
トリウム(花王■製エマール2F)の5χ水溶液0.2
部を仕込んだ。実施例2で製造したMMAマクロモノマ
ーのスチレンモノマー溶液を66.7部、スチレンモノ
マーの追加分33.3部、AIBN O,5部を含む溶
液を滴下ロートに入れた。
Application example 2 Manufacture of styrene-MMA graft polymer■ Into a glass flask equipped with a stirring base, a reflux condenser, 9 dropping funnels, and a thermometer, 400 parts of distilled water and 4 parts of a 5% aqueous solution of polyvinyl alcohol (Poval 420 manufactured by Kuraray ■) were added. , calcium phosphate suspension (Super Thai manufactured by Nihon Kagaku Kogyo ■) 10) 10 parts, 5χ aqueous solution of sodium dodecylbenzenesulfonate (Emar 2F manufactured by Kao ■) 0.2
I prepared a section. A solution containing 66.7 parts of the styrene monomer solution of the MMA macromonomer prepared in Example 2, an additional 33.3 parts of styrene monomer, and 5 parts of AIBN O was placed in the dropping funnel.

フラスコを加熱昇温して内液の温度を80°Cに設定し
た後、滴下ロートよりモノマー混合物を1分かけて滴下
した。80’Cで10時間保ち、重合を完結させた。こ
の間撹拌機の回転数は300 rpmに保った。
After heating the flask to set the temperature of the internal liquid at 80°C, the monomer mixture was added dropwise from the dropping funnel over a period of 1 minute. The temperature was maintained at 80'C for 10 hours to complete the polymerization. During this time, the rotation speed of the stirrer was maintained at 300 rpm.

反応中はブロッキング等の不都合は生じなかった。No problems such as blocking occurred during the reaction.

反応後、濾過、酸洗して、減圧乾燥させ、固体状のスチ
レン−MMAグラフトポリマー94部を得た。GPCに
よるポリスチレン換算分子量は、Mn=75.000 
M%1−311.000であった。また、GPCチャー
トにマクロモノマーのピークは見られず、効率的にグラ
フトポリマーが生成したことが判った。
After the reaction, the mixture was filtered, pickled, and dried under reduced pressure to obtain 94 parts of a solid styrene-MMA graft polymer. The polystyrene equivalent molecular weight by GPC is Mn=75.000
M% was 1-311.000. Furthermore, no macromonomer peak was observed in the GPC chart, indicating that the graft polymer was efficiently produced.

応用例3 スチレン−MMA  グラフトポリマーの製
造■ 撹拌基、還流冷却器2滴下ロート及び温度計を取りつけ
たガラスフラスコに、蒸溜水400部、ボリビニルアル
コール(クラレ■製ポバール220B)の5%水溶液4
部、燐酸カルシウム懸濁液(日本化学工業■製スーパー
タイ) 10) 10部、ドデシルベンゼンスルホン酸
ナトリウム(花王■製エマール2F)の5χ水溶液0.
2部を仕込んだ。実施例3で製造したMMAマクロモノ
マーのスチレンモノマー溶液を66.7部、スチレンモ
ノマーの追加分33.3部、ACIN 0.5部を含む
溶液を滴下ロートに入れた。フラスコを加熱昇温して内
液の温度を90”Cに設定した後、滴下ロートよりモノ
マー混合物を1分かけて滴下した。90”Cで20時間
保ち、重合を完結させた。この間撹拌機の回転数は30
0 rpn+に保った。反応中はブロッキング等の不都
合は生じなかった。反応後、濾過、酸洗して、減圧乾燥
させて固体状のスチレン−MMAグラフトポリマー88
部を得た。GPCによるポリスチレン換算分子量は、M
n=150,000 M%1=494.000 テあっ
た。また、GPCチャートにマクロモノマーのピークは
見られず、効率的にグラフトポリマーが生成したことが
判った。
Application example 3 Production of styrene-MMA graft polymer ■ In a glass flask equipped with a stirring group, reflux condenser, two dropping funnels, and a thermometer, 400 parts of distilled water and a 5% aqueous solution of volivinyl alcohol (Poval 220B manufactured by Kuraray ■) were added.
10 parts, calcium phosphate suspension (Super Thai manufactured by Nihon Kagaku Kogyo ■) 10 parts, 5x aqueous solution of sodium dodecylbenzenesulfonate (Emar 2F manufactured by Kao ■) 0.
I prepared the second part. A solution containing 66.7 parts of the styrene monomer solution of the MMA macromonomer produced in Example 3, an additional 33.3 parts of styrene monomer, and 0.5 parts of ACIN was placed in the dropping funnel. After heating the flask to raise the temperature of the internal liquid to 90"C, the monomer mixture was added dropwise from the dropping funnel over 1 minute. The temperature was maintained at 90"C for 20 hours to complete the polymerization. During this time, the rotation speed of the stirrer was 30.
It was kept at 0 rpn+. No problems such as blocking occurred during the reaction. After the reaction, it is filtered, pickled, and dried under reduced pressure to obtain a solid styrene-MMA graft polymer 88.
I got the department. The polystyrene equivalent molecular weight by GPC is M
n=150,000 M%1=494.000 Furthermore, no macromonomer peak was observed in the GPC chart, indicating that the graft polymer was efficiently produced.

