JPH0559571B2 - - Google Patents

Info

Publication number
JPH0559571B2
JPH0559571B2 JP58144481A JP14448183A JPH0559571B2 JP H0559571 B2 JPH0559571 B2 JP H0559571B2 JP 58144481 A JP58144481 A JP 58144481A JP 14448183 A JP14448183 A JP 14448183A JP H0559571 B2 JPH0559571 B2 JP H0559571B2
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
less
alloy
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58144481A
Other languages
Japanese (ja)
Other versions
JPS6037109A (en
Inventor
Susumu Shinagawa
Arimichi Abe
Yoshinobu Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Steel Co Ltd
Original Assignee
Tohoku Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Steel Co Ltd filed Critical Tohoku Steel Co Ltd
Priority to JP58144481A priority Critical patent/JPS6037109A/en
Publication of JPS6037109A publication Critical patent/JPS6037109A/en
Publication of JPH0559571B2 publication Critical patent/JPH0559571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 磁気録音、磁気録画などの用途で最近金属薄膜
型磁気記録媒体が検討されている。 すなわち磁気記録密度の向上を達成するためで
ある。 (従来技術とその問題点) 金属薄膜型磁気記録媒体として近年来注目され
ているのは主としてNi:20〜30wt%(以下単に
%で示す)を含有するCo−Ni合金を磁性層とす
る磁気記録媒体である。 この磁気記録媒体は高記録密度という点に関し
てはすぐれた性能を有するが、磁性層のCo−Ni
合金が非常に高価であること、脆弱で亀裂が発生
し易いことおよび、耐食性に劣ることなどのため
耐久性に問題を残している。 そのうち耐食性に関しては、磁性層の上に耐食
性のすぐれた金属で被覆すること、また防錆用の
高分子物質を塗布することなどによる保護層が検
討されているが、なお十分でない。それというの
はCo−Ni合金は非常に脆いので、磁気記録媒体
の製造の際、また使用中にも、微小な亀裂が発生
するために、保護層も破れて耐食保護の役目をな
さなくなるからである。そしてこのような磁性層
の亀裂はノイズ発生の原因ともなり、耐食性不足
と相まつて耐久性を著しく低下させる。従つて耐
久性の良好な金属薄膜型磁気記録媒体としては、
磁気記録層の耐食性が良好でしかも靱性に富む磁
性層を構成する必要がある。 しかし、これまで高記録密度を得るために必要
な磁気特性を満足ししかも耐久性の面から必要と
なる耐食性、機械的性質とを兼ね備えた強磁性体
を磁気記録層とした金属薄膜型磁気記録媒体は知
られていない。 (発明の目的) 安価でしかも耐久性のすぐれた金属薄膜型記録
媒体を提供することがこの発明の目的である。 ところでCo−Ni合金の耐食性改善は、Crの添
加により可能となるが、その反面磁束密度をかな
り低下させ、また脆性については殆ど改善に寄与
しないのでCo−Ni合金に対するCrの添加は必ず
しも有効ではない。 発明者らは、種々調査の結果、Co10〜51%、
Ni1〜30%、Cr10%以下残余FeのFe−Co−Ni−
Cr系合金の適合を実験的に見出した。すなわち、
Co10〜51%、Ni1〜30%残余Feの合金は飽和磁
束密度が1.7〜2.4KGと高く、しかも靱性にすぐ
れていることであり、この組成範囲に耐食性改善
のためにCrを10%以下含有させても飽和磁束密
度は1.5KG以上の高い値が保たれ、しかも靱性が
害されることもない。 Coは51%をこえると、高価なほか、とくに脆
くなる不利があり、さりとて10%未満では磁束密
度が低くなつて、添加できるCr量も制限される
ので耐食性の面でも不利となる。NiはFe−Co系
合金の靱性改善に効果があるが、磁束密度を低下
させるので30%以下が適当である。但し、Crを
含有させて耐食性を向上させる場合には、磁束密
度が低下するので20%以下がより望ましく、また
靱性改良のためには最低1%が必要である。
Cr10%以下としたのは、Crを含有しないFe−Co
−Ni系合金でも靱性があるので磁気記録層に亀
裂が生じることはなく、防錆処理を施すことによ
り耐久性が得られるからである。しかし、Crを
含有させて耐食性のすぐれた磁性層とした方がよ
り耐久性は向上する。この場合Crの含有量は10
%以下で十分であり、これ以上になると磁束密度
の低下、保磁力の低下が著しくなる。 以上の様にこの発明に係わる磁気記録媒体は
Co10〜51%、Ni1〜30%、Cr10%以下、残余Fe
を基本成分とするFe−Co−Ni−Cr系合金を磁気
記録層とするものであるが、必要に応じて、この
基本成分に、Mo,W,V,Nb,Ta,Cu及びZr
(以下第1群という)のうちから選んだ少なくと
も一種を6%以下の範囲で、またTiを3%以下
の範囲でそれぞれ含有させることができる。 ここに第1群の元素はいずれも、耐食性の改善
元素として有用であるが、6%を超えて多量に含
有させると飽和磁束密度の低下を招く不利がある
ので、これらの元素は単独使用、併用いずれの場
合においても6%以下で含有させるものとした。 またTiは、耐食性だけでなく、磁気特性とく
に保磁力の向上に有効に寄与するが、含有量が3
%を超えるとやはり飽和磁束密度の低下を招くの
で、含有させる場合には3%以下で含有させるこ
ととした。なおこの発明に係わる記録媒体を製造
する場合、通常は溶製により目的とする組成に調
整した合金を蒸着素材として用いるが、それぞれ
の元素を別個の蒸着源から蒸着スピードを調整し
ながらテープ上に目的とする組成の磁性層を成膜
することもできる。 この発明に係わる磁気記録媒体はFe−Co−Ni
−Cr系合金を、ポリエチレンテレフタレート、
ポリカーボネイト、ポリプロピレンなどのプラス
チツクフイルム上に10-4〜10-6Torrの真空中で
斜方蒸着法により磁気記録層として成膜したもの
である。 この場合、プラスチツクフイルム上には予め
Al,Ti,Mo,Si等の金属を下地処理層として蒸
着したものを用いても良い。また磁性層の上にテ
ープの走行性を良くするために有機物質により被
覆することももちろんかまわない。 第1図にこの発明に係わる磁気記録媒体の断面
構成図を示す。図において、1はポリエチレンテ
レフタレートフイルム、2はAlの下地処理層、
