JPH053657B2 - - Google Patents

Info

Publication number
JPH053657B2
JPH053657B2 JP58144116A JP14411683A JPH053657B2 JP H053657 B2 JPH053657 B2 JP H053657B2 JP 58144116 A JP58144116 A JP 58144116A JP 14411683 A JP14411683 A JP 14411683A JP H053657 B2 JPH053657 B2 JP H053657B2
Authority
JP
Japan
Prior art keywords
magnetic
corrosion resistance
magnetic layer
tape
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58144116A
Other languages
Japanese (ja)
Other versions
JPS6035329A (en
Inventor
Takeshi Sawada
Akira Shinmi
Hirotsugu Takagi
Kenji Suzuki
Fumio Kishi
Susumu Kozuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Tokushuko KK
Canon Inc
Original Assignee
Tohoku Tokushuko KK
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Tokushuko KK, Canon Inc filed Critical Tohoku Tokushuko KK
Priority to JP58144116A priority Critical patent/JPS6035329A/en
Priority to US06/637,279 priority patent/US4835069A/en
Publication of JPS6035329A publication Critical patent/JPS6035329A/en
Publication of JPH053657B2 publication Critical patent/JPH053657B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co

Description

【発明の詳細な説明】 本発明は薄膜堆積法によつて形成される磁気記
録媒体、特に耐蝕性、磁性層の特性安定性に優れ
た磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium formed by a thin film deposition method, and particularly to a magnetic recording medium having excellent corrosion resistance and characteristic stability of a magnetic layer.

本発明は薄膜堆積法によつて形成される磁気記
録媒体、特に耐蝕性の優れた磁気記録媒体に関す
るものである。
The present invention relates to a magnetic recording medium formed by a thin film deposition method, and particularly to a magnetic recording medium with excellent corrosion resistance.

近年、真空蒸着法、スパツタリング法、メツキ
法等の薄膜堆積法により磁気記録媒体を製造する
研究開発が活発化している。これらの製法によつ
て作られた磁気記録媒体は、残留磁束密度が高
い、保磁力を大きくできる、磁性層を薄くで
きる等の高密度記録化のための条件を非常によく
満足している。従来、この記録媒体の磁性材料と
しては、CoとNiを主成分とする合金が主に用い
られており、なかでもCo−20%Ni合金が多く検
討されている。その理由はこの合金が比較的耐蝕
性が良いこと、70wt%以上のCoを含む合金はh.
c.p.構造をもち磁気異方性をコントロールしやす
く面内異方性を卓越させることが容易であるため
といわれる。しかしながら、この合金はCoを70
%以上通常は80%前後も含んでいるために極めて
高価であり、しかもCoは国際情勢の変化により
価格が大きく変動するという問題を有している。
また耐蝕性も厳しい環境条件に対しては不十分で
ある。
In recent years, research and development into manufacturing magnetic recording media using thin film deposition methods such as vacuum evaporation, sputtering, plating, etc. has become active. Magnetic recording media made by these manufacturing methods very well satisfy the conditions for high-density recording, such as high residual magnetic flux density, large coercive force, and thin magnetic layer. Conventionally, alloys containing Co and Ni as main components have been mainly used as magnetic materials for this recording medium, and among them, a Co-20% Ni alloy has been widely studied. The reason for this is that this alloy has relatively good corrosion resistance, and alloys containing 70wt% or more of Co are h.
This is said to be because it has a cp structure, which makes it easy to control magnetic anisotropy and make in-plane anisotropy dominant. However, this alloy contains 70 Co
% or more, usually around 80%, making it extremely expensive.Moreover, Co has the problem that its price fluctuates greatly due to changes in the international situation.
Corrosion resistance is also insufficient for severe environmental conditions.

