JPH0559437A - Method for induction-heating slab for electrical steel sheet - Google Patents

Method for induction-heating slab for electrical steel sheet

Info

Publication number
JPH0559437A
JPH0559437A JP3156128A JP15612891A JPH0559437A JP H0559437 A JPH0559437 A JP H0559437A JP 3156128 A JP3156128 A JP 3156128A JP 15612891 A JP15612891 A JP 15612891A JP H0559437 A JPH0559437 A JP H0559437A
Authority
JP
Japan
Prior art keywords
slab
induction heating
furnace
steel sheet
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3156128A
Other languages
Japanese (ja)
Other versions
JP3151000B2 (en
Inventor
Toshiro Fujiyama
寿郎 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15612891A priority Critical patent/JP3151000B2/en
Publication of JPH0559437A publication Critical patent/JPH0559437A/en
Application granted granted Critical
Publication of JP3151000B2 publication Critical patent/JP3151000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To secure the necessary and suitable temp. to form the solid-solution to an inhibitor over the whole length of a slab for short time by providing an induction heating plate and a heat insulating material at the specific position in a furnace at the time of heating the slab having shorter than the prescribed length in a vertical type induction heating furnace. CONSTITUTION:At the time of manufacturing a grain oriented electrical steel sheet having the specific crystal orientation by using the slab 1 for electrical steel sheet incorporating >=2.0wt.% Si, the slab 1 having no prescribed length is heated in the vertical type induction heating furnace. At this time, e.g. the slab 1 in set while matching with the prescribed position of one side (B side) of the furnace having a side wall 5 and a coil 4, and the induction heating plate 2 for auxiliary heating is set while approaching to the A side end of the slab 1 and the heat insulating material 3 is set at this back race. By this method, insufficient heating at the end part of the slab can be eliminated and the deterioration of the magnetic characteristic at the end corresponding part of the slab in the finish-product is prevented and the yield can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、方向性電磁鋼板用ス
ラブの製造時に必然的に発生する端材の製品化に当っ
て、所定長さに達しないスラブ端材を堅形誘導加熱炉で
加熱するに際し、所定長さより短いことによって生じる
スラブ端部の加熱不足を効果的に防止する方法を提案す
るものであり、かくすることにより、最終製品でのスラ
ブ端相当部の電磁特性の劣化を防止し、歩止りの向上を
はかろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to the production of mill ends produced inevitably during the production of grain-oriented electrical steel sheet slabs. When heating, we propose a method to effectively prevent insufficient heating of the slab end that is caused by being shorter than a predetermined length.By doing so, deterioration of the electromagnetic characteristics of the slab end equivalent part in the final product can be prevented. It aims to prevent and improve the stake.

【0002】一般に知られているように、Si : 2.0wt%
以上を含有する一方向性電磁鋼板の優れた磁気特性は、
板面に(110) 面、圧延方向に<001 >軸の2次再結晶粒
を、最終焼鈍により選択発達さはることにより得られ
る。そのためは、鋼中にインヒビターとよばれる微細な
析出物、たとえば、MnS ,MnSe , AlN などを微細に析
出させることが肝要であり、このインヒビターの分散形
態のコントロールは、熱間圧延に先立つスラブ加熱中
に、これらの析出物を一旦固溶させた後、熱間圧延を施
すことによって行われる。
As is generally known, Si: 2.0 wt%
The excellent magnetic properties of the grain-oriented electrical steel sheet containing the above are:
It is obtained by selectively developing secondary recrystallized grains of (110) plane on the plate surface and <001> axis in the rolling direction by final annealing. Therefore, it is important to finely precipitate fine precipitates called inhibitors in the steel, for example, MnS, MnSe, AlN, etc.The control of the dispersion form of this inhibitor is controlled by slab heating prior to hot rolling. These precipitates are once solid-dissolved therein and then hot-rolled.