3はこの発明のFe−Co−Ni−Cr系合金の強磁性
層であり、4はテープの走行性を良くするための
有機物質の被覆層である。 この発明に係わる磁気記録媒体のFe−Co−Ni
−Cr系合金磁性層はCo−Ni合金の様に脆くな
く、靱性を有しているので磁気記録媒体製造時に
微小な亀裂が生じることはない。また磁性層の耐
食性は良好なために耐久性にすぐれた磁気記録媒
体を得ることができる。 さらに磁性層の磁束密度が高いので、Co−Ni
合金を磁気記録層とした磁気記録媒体よりも高感
度が得られる。 この発明の一例を示すと蒸着合金としてCo24
%、Ni12,3%、Cr6%、Mo1%、V0.2%、残余
Feの合金を用い、真空度6〜8×10-6Torrの真
空中で入射角75°でポリエチレンテレフタレート
フイルム上に蒸着した。蒸着速度は100〜150Å/
minで膜厚は1000Åである。 この時得られた保磁力は900Oe、飽和磁束密度
は7.0KGあり、高記録密度媒体としてすぐれた性
能を示した。 一般にこの発明で用いた斜方蒸着の場合、入射
角が大きくなるにつれ磁性層の中で柱状結晶の占
める割合が少なくなるために磁束密度は低下し、
例えばCo−25%Niを前記の条件で蒸着した場合
には4.0KG程度となるにすぎない。 この発明に係わる磁気記録媒体が大きな飽和磁
束密度を有するということは、現在の金属薄膜型
磁気記録媒体が耐久性以外に抱えている低周波域
の感度不足の問題をも解決でき、とくに有利であ
る。 次にこの発明に係わる磁気記録層の前記組成
Fe−Co−Ni−Cr系合金と、比較のためCo−25%
Ni合金とを、それぞれプラスチツクフイルム上
に蒸着した後、温度60℃、湿度90%の環境に7日
間放置して耐食性の比較をしたところ、Co−Ni
合金は腐食して変色したが、Fe−Co−Ni−Cr系
合金は全く変化が認められなかつた。 次ぎに表1に示す種々の組成になるFe−Co−
Ni−Cr系合金を用い、真空度:6〜8×10-6
Torrの真空中において入射角:75°で、それぞれ
プラスチツクフイルム上に蒸着した。 かくして得られた各磁気記録媒体の保磁力及び
耐食性について調べた結果を、表1に併記する。
(Technical field) Metal thin film magnetic recording media have recently been studied for uses such as magnetic recording and magnetic recording. In other words, this is to achieve an improvement in magnetic recording density. (Prior art and its problems) What has attracted attention in recent years as a metal thin film type magnetic recording medium is a magnetic one whose magnetic layer is a Co-Ni alloy containing 20 to 30 wt% Ni (hereinafter simply expressed as %). It is a recording medium. This magnetic recording medium has excellent performance in terms of high recording density, but the Co-Ni of the magnetic layer
Durability remains a problem because the alloy is very expensive, brittle and prone to cracking, and has poor corrosion resistance. Regarding corrosion resistance, protective layers such as coating the magnetic layer with a highly corrosion-resistant metal or coating a rust-preventing polymeric substance have been considered, but these are still not sufficient. This is because the Co-Ni alloy is extremely brittle, and micro-cracks occur during the manufacturing and use of magnetic recording media, causing the protective layer to tear and no longer serve as a corrosion-resistant protection. It is. Such cracks in the magnetic layer also cause noise generation, and together with the lack of corrosion resistance, they significantly reduce durability. Therefore, as a metal thin film magnetic recording medium with good durability,
It is necessary to construct a magnetic recording layer having good corrosion resistance and high toughness. However, until now, metal thin film magnetic recording has been achieved using a magnetic recording layer made of a ferromagnetic material that satisfies the magnetic properties required to obtain high recording density and also has the corrosion resistance and mechanical properties required from the viewpoint of durability. Medium unknown. (Objective of the Invention) An object of the present invention is to provide a metal thin film type recording medium that is inexpensive and has excellent durability. By the way, the corrosion resistance of Co-Ni alloys can be improved by adding Cr, but on the other hand, the addition of Cr to Co-Ni alloys is not necessarily effective because it considerably reduces the magnetic flux density and hardly contributes to improving brittleness. do not have. As a result of various investigations, the inventors found that Co10-51%,