而して本発明は上記欠点を改善すべくCoの含
有量を少なくし、安価で安定供給が可能な磁気記
録媒体を提供すると共に、その磁気特性及び耐蝕
性及び磁性層の特性安定性においても優れた性能
を有する磁気記録媒体を提供することを主たる目
的とする。
Therefore, in order to improve the above-mentioned drawbacks, the present invention reduces the Co content and provides a magnetic recording medium that is inexpensive and can be stably supplied, and also improves its magnetic properties, corrosion resistance, and property stability of the magnetic layer. The main objective is to provide a magnetic recording medium with excellent performance.

本発明は堆積法により形成される磁気記録媒体
において磁性層がFeを主成分とし、更にCoを20
〜30wt%、Niを7〜14wt%、Crを1〜6wt%、
Cu及びMnの少なくとも一方の元素を3〜12wt%
含み、かつCu及びMnの少なくとも一方の元素
と、Crとの合計が15wt%以下であることを特徴
とするものであり、誘導加熱蒸着法、抵抗加熱蒸
着法、電子ビーム蒸着法、スパツタリング法、イ
オンプレーテイング法、メツキ法等を利用して形
成できるものである。
The present invention provides a magnetic recording medium formed by a deposition method in which the magnetic layer mainly contains Fe and further contains 20% Co.
~30wt%, Ni 7~14wt%, Cr 1~6wt%,
3 to 12 wt% of at least one of Cu and Mn
and the total of at least one element of Cu and Mn and Cr is 15 wt% or less, and is characterized by the following: induction heating evaporation method, resistance heating evaporation method, electron beam evaporation method, sputtering method, It can be formed using an ion plating method, a plating method, or the like.

磁性層材料としてCo元素とFe元素の和が50wt
%以上で、Feが主成分となるようにCo元素をFe
元素に置換することにより磁気的特性は従来の
Co−Ni合金と同等以上のものが得られることが
認められた。しかし、Co元素をFe元素で置換す
ることにより耐蝕性が劣化するが、Cr元素の添
加が耐蝕性向上に有効である。さらにCr元素と
同時に、MnまたはCuの少なくともどちらか一方
の元素を添加することにより耐蝕性の向上ととも
に磁気特性の安定性が改善されることが認められ
た。
The sum of Co element and Fe element is 50wt as magnetic layer material.
% or more, the Co element is replaced with Fe so that Fe becomes the main component.
By substituting elements, the magnetic properties change from the conventional
It was confirmed that a product equivalent to or better than Co-Ni alloy could be obtained. However, although replacing Co element with Fe element deteriorates corrosion resistance, addition of Cr element is effective in improving corrosion resistance. Furthermore, it was found that by adding at least one of Mn and Cu at the same time as the Cr element, corrosion resistance and stability of magnetic properties were improved.

本発明に用いる磁性材料において、Fe,Ni,
Cr,Mn,Cuの各元素は各々次の作用をする。
Fe元素は原子1個あたりの磁気モーメントを高
めBr(残留磁束密度)を増加させると同時に、展
延性を増し磁性層のワレ、ヒビの発生を防止す
る。一方前記した如くFe元素が増すと耐蝕性が
急激に悪くなると同時に、残留磁束密度Brを増
加させる効果はむしろ低下する。また、Niは耐
蝕性の効果及び展延性を向上させ、磁性層のワレ
やヒビの発生を防止する。またCrは耐蝕性の改
善に寄与する。またMnおよびCuは単独又は両方
同時に添加することにより、耐蝕性を一層向上さ
せる。また特にCrは蒸気圧がFe,CoおよびNiと
大きく異なるために磁性層の特性に変動を生じ易
いがCrをCu又はMnで一部置き換えることにより
磁気特性の安定化を図ることができる。ただし
Cr,Mn,Cuともに添加量が多すぎるとBrが減
少する等、磁性層の磁気特性を低下させる。
In the magnetic materials used in the present invention, Fe, Ni,
Each of the elements Cr, Mn, and Cu has the following effects.
Fe element increases the magnetic moment per atom and increases Br (residual magnetic flux density), and at the same time increases malleability and prevents the occurrence of cracks and cracks in the magnetic layer. On the other hand, as described above, as the Fe element increases, the corrosion resistance deteriorates rapidly, and at the same time, the effect of increasing the residual magnetic flux density Br actually decreases. In addition, Ni improves corrosion resistance and spreadability, and prevents cracks and cracks in the magnetic layer. Cr also contributes to improving corrosion resistance. Further, corrosion resistance is further improved by adding Mn and Cu alone or both at the same time. In particular, Cr tends to cause fluctuations in the properties of the magnetic layer because its vapor pressure is significantly different from that of Fe, Co, and Ni; however, by partially replacing Cr with Cu or Mn, the magnetic properties can be stabilized. however
If too large amounts of Cr, Mn, and Cu are added, Br decreases and the magnetic properties of the magnetic layer deteriorate.