【0003】このような目的で行われるスラブ加熱は、
インヒビターを十分に固溶させるため、通常 1300 ℃以
上の加熱温度で行なわれるが、逆に、この加熱温度が高
くなり過ぎると多量のスケールが発生し、加熱炉の操業
に支障をきたすだけでなく、へげ等の表面疵が発生して
表面性状が損なわれるとともに、製品の磁気特性のバラ
ツキも大きくなる。したがって、いたずらに高温長時間
の加熱を行うことなく、短時間でインヒビター固溶に必
要な温度をスラブ全長にわたって均一に確保することが
重要になる。
The slab heating performed for such a purpose is
In order to sufficiently dissolve the inhibitor in solid solution, it is usually carried out at a heating temperature of 1300 ° C or higher. Conversely, if this heating temperature becomes too high, a large amount of scale will be generated, which will not only hinder the operation of the heating furnace. Surface defects such as dents and the like are generated to impair the surface quality, and variations in the magnetic properties of the product also increase. Therefore, it is important to ensure the temperature required for the solid solution of the inhibitor in a short time and uniformly over the entire length of the slab without unnecessarily heating at a high temperature for a long time.

【0004】[0004]

【従来の技術】誘導加熱によるスラブ全長にわたる均一
加熱に関しては、これまで多くの手段が提案されてい
る。
2. Description of the Related Art Many means have been proposed so far for uniform heating over the entire length of a slab by induction heating.

【0005】たとえば、特公昭52−47179 号公報には、
被加熱材端部を耐火断熱材で覆う誘導加熱装置が提案開
示されているが、これは、被加熱材端部からの熱放散の
防止には効果があるものの、被加熱材端部の誘導電流密
度が小さくなることによる発熱量不足には対応できず、
さらに、実公昭52−50447 号公報には、加熱コイルの外
側に鉄心を置き誘起磁束を集束させて被加熱材端部を加
熱する誘導加熱装置が、また、実開昭61−39149 号公報
には、被加熱材の隅部に近接して抵抗発熱体やラジアン
トチューブなどの発熱体を配設する誘導加熱装置が、そ
れぞれ提案開示されているが、これらは、端部加熱補助
装置、すなわち、鉄心または発熱体の配設位置が固定さ
れているため、スラブ長さがそれぞれの加熱炉の最適長
さ(以下単に所定長さという)に対し短く変化した場合
には、スラブ端部の温度を安定して確保することができ
なかった。
For example, Japanese Patent Publication No. 52-47179 discloses that
An induction heating device is proposed and disclosed in which the end of the heated material is covered with a refractory heat insulating material. Although this is effective in preventing heat dissipation from the end of the heated material, induction of the end of the heated material is proposed. We can not cope with the shortage of heat generation due to the smaller current density,
Further, Japanese Utility Model Publication No. 52-50447 discloses an induction heating device which places an iron core outside the heating coil to focus the induced magnetic flux to heat the end of the material to be heated, and Japanese Utility Model Publication No. 61-39149. , An induction heating device, which disposes a heating element such as a resistance heating element or a radiant tube in the vicinity of the corner of the material to be heated, is proposed and disclosed, but these are end heating auxiliary devices, that is, Since the position of the iron core or heating element is fixed, if the slab length changes shortly with respect to the optimum length of each heating furnace (hereinafter simply referred to as the prescribed length), the temperature of the slab end should be It was not possible to secure a stable supply.

【0006】そこで、発明会社は、スラブ長さが変化し
ても対応できる手段として、特開平3−31422 号公報
に、スラブ端部に近接して移動自在な導電性の発熱保温
板を配置する方向性けい素鋼用スラブの加熱方法および
加熱炉を提案開示した。この手段により、かなりの改善
が見られるものの、スラブが所定長さより短い場合、発
熱保温板背面からの炉内空間への放熱量が多くなるため
スラブ端部の加熱がやはり不十分となり最終製品とした
ときの磁気特性がスラブ端相当部で劣るという問題があ
った。
Therefore, the inventor of the present invention, as means for coping with changes in the length of the slab, arranges a conductive heat insulating plate which is movable in proximity to the end of the slab in Japanese Patent Laid-Open No. 3-31422. A method and furnace for heating slabs for grain-oriented silicon steel have been proposed and disclosed. By this means, although a considerable improvement can be seen, when the slab is shorter than the specified length, the amount of heat released from the back surface of the heat insulation plate to the furnace space increases, so the heating of the slab end also becomes insufficient and the final product There was a problem that the magnetic properties at that time were inferior at the slab end equivalent part.