Fe−Co−Ni− with Ni1~30%, Cr10% or less residual Fe
The suitability of Cr-based alloys was experimentally discovered. That is,
The alloy with 10~51% Co, 1~30% Ni, and the remaining Fe has a high saturation magnetic flux density of 1.7~2.4KG and has excellent toughness, and this composition range contains 10% or less Cr to improve corrosion resistance. The saturation magnetic flux density remains at a high value of 1.5 KG or more even when the steel is heated, and the toughness is not impaired. When Co exceeds 51%, it becomes expensive and particularly brittle, and when it is less than 10%, the magnetic flux density becomes low and the amount of Cr that can be added is limited, which is disadvantageous in terms of corrosion resistance. Ni is effective in improving the toughness of Fe--Co alloys, but it lowers the magnetic flux density, so a content of 30% or less is appropriate. However, when Cr is contained to improve corrosion resistance, the magnetic flux density decreases, so it is more preferably 20% or less, and at least 1% is required to improve toughness.
Cr10% or less is Fe-Co, which does not contain Cr.
-Ni-based alloys also have toughness, so cracks do not occur in the magnetic recording layer, and durability can be obtained by applying anti-corrosion treatment. However, the durability is further improved by incorporating Cr to form a magnetic layer with excellent corrosion resistance. In this case, the Cr content is 10
% or less is sufficient, and if it exceeds this, the decrease in magnetic flux density and coercive force will become significant. As described above, the magnetic recording medium according to this invention is
Co10~51%, Ni1~30%, Cr10% or less, residual Fe
The magnetic recording layer is made of a Fe-Co-Ni-Cr based alloy, but if necessary, Mo, W, V, Nb, Ta, Cu and Zr may be added to this basic component.
(hereinafter referred to as the first group) can be contained in a range of 6% or less, and Ti can be contained in a range of 3% or less. All of the elements in the first group are useful as elements for improving corrosion resistance, but if they are contained in a large amount exceeding 6%, there is a disadvantage that the saturation magnetic flux density decreases, so these elements may be used alone or In any case of combined use, the content was set to be 6% or less. Furthermore, Ti effectively contributes not only to corrosion resistance but also to improving magnetic properties, especially coercive force;
If the content exceeds 3%, the saturation magnetic flux density will decrease. When manufacturing the recording medium according to the present invention, normally an alloy adjusted to the desired composition by melting is used as the vapor deposition material, but each element is deposited onto the tape from separate deposition sources while adjusting the deposition speed. A magnetic layer having a desired composition can also be formed. The magnetic recording medium according to this invention is made of Fe-Co-Ni.