以上の結果として良好な磁性層の組成は (Fe1-xCox1-(a+b+c)NiaCrbXc,X=Mnおよ
び/またはCuでx,a,bおよびcは重量組成
比で0<x0.5,0.05a0.20および0.01b
0.15,0.005c0.18の範囲ものものであり、
特にCuとMnが単独又は両方の合計で3〜12wt
%、Crが1〜6wt%およびCrとCuまたはMnの合
計が15wt%以下、Niが7〜14wt%、Coが20〜
30wt%、残りをFeとするものである。
As a result of the above, the composition of a good magnetic layer is (Fe 1-x Co x ) 1-(a+b+c) NiaCrbXc, where X = Mn and/or Cu, and x, a, b, and c are the weight composition ratios. 0<x0.5, 0.05a0.20 and 0.01b
It is in the range of 0.15, 0.005c0.18,
In particular, Cu and Mn are 3 to 12wt alone or both in total.
%, Cr is 1-6wt%, the total of Cr and Cu or Mn is 15wt% or less, Ni is 7-14wt%, Co is 20-20wt%
30wt%, the rest being Fe.

以下実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

第1図は、磁気記録媒体の1つである蒸着テー
プの製造装置を示す。真空槽1内にフイルム巻出
し軸2、巻取り軸3、中間フリーローラ4、冷却
キヤン5、蒸着材料収納容器7、電子ビーム発生
源8が配置されている。幅100mm、厚さ15μmの
ポリエチレンテレフタレートのフイルム9はフイ
ルム巻出軸2から中間フリーローラ4および冷却
キヤン5を経てフイルム巻取り軸3に送られる。
蒸着材料6は蒸着材料収納容器7内へ入れられ冷
却キヤン5と対向して配置され、電子ビーム発生
源8からの電子ビームによつて加熱される。加熱
された蒸着材料は蒸気流6′となり冷却キヤン5
上のフイルム9に付着して磁性層を形成するが、
防着板11によりフイルム9上に蒸着される蒸気
流の入射角が60〜90゜に制限される。真空槽1内
は排気装置10により成膜中の真空度が1×10-4
〜5×10-6Torrに保持した。フイルム送り速度
は毎分10mで、形成された磁性層の厚さはほぼ
1000Åである。
FIG. 1 shows an apparatus for manufacturing vapor-deposited tape, which is one of the magnetic recording media. A film unwinding shaft 2, a winding shaft 3, an intermediate free roller 4, a cooling can 5, a vapor deposition material storage container 7, and an electron beam generation source 8 are arranged in a vacuum chamber 1. A polyethylene terephthalate film 9 having a width of 100 mm and a thickness of 15 μm is sent from a film unwinding shaft 2 to a film winding shaft 3 via an intermediate free roller 4 and a cooling can 5.
The evaporation material 6 is put into a evaporation material storage container 7, placed opposite the cooling can 5, and heated by an electron beam from an electron beam generation source 8. The heated vapor deposition material becomes a vapor flow 6' and flows through the cooling can 5.
It adheres to the upper film 9 to form a magnetic layer,
The incidence angle of the vapor flow deposited on the film 9 is limited to 60 to 90 degrees by the deposition prevention plate 11. Inside the vacuum chamber 1, the degree of vacuum during film formation is maintained at 1×10 -4 by the exhaust device 10.
It was maintained at ~5×10 −6 Torr. The film feed speed was 10 m/min, and the thickness of the formed magnetic layer was approximately
It is 1000Å.