【0007】なお、連鋳スラブの製造に当っては、スラ
ブ長さを所定長さに合せて切断する方法をとっている
が、鋳込み後部では、必ずしも上記所定長さにはなら
ず、これに達しない端材スラブが必然的に発生する。そ
して、上記の所定長さに未達のスラブも歩止り向上のた
め製品化されるが、誘導加熱炉でこのスラブを加熱する
場合、前記したようにスラブ端での加熱不足が生じる
と、これを最終製品とした場合磁気特性が劣化し、歩止
りを低下させるという問題が発生する。
Incidentally, in the production of the continuous cast slab, a method of cutting the slab according to a predetermined length is used, but the predetermined length is not always obtained at the rear part of the casting, A slab of mill ends that does not reach will inevitably occur. Then, although the slab that has not reached the above predetermined length is also commercialized for improving the yield, when heating this slab in an induction heating furnace, if insufficient heating occurs at the slab end as described above, this When the product is a final product, the magnetic properties deteriorate and the yield decreases.

【0008】[0008]

【発明が解決しようとする課題】この発明は、前記問題
を有利に解決しようとするもので、所定長さに達しない
スラブの誘導加熱に際し、短時間でインヒビターの固溶
に必要、かつ、好適な温度をスラブ全長にわたって確保
し得る電磁鋼板用スラブの加熱方法を提案することを目
的とするものであり、ひいては歩止りの向上をはかろう
とするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems advantageously, and is necessary for the solid solution of an inhibitor in a short time in the induction heating of a slab that does not reach a predetermined length, and is preferable. The purpose of the present invention is to propose a method for heating a slab for electromagnetic steel sheets that can secure a constant temperature over the entire length of the slab, and in turn, to improve the yield.

【0009】[0009]

【課題を解決するための手段】この発明は、所定長さに
未達の電磁鋼板用スラブを堅型誘導加熱炉で加熱するに
際し、該スラブ全長にわたって十分な加熱を行うために
は、端部補助加熱用誘導発熱板の配置に加え、断熱材を
配置することが有効であることを見出したことによるも
のである。
According to the present invention, when heating a slab for an electromagnetic steel sheet which has not reached a predetermined length in a rigid induction heating furnace, in order to perform sufficient heating over the entire length of the slab, an end portion is required. This is because it was found that it is effective to arrange a heat insulating material in addition to the arrangement of the induction heating plate for auxiliary heating.

【0010】すなわち、この発明の要旨は、Si : 2.0wt
%以上を含有する電磁鋼板用スラブを素材として特定の
結晶方位を有する方向性電磁鋼板を製造するに当って、
所定長さに達しない電磁鋼板用スラブ端材を堅型誘導加
熱炉により加熱するに際し、該スラブ長さが短いことに
よって生じる炉内空間に、該スラブ端面に近接して端部
補助加熱用誘導発熱板を配置し,さらに、その誘導発熱
板背面に生じる炉内空間に誘導発熱板に近接して断熱材
を配置する電磁鋼板用スラブの誘導加熱方法である。
That is, the gist of the present invention is that Si: 2.0 wt.
In producing a grain-oriented electrical steel sheet having a specific crystal orientation from a magnetic steel sheet slab containing at least 100% by weight,
When heating the slab mill ends for electromagnetic steel sheets that do not reach the prescribed length in a rigid induction heating furnace, the induction space for end auxiliary heating is provided in the furnace space created by the short slab length, close to the slab end face. This is an induction heating method for electromagnetic steel sheet slabs in which a heat generating plate is arranged, and a heat insulating material is arranged in the furnace space formed on the back surface of the induction heating plate in the vicinity of the induction heating plate.

【0011】ここに、所定長さとは、この長さのスラブ
を用いた場合、スラブ両端面とそれぞれ対向する炉側壁
との間隔が好適で、スラブ端部も中央部と同様に加熱で
きる(スラブ全長にわたり均一な加熱ができる)誘導加
熱炉によって定まる固有の長さをいうものとする。
Here, when the slab of this length is used, the predetermined length is preferably a distance between both end faces of the slab and the furnace side walls facing each other, and the slab end can be heated similarly to the central part (slab). It means a unique length determined by an induction heating furnace that allows uniform heating over the entire length.