-Cr-based alloy, polyethylene terephthalate,
A magnetic recording layer is formed on a plastic film such as polycarbonate or polypropylene by oblique evaporation in a vacuum of 10 -4 to 10 -6 Torr. In this case, on the plastic film,
A metal such as Al, Ti, Mo, or Si may be deposited as a base treatment layer. Furthermore, it is of course possible to coat the magnetic layer with an organic substance in order to improve the running properties of the tape. FIG. 1 shows a cross-sectional configuration diagram of a magnetic recording medium according to the present invention. In the figure, 1 is a polyethylene terephthalate film, 2 is an Al base treatment layer,
3 is a ferromagnetic layer of the Fe--Co--Ni--Cr alloy of the present invention, and 4 is a coating layer of an organic substance for improving the running properties of the tape. Fe-Co-Ni of magnetic recording medium according to this invention
-Cr-based alloy magnetic layer is not brittle like Co--Ni alloy and has toughness, so minute cracks do not occur during manufacturing of magnetic recording media. Furthermore, since the magnetic layer has good corrosion resistance, a magnetic recording medium with excellent durability can be obtained. Furthermore, since the magnetic flux density of the magnetic layer is high, Co−Ni
Higher sensitivity can be obtained than magnetic recording media with magnetic recording layers made of alloys. An example of this invention is Co24 as a vapor deposited alloy.
%, Ni12, 3%, Cr6%, Mo1%, V0.2%, remainder
An alloy of Fe was deposited on a polyethylene terephthalate film at an incident angle of 75° in a vacuum of 6 to 8×10 -6 Torr. Deposition rate is 100~150Å/
The film thickness at min is 1000 Å. The coercive force obtained at this time was 900 Oe and the saturation magnetic flux density was 7.0 KG, demonstrating excellent performance as a high recording density medium. Generally, in the case of oblique deposition used in this invention, as the angle of incidence increases, the proportion of columnar crystals in the magnetic layer decreases, so the magnetic flux density decreases.
For example, when Co-25%Ni is deposited under the above conditions, the weight is only about 4.0 kg. The fact that the magnetic recording medium according to the present invention has a large saturation magnetic flux density is particularly advantageous because it can solve the problem of lack of sensitivity in the low frequency range that current metal thin film magnetic recording media have in addition to durability. be. Next, the composition of the magnetic recording layer according to the present invention
Fe-Co-Ni-Cr alloy and Co-25% for comparison
Co-Ni alloys were deposited on plastic films and then left in an environment of 60℃ and 90% humidity for 7 days to compare their corrosion resistance.
The alloy corroded and discolored, but no change was observed in the Fe-Co-Ni-Cr alloy. Next, Fe-Co- with various compositions shown in Table 1
Using Ni-Cr alloy, degree of vacuum: 6 to 8×10 -6
Each was deposited on a plastic film in a Torr vacuum at an incident angle of 75°. Table 1 also shows the results of examining the coercive force and corrosion resistance of each magnetic recording medium thus obtained.