第2図に上記の方法により作製した蒸着テープ
の磁性層の組成と耐蝕性試験および特性安定性の
結果を示す。
FIG. 2 shows the composition of the magnetic layer of the vapor-deposited tape produced by the above method and the results of corrosion resistance tests and property stability.

耐蝕性試験は上記実施例に従つて作製したテー
プを60℃90%の恒温恒湿槽内に1000時間放置後の
残留磁束密度Brの変化を測定した。第2図中◎
はBrの低下が5%未満、〇は5〜10%、×は10%
以上を示す。また、磁性層の特性安定性の試験は
家庭用VTRデツキを用いて記録再生し、テープ
長さ100m内で5%以上の出力変動を生ずる区間
の長さを測定した。第2図中◎は5%以上の出力
変動を生じた区間が全体の2%以下、Δは6〜10
%であることを示す。
In the corrosion resistance test, the tape produced according to the above example was left in a constant temperature and humidity chamber at 60°C and 90% for 1000 hours, and then the change in residual magnetic flux density Br was measured. ◎ in Figure 2
Br decrease is less than 5%, ○ is 5-10%, × is 10%
The above is shown. In addition, to test the characteristic stability of the magnetic layer, recording and reproduction were performed using a home VTR deck, and the length of the section in which the output fluctuation occurred by 5% or more within a tape length of 100 m was measured. In Figure 2, ◎ indicates that the section where output fluctuation of 5% or more occurred is less than 2% of the total, and Δ is 6 to 10.
%.

第3図に、家庭用VTRデツキを用い記録再生
した時の再生出力を示す。本発明のテープNo.4の
再生出力は曲線20で、比較のため同一条件で作
製したCo−NiテープNo.9の再生出力が曲線21
で示されている。本発明テープの再生出力は従来
テープNo.8に比べ、同等ないし2dB高い。第2図
中のNo.1,No.2,No.5〜No.8の組成のテープにつ
いてもCo−Niテープ同等以上の再生出力が得ら
れた。
Figure 3 shows the playback output when recording and playing back using a home VTR deck. The playback output of tape No. 4 of the present invention is curve 20, and the playback output of Co-Ni tape No. 9 produced under the same conditions for comparison is curve 21.
is shown. The reproduction output of the tape of the present invention is the same or 2 dB higher than that of conventional tape No. 8. The tapes having the compositions No. 1, No. 2, No. 5 to No. 8 in FIG. 2 also had reproduction outputs equal to or higher than that of the Co-Ni tape.

以上のように、本発明は従来のCo−Niテープ
と比較して、高価なCoの含有量を減らしながら
耐蝕性、膜特性の安定性、再生出力のいずれにお
いても同等以上の性能を持つ磁気記録媒体を提供
し得るものである。
As described above, compared to conventional Co-Ni tapes, the present invention has developed a magnetic tape that has the same or better performance in terms of corrosion resistance, stability of film properties, and playback output while reducing the content of expensive Co. A recording medium can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例で用いた蒸着テープの製造装
置の説明図である。第2図は、磁性層の組成と耐
蝕性及び膜特性の安定性のテストの結果を示す表
である。第3図は、第2図のNo.4のテープとCo
−NiテープNo.9の各周波数における再生出力の
比較を示すグラフである。 1…真空槽、2…フイルム巻出し軸、3…フイ
ルム巻り軸、4…中間フリーローラ、5…冷却キ
ヤン、6…蒸着材料、7…蒸着材料収納容器、8
…電子ビーム発生源、9…ポリエチレンテレフタ
レートフイルム、10…排気装置、11…防着
板、20…本発明の実施例の再生出力曲線、21
…Co−Niの再生出力曲線。
FIG. 1 is an explanatory diagram of a vapor deposition tape manufacturing apparatus used in this example. FIG. 2 is a table showing the composition of the magnetic layer and the results of tests on corrosion resistance and stability of film properties. Figure 3 shows the tape No. 4 in Figure 2 and Co
- It is a graph showing a comparison of reproduction output at each frequency of Ni tape No. 9. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Film unwinding shaft, 3... Film winding shaft, 4... Intermediate free roller, 5... Cooling can, 6... Vapor deposition material, 7... Vapor deposition material storage container, 8
... Electron beam generation source, 9 ... Polyethylene terephthalate film, 10 ... Exhaust device, 11 ... Deposition prevention plate, 20 ... Reproduction output curve of the embodiment of the present invention, 21
...Co-Ni regeneration output curve.