【0012】[0012]

【作用】この発明を以下に具体的に説明する。堅型誘導
加熱炉により所定長さのスラブを加熱する場合には、ス
ラブをスラブ両端面とこれに対向する炉側壁及び加熱コ
イルとの間隔が好適となることにより、スラブ全長にわ
たり十分な加熱が行われる。
The present invention will be specifically described below. When a slab of a predetermined length is heated by a rigid induction heating furnace, the slab has a suitable distance between both end faces of the slab and the furnace side wall and the heating coil facing the slab, so that the slab is sufficiently heated over the entire length of the slab. Done.

【0013】しかしながら、所定長さに未達のスラブを
加熱する場合には、炉内空間が広がることによって、ス
ラブ端面からの放熱量が多くなること、スラブ端面とこ
れに対向する誘導加熱コイルとの距離が長くなることな
どにより、スラブ端部において加熱不足が生じる。ま
た、スラブ端部の加熱不足を補うため、端部補助加熱用
誘導発熱板をスラブ端面に近接配置しても、誘導発熱板
背面からの炉内空間への放熱があって誘導発熱板の補助
加熱作用が低減し、スラブ端の加熱がなお不足する場合
が生じる。
However, when heating a slab that has not reached a predetermined length, the amount of heat released from the slab end face increases due to the expansion of the furnace space, and the slab end face and the induction heating coil facing the slab end face are increased. As a result of a longer distance, etc., insufficient heating occurs at the slab end. In order to compensate for insufficient heating of the end of the slab, even if an induction heating plate for auxiliary heating of the end is placed close to the end face of the slab, heat is radiated from the back surface of the induction heating plate to the space inside the furnace and the induction heating plate is assisted. In some cases, the heating effect is reduced and the heating of the slab edge is still insufficient.

【0014】したがって、この発明は、所定長さに未達
のスラブの加熱にあたって、スラブ端面に近接して誘導
発熱板を配置してスラブ端部の補助加熱を行うととも
に、誘導発熱板背面の炉内空間に誘導発熱板に近接して
断熱材を配置することにより誘導発熱板背面からの放熱
量を減少させるものであり、かくすることにより、スラ
ブ端部においても十分な加熱が達成されることになる。
Therefore, according to the present invention, when heating a slab that has not reached a predetermined length, an induction heating plate is disposed in the vicinity of the slab end face to perform auxiliary heating of the slab end portion, and a furnace behind the induction heating plate. By disposing a heat insulating material in the inner space close to the induction heating plate, the amount of heat radiated from the back surface of the induction heating plate is reduced. By doing so, sufficient heating can be achieved even at the end of the slab. become.

【0015】なお、上記の所定長さに未達のスラブを加
熱する場合のスラブの炉内配置位置は、所定長さのスラ
ブを配置した場合の両端の炉内位置(以下所定位置とい
う)の範囲内にあればよいが、上記所定位置の片側に寄
せて配置することが実用的である。
When the slab that has not reached the predetermined length is heated, the position of the slab in the furnace is the same as the position of the slab in the furnace at both ends (hereinafter referred to as the predetermined position) when the slab having the predetermined length is arranged. It may be within the range, but it is practical to place it close to one side of the predetermined position.

【0016】ここに、誘導発熱板は、誘導加熱コイルか
らの誘起電流により発熱する性質を有するものを用い、
その材料としては、導電性と耐熱性とを併せもつ鉄ベー
スの金属、あるいは、導電性物質を含むセラミックなど
が有利に適合し、その発熱量のコントロールは被加熱物
と誘導加熱下で同等の発熱量を有す材料の選択で行われ
る。
As the induction heating plate, one having a property of generating heat by the induced current from the induction heating coil is used.
As the material, an iron-based metal having both conductivity and heat resistance, or a ceramic containing a conductive substance is advantageously suitable, and the control of the calorific value is the same as that of the object to be heated under induction heating. It is carried out by selecting a material having a heating value.

【0017】また、断熱材は放熱量を他部材と同等とす
るため耐火物製で加熱炉側壁と同等の性質を有するもの
が好ましく、その厚さ(スラブ長さ方向)は、加熱炉側
壁と同等以上とすることが好ましい。
Further, the heat insulating material is preferably made of a refractory and has the same property as that of the side wall of the heating furnace in order to make the heat radiation amount equal to that of the other member, and its thickness (in the slab length direction) is the same as that of the side wall of the heating furnace. It is preferable to be equal to or more than the same.