【表】【table】

【表】 有無
◎…全く変色なし
同表より明らかなように、この発明に従う磁気
記録媒体はいずれも、優れた保磁力及び耐食性を
呈している。 以上詳述した様に、この発明に係わる磁気記録
媒体は、従来の金属薄膜型磁気記録媒体で問題と
なつていたところの価格、耐久性、低周波域での
感度等を解決することができ、有用性大なる発明
である。
[Table] Presence or absence
◎...No discoloration at all As is clear from the table, all the magnetic recording media according to the present invention exhibit excellent coercive force and corrosion resistance. As detailed above, the magnetic recording medium according to the present invention can solve the problems of conventional metal thin film magnetic recording media, such as cost, durability, and sensitivity in the low frequency range. , it is a highly useful invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気記録媒体の断面図である。 FIG. 1 is a cross-sectional view of a magnetic recording medium.

Claims (1)

【特許請求の範囲】 1 金属薄膜型磁気記録媒体であつて、 Co:10〜51wt%、 Ni:1〜30wt%及び Cr:10wt%以下 を含み、残部は実質的にFeの組成になるFe−Co
−Ni−Cr系合金を磁気記録層とし、耐久性のす
ぐれたことを特徴とする磁気記録媒体。 2 金属薄膜型磁気記録媒体であつて、 Co:10〜51wt%、 Ni:1〜30wt%及び Cr:10wt%以下 を含み、かつ Mo,W,V,Nb,Ta,Cu及びZrのうちから
選んだ少なくとも一種:6wt%以下、 を含有し、残部は実質的にFeの組成になるFe−
Co−Ni−Cr系合金を磁気記録層とし、耐久性の
すぐれたことを特徴とする磁気記録媒体。 3 金属薄膜型磁気記録媒体であつて、 Co:10〜51wt%、 Ni:1〜30wt%及び Cr:10wt%以下 を含み、かつ Ti:3wt%以下、 を含有し、残部は実質的にFeの組成になるFe−
Co−Ni−Cr系合金を磁気記録層とし、耐久性の
すぐれたことを特徴とする磁気記録媒体。 4 金属薄膜型磁気記録媒体であつて、 Co:10〜51wt%、 Ni:1〜30wt%及び Cr:10wt%以下 を含み、かつ Mo,W,V,Nb,Ta,Cu及びZrのうちから
選んだ少なくとも一種:6wt%以下、 を含み、さらに Ti:3wt%以下、 を含有し、残部は実質的にFeの組成になるFe−
Co−Ni−Cr系合金を磁気記録層とし、耐久性の
すぐれたことを特徴とする磁気記録媒体。
[Scope of Claims] 1. A metal thin film magnetic recording medium, which contains Co: 10 to 51 wt%, Ni: 1 to 30 wt%, and Cr: 10 wt% or less, with the balance being Fe with a substantially Fe composition. −Co
- A magnetic recording medium having a magnetic recording layer made of a Ni-Cr alloy and having excellent durability. 2 Metal thin film magnetic recording medium, containing Co: 10 to 51 wt%, Ni: 1 to 30 wt%, and Cr: 10 wt% or less, and selected from Mo, W, V, Nb, Ta, Cu, and Zr. At least one selected type: 6wt% or less of Fe-
A magnetic recording medium whose magnetic recording layer is made of a Co-Ni-Cr alloy and is characterized by excellent durability. 3. A metal thin film magnetic recording medium, which contains Co: 10 to 51 wt%, Ni: 1 to 30 wt%, and Cr: 10 wt% or less, and Ti: 3 wt% or less, with the remainder being substantially Fe. The composition of Fe−
A magnetic recording medium whose magnetic recording layer is made of a Co-Ni-Cr alloy and is characterized by excellent durability. 4 Metal thin film type magnetic recording medium, containing Co: 10 to 51 wt%, Ni: 1 to 30 wt%, and Cr: 10 wt% or less, and selected from Mo, W, V, Nb, Ta, Cu, and Zr. At least one selected type: 6wt% or less, containing, furthermore, Ti: 3wt% or less, containing, with the remainder being substantially Fe-
A magnetic recording medium whose magnetic recording layer is made of a Co-Ni-Cr alloy and is characterized by excellent durability.
JP58144481A 1983-08-09 1983-08-09 Magnetic recording medium Granted JPS6037109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144481A JPS6037109A (en) 1983-08-09 1983-08-09 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144481A JPS6037109A (en) 1983-08-09 1983-08-09 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6037109A JPS6037109A (en) 1985-02-26
JPH0559571B2 true JPH0559571B2 (en) 1993-08-31

Family

ID=15363309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144481A Granted JPS6037109A (en) 1983-08-09 1983-08-09 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6037109A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633383U (en) * 1986-06-24 1988-01-11

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964734A (en) * 1982-09-30 1984-04-12 Nippon Gakki Seizo Kk Co-ni magnetic alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964734A (en) * 1982-09-30 1984-04-12 Nippon Gakki Seizo Kk Co-ni magnetic alloy

Also Published As

Publication number Publication date
JPS6037109A (en) 1985-02-26

Similar Documents

Publication Publication Date Title
JPH0416848B2 (en)
US4548871A (en) Magnetic recording medium
JPH0559571B2 (en)
US4833044A (en) Film type magnetic recording medium
JPS6056414B2 (en) Co-based alloy for magnetic recording media
JPH0817032A (en) Magnetic recording medium and its production
JPS6035326A (en) Magnetic recording medium
JPS6313256B2 (en)
JPS61217925A (en) Magnetic recording medium
JPH03162710A (en) Magnetic recording medium
JPH053656B2 (en)
JPS6292116A (en) Magnetic recording medium
JPH053655B2 (en)
JP2508270B2 (en) Magneto-optical recording film
JPS6059729B2 (en) Method for manufacturing magnetic recording media
JPH0580806B2 (en)
JPH0323968B2 (en)
JPH07141638A (en) Magnetic recording body
JPH053657B2 (en)
JPS5975428A (en) Vertically magnetized magnetic recording medium
JPH0253842B2 (en)
JPH02227815A (en) Magnetic recording medium and production thereof
JPS59219907A (en) Perpendicularly magnetic recording medium
JPH0582721B2 (en)
JPH053654B2 (en)