Claims (1)

【特許請求の範囲】[Claims] 1 非磁性体基体上に薄膜堆積法により形成され
た磁性層を有する磁気記録媒体において、前記磁
性層がFeを主成分とし、更にCoを20〜30wt%、
Niを7〜14wt%、Crを1〜6wt%、Cu及びMn
の少なくとも一方の元素を3〜12wt%含み、か
つCu及びMnの少なくとも一方の元素と、Crとの
合計が15wt%以下であることを特徴とする磁気
記録媒体。
1. A magnetic recording medium having a magnetic layer formed by a thin film deposition method on a non-magnetic substrate, wherein the magnetic layer contains Fe as a main component, and further contains 20 to 30 wt% of Co.
Ni 7-14wt%, Cr 1-6wt%, Cu and Mn
1. A magnetic recording medium comprising 3 to 12 wt% of at least one of Cu and Mn, and the total of at least one of Cu and Mn and Cr being 15 wt% or less.
JP58144116A 1983-08-06 1983-08-06 Magnetic recording medium Granted JPS6035329A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58144116A JPS6035329A (en) 1983-08-06 1983-08-06 Magnetic recording medium
US06/637,279 US4835069A (en) 1983-08-06 1984-08-03 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144116A JPS6035329A (en) 1983-08-06 1983-08-06 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6035329A JPS6035329A (en) 1985-02-23
JPH053657B2 true JPH053657B2 (en) 1993-01-18

Family

ID=15354559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144116A Granted JPS6035329A (en) 1983-08-06 1983-08-06 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6035329A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629A (en) * 1979-06-15 1981-01-06 Ulvac Corp Vacuum-evaporated film type magnetic recording substance and its manufacture
JPS567231A (en) * 1979-06-27 1981-01-24 Ulvac Corp Vapor deposition film type magnetic recording material and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629A (en) * 1979-06-15 1981-01-06 Ulvac Corp Vacuum-evaporated film type magnetic recording substance and its manufacture
JPS567231A (en) * 1979-06-27 1981-01-24 Ulvac Corp Vapor deposition film type magnetic recording material and its production

Also Published As

Publication number Publication date
JPS6035329A (en) 1985-02-23

Similar Documents

Publication Publication Date Title
US4935314A (en) Ferromagnetic film and magnetic head using the same
US4567116A (en) Magnetic recording medium
US4835069A (en) Magnetic recording medium
US5475554A (en) Magnetic head using specified Fe Ta N Cu or Fe Ta N Ag alloy film
JPH053657B2 (en)
JPH053655B2 (en)
JPH01238106A (en) Corrosion-resistant ferromagnetic thin-film
JPH053656B2 (en)
US5741593A (en) Magnetic recording medium
JPH0364929B2 (en)
JPH0580806B2 (en)
JP3093818B2 (en) Magnetic recording media
JPH053654B2 (en)
JPH03162710A (en) Magnetic recording medium
JPH0576086B2 (en)
JPS6313256B2 (en)
JPH0517608B2 (en)
JPS6047894B2 (en) CO-based alloy for magnetic recording media
JPS60136026A (en) Magnetic recording medium
JP2771664B2 (en) Soft magnetic alloy film
JPH0485716A (en) Thin magnetic film for magnetic head
JPH0352115A (en) Metallic thin film type magnetic recording medium
JPS60157716A (en) Magnetic recording medium
JPH0311531B2 (en)
JPS58116707A (en) Magnetic recording medium