【0018】つぎに、この発明を実験例にもとづいて説
明する。堅型誘導加熱炉で以下の図1,2及び3に示す
方法でスラブ加熱を行ない2回冷延法で板圧0.23mmの製
品板を製造した。ここに、図1,2及び3はスラブを堅
型誘導加熱炉の片側(B側)を所定位置に合わせて配置
した状態の横断面図をし示すもので、これらはそれぞれ
以下のとおりである。図1は、スラブ1のみを装入した
場合の比較例を示す。図2は、スラブ1のA端に近接し
て誘導発熱板2を配置した場合の従来例を示す。図3
は、スラブ1のA端に近接して誘導発熱板2を配置し、
さらに、誘導発熱板2の背面に断熱材3を配置した場合
で、この発明の適合例を示す。
Next, the present invention will be described based on experimental examples. A slab was heated in a rigid induction heating furnace by the method shown in FIGS. 1, 2, and 3 below, and a product plate having a plate pressure of 0.23 mm was manufactured by the double cold rolling method. Here, FIGS. 1, 2 and 3 are transverse cross-sectional views showing a state in which the slab is arranged with one side (B side) of the rigid induction heating furnace aligned with a predetermined position, and these are respectively as follows. .. FIG. 1 shows a comparative example in which only the slab 1 is charged. FIG. 2 shows a conventional example in which the induction heating plate 2 is arranged close to the A end of the slab 1. Figure 3
Arranges the induction heating plate 2 close to the A end of the slab 1,
Furthermore, a case where the heat insulating material 3 is arranged on the back surface of the induction heating plate 2 will be shown as a conforming example of the present invention.

【0019】なお、これらの図において、4は誘導加熱
コイル、5は炉側壁、Lは所定長さを示す。
In these figures, 4 is an induction heating coil, 5 is a furnace side wall, and L is a predetermined length.

【0020】このようにして得られた方向性電磁鋼板に
ついて、スラブにおけるA端相当部から長さ方向に測定
した鉄損の変化を図4に示す。図4から明らかなよう
に、A端側において、比較例は誘導発熱板及び断熱材が
ないため、スラブ端部の発熱不足に加え、放熱量が多い
ことによる加熱不足が生じ、このため鉄損が大幅に劣化
しており、また,従来例でも断熱材がないため誘導発熱
板背面からの放熱量が多いことによりスラブ端部の加熱
が不足し鉄損が劣化している。
FIG. 4 shows the change in iron loss of the grain-oriented electrical steel sheet thus obtained, measured in the length direction from the portion corresponding to the A end of the slab. As is clear from FIG. 4, on the A end side, since the comparative example does not have an induction heating plate and a heat insulating material, in addition to insufficient heat generation at the end of the slab, insufficient heat generation due to a large amount of heat radiation occurs, which results in iron loss. However, even in the conventional example, since there is no heat insulating material, the amount of heat radiated from the back surface of the induction heating plate is large, resulting in insufficient heating at the end of the slab and deterioration of iron loss.

【0021】これらに対し、適合例の鉄損の劣化はほと
んど見られず、誘導発熱板に加えて断熱材を用いた効果
が如実にあらわれている。
On the other hand, the iron loss of the conforming example is hardly deteriorated, and the effect of using the heat insulating material in addition to the induction heating plate is clearly shown.

【0022】さらに、この発明による電磁鋼板用スラブ
の誘導加熱を行うにあたっての、各部材の炉内装入手順
について説明する。図5は、堅形誘導加熱炉へのスラ
ブ、誘導発熱板、断熱材の装入手順を示す説明図で、所
定長さに未達のスラブを誘導加熱するにあたって、スラ
ブの一端を炉内所定位置に合致させて装入する場合につ
いて述べる。
Further, the procedure for inserting each member into the furnace when the induction heating of the electromagnetic steel sheet slab according to the present invention is performed will be described. FIG. 5 is an explanatory diagram showing a procedure for charging a slab, an induction heating plate, and a heat insulating material into a rigid induction heating furnace. One end of the slab is subjected to a predetermined heating in the furnace when the slab that has not reached a predetermined length is induction-heated. The case where the charging is performed at the same position will be described.