(ハ)発明の効果 本発明によれば、有機溶剤を必要としない製造方法によ
る高純度のマクロモノマー及びグラフトポリマーの製造
が可能となり、火災、中毒といった有機溶剤が原因とな
り発生する製造時の危険性を大幅に軽減することができ
る結果、特殊な乾燥設備が不要となり、またそれ以外の
点でも製造工程の簡素化ができるため、製造コスト的に
極めて有利となる。
(c) Effects of the Invention According to the present invention, it is possible to produce high-purity macromonomers and graft polymers by a production method that does not require organic solvents, and there are risks during production that are caused by organic solvents, such as fire and poisoning. As a result, special drying equipment is not required, and the manufacturing process can be simplified in other respects, which is extremely advantageous in terms of manufacturing costs.

Claims (1)

【特許請求の範囲】[Claims] 1、片末端に官能基を有する直鎖状重合体と、該官能基
と反応性の基を有するビニル化合物とを、これらの反応
によって生成するマクロモノマーと共重合性であり、か
つ該マクロモノマーが可溶性のビニル単量体を溶媒とし
て用い、該溶媒中で重合禁止剤の存在下に、分子状酸素
含有ガスを吹き込みながら反応させることを特徴とする
マクロモノマーの製造方法。
1. A linear polymer having a functional group at one end and a vinyl compound having a group reactive with the functional group are copolymerizable with the macromonomer produced by these reactions, and the macromonomer is copolymerizable with the macromonomer produced by the reaction. A method for producing a macromonomer, which comprises using a vinyl monomer in which is soluble as a solvent, and carrying out a reaction in the solvent in the presence of a polymerization inhibitor while blowing a molecular oxygen-containing gas.
JP28929387A 1987-11-18 1987-11-18 Production of macromonomer Pending JPH01132601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28929387A JPH01132601A (en) 1987-11-18 1987-11-18 Production of macromonomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28929387A JPH01132601A (en) 1987-11-18 1987-11-18 Production of macromonomer

Publications (1)

Publication Number Publication Date
JPH01132601A true JPH01132601A (en) 1989-05-25

Family

ID=17741305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28929387A Pending JPH01132601A (en) 1987-11-18 1987-11-18 Production of macromonomer

Country Status (1)

Country Link
JP (1) JPH01132601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006945A (en) * 2008-06-26 2010-01-14 Bridgestone Corp Method for manufacturing modified liquid rubber composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006945A (en) * 2008-06-26 2010-01-14 Bridgestone Corp Method for manufacturing modified liquid rubber composition

Similar Documents

Publication Publication Date Title
US5395903A (en) Conjugated diene chain-transfer agents for polymerization of olefinically unsaturated (co)monomers
JPH0562125B2 (en)
JPH02281013A (en) Diketone compound copolymer
JP3321209B2 (en) Method for producing cross-linked carboxyl group-containing polymer
JP2847242B2 (en) Method for producing carboxyl group-containing macromonomer
JPH01132601A (en) Production of macromonomer
JPH01108209A (en) Manufacture of graft polymer
JPH01318027A (en) Preparation of aqueous resin composition
EP1290036A1 (en) Water soluble ampiphilic heteroarm star polymers and their use as emulsion stabilizers in emulsion polymerization
JPS62232408A (en) Production of acrylic polymer having functional group on one terminal
JP3193422B2 (en) Method for producing polymer having epoxy group terminal
JPH01294722A (en) Production of radical-polymerizable macromonomer
JPH10279528A (en) Itaconic acid ester and its polymer
JP2890758B2 (en) Method for producing macromonomer
JPH03221502A (en) Synthesis of cyclodextrin polymer and production of cyclodextrin film
JP2622676B2 (en) Novel macromonomer and production method thereof
JPH11140127A (en) Preparation of acrylic polymer having functional group at both ends
JPH0770242A (en) Vinyl copolymer containing allyl group at side chain and its production
JP3377916B2 (en) Vinyl ester polymer and method for producing the same
JP3275714B2 (en) Polymerization initiator for peroxide and vinyl monomers and polymerization method using the same
JPS61231003A (en) Dispersant for reversed phase suspension polymerization
JP3209594B2 (en) Method for producing vinyl polymer
JPS6189208A (en) Polyvinyl alcohol macromonomer, and graft copolymer prepared therewith
JPH05202112A (en) Halomethyl group-containing azo-based polymerization initiator, macromolecular polymerization initiator synthesized from the same initiator and production of block polymer using the same initiator
JPH08183760A (en) Macromonomer, graft polymer and their production