【0023】図5において、1はスラブ、2はスラブ1
のA端面に近接配置する誘導発熱板、3は誘導発熱板2
の背面に生じる炉内空間に誘導発熱板2に近接して配置
する断熱材、5は炉側壁、6は炉床、7はスラブ1及び
断熱材3を炉床上に配置するためのエクストラクターで
ある。
In FIG. 5, 1 is a slab and 2 is a slab 1.
Induction heating plate 3 arranged in the vicinity of the A end surface of 3 is an induction heating plate 2
Insulating material to be placed near the induction heating plate 2 in the furnace space generated on the back side of the furnace, 5 is a furnace side wall, 6 is a hearth, and 7 is an extractor for arranging the slab 1 and the heat insulating material 3 on the hearth. is there.

【0024】各部材の炉内装入にあたっては、まず、ガ
ス加熱タイプの炉から抽出したスラブをローラーテーブ
ルで炉前まで移送し、エキストラクター7上に置く。こ
のときスラブ1は、そのB端を、スラブ1が炉内に装入
されたとき炉内所定位置に合致するように、前もってエ
キストラクター7上の定めた位置に合せる。つぎに、断
熱材置場より、スラブ1の長さに適する厚さ(炉内に装
入したときのスラブ長さ方向)の断熱材3を選択し、こ
の断熱材3をクレーンなどの搬送手段により搬送してエ
キストラクター7上のスラブ1のA端側に、スラブとの
間隔が、誘導発熱板2を挟んで最適となる位置に置く。
To insert each member into the furnace, first, the slab extracted from the gas heating type furnace is transferred to the front of the furnace by a roller table and placed on the extractor 7. At this time, the slab 1 has its B end aligned with a predetermined position on the extractor 7 in advance so as to match the predetermined position in the furnace when the slab 1 is loaded into the furnace. Next, from the heat insulating material storage area, select the heat insulating material 3 having a thickness suitable for the length of the slab 1 (longitudinal direction of the slab when loaded into the furnace), and transport the heat insulating material 3 by a transportation means such as a crane. The slab 1 is transported and placed on the A end side of the slab 1 on the extractor 7 so that the space between the slab and the slab is optimal with the induction heating plate 2 interposed therebetween.

【0025】スラブ1と断熱材3をエキストラクター7
上に配置した後、エキストラクター7を移動して上記ス
ラブ1と断熱材3の位置関係をそのままにして炉床6上
に同時に移す。
Extract the slab 1 and the heat insulating material 3 into the extractor 7
After arranging it on the upper side, the extractor 7 is moved to be transferred onto the hearth 6 at the same time while keeping the positional relationship between the slab 1 and the heat insulating material 3 as it is.

【0026】一方、誘導加熱炉内には、移動自在な支持
具(図示省略)に取付けられた誘導発熱板2をスラブ1
の長さに合せた好適位置に配置する。
On the other hand, in the induction heating furnace, an slab 1 is provided with an induction heating plate 2 attached to a movable supporting member (not shown).
Place it in a suitable position according to the length.

【0027】このようにした後、炉床6を上方に移動す
ることにより誘導加熱炉内に、スラブ1、誘導発熱板
2、断熱材3がそれぞれ好適位置に配置されることにな
る。なお、片側に寄せて配置するスラブ1の端部と炉内
位置の関係は、エキストラクター7上への位置合せ精度
に依存することになるため、寄せる側、すなわち、図3
においてB側にも2′で示す誘導発熱板を配置して、位
置合せ精度の誤差に伴う温度ムラを防止するようにして
も良い。また、本例では片側に寄せることとしたが、ス
ラブ1を中央寄りとして、その両端部に誘導発熱板と断
熱材をそれぞれ配置しても同等の効果を有することはも
ちろんである。
After this, by moving the hearth 6 upward, the slab 1, the induction heating plate 2 and the heat insulating material 3 are arranged at suitable positions in the induction heating furnace. Since the relationship between the end of the slab 1 arranged close to one side and the position inside the furnace depends on the alignment accuracy on the extractor 7, the close side, that is, FIG.
An induction heating plate 2'may be arranged on the B side to prevent temperature unevenness due to an error in alignment accuracy. Further, in this example, the slab 1 is arranged on one side, but the same effect can be obtained by arranging the slab 1 toward the center and disposing the induction heating plate and the heat insulating material at both ends thereof.

【0028】[0028]

【実施例】転炉で溶製したC:0.05wt%、Si : 3.51 wt
%、Mn : 0.08 wt%、Se : 0.030wt%を含有する電磁鋼
板用連鋳スラブ (スラブ厚:215 mm )を、スラブ長さ8
mに切断し、所定長さ10mの堅型誘導加熱炉に誘導発熱
板、断熱材とともに装入した。
[Example] C: 0.05 wt%, Si: 3.51 wt% melted in a converter
%, Mn: 0.08 wt%, Se: 0.030 wt% continuously cast slab for electromagnetic steel sheets (slab thickness: 215 mm) with a slab length of 8
It was cut into m pieces and charged into a rigid induction heating furnace having a predetermined length of 10 m together with an induction heating plate and a heat insulating material.

【0029】これら、配置位置は、前掲図3に示すよう
に、片側に寄せてスラブB端側を炉内所定位置に合致さ
せて配置し、スラブA端側には厚さ(スラブ長さ方向)
200mmの鋼製の誘導発熱板をスラブとの間隔が80mmに、
また、その誘導発熱板の背面には、厚さ (スラブ長さ方
向) 1500mmの高 Al2O3レンガにセラミックファイバを表
面被覆した断熱材を誘導発熱板との間隔が 50mm になる
ようにそれぞれ配置した。
As shown in FIG. 3, these disposition positions are arranged so that one end of the slab B is aligned with the end of the slab B at a predetermined position in the furnace, and the end of the slab A is thick (slab length direction). )
The distance between the 200 mm steel induction heating plate and the slab is 80 mm,
In addition, on the back surface of the induction heating plate, a heat insulating material with a ceramic fiber surface coating on a high Al 2 O 3 brick with a thickness (in the slab length direction) of 1500 mm is arranged so that the space between the induction heating plate and the insulation heating plate is 50 mm. I placed it.

【0030】このようにして、堅型導加熱炉により加熱
を行った後、熱延により板厚2.5 mmの熱延板とした。そ
の後1次冷延で板厚0.7 mmとしたのちの中間焼鈍を行っ
てから2次冷延により0.23mmの製品板厚とした。つい
で、脱炭焼鈍を行ったのち、MgO を主成分とする焼鈍分
離剤を塗布し、仕上げ焼鈍を行った。
In this way, after heating in the rigid induction heating furnace, hot rolling was performed to obtain a hot rolled sheet having a sheet thickness of 2.5 mm. After that, the plate thickness was 0.7 mm in the first cold rolling, intermediate annealing was performed, and then the product plate thickness was 0.23 mm in the second cold rolling. Then, after decarburizing annealing, an annealing separator containing MgO as a main component was applied, and finish annealing was performed.

【0031】かくして得られた製品板について、スラブ
A端から 0.1m 及び 2.0mの位置に相当する部分の電
磁特性を調査した。これらの結果を表1に示す。
With respect to the product plate thus obtained, the electromagnetic characteristics of the portions corresponding to the positions of 0.1 m and 2.0 m from the end of the slab A were investigated. The results are shown in Table 1.

【0032】 [0032]

【0033】表1から明らかなように、スラブ端におい
ても優れた磁気特性を有していることがわかる。
As is clear from Table 1, it is understood that the slab edge also has excellent magnetic characteristics.

【0034】[0034]

【発明の効果】この発明は、スラブの製造時に必然的に
発生する所定長さに達しない電磁鋼板用スラブを堅型誘
導加熱炉で加熱するに際し、スラブ端面に近接して端部
補助加熱用誘導板及びこの誘導発熱板背面に近接して断
熱材を配置することによりスラブ端部の加熱不足を解消
するものであり、かくすることにより、最終製品でのス
ラブ端相当部の磁気特性の劣化が防止され、歩止り向上
に大きく寄与することができる。
INDUSTRIAL APPLICABILITY The present invention, when heating a slab for an electromagnetic steel sheet which does not reach a predetermined length, which is inevitably generated at the time of manufacturing the slab, in a rigid induction heating furnace, is used for end auxiliary heating near the slab end face. By disposing a heat insulating material close to the induction plate and the back surface of this induction heating plate, insufficient heating of the slab end is eliminated, and by doing so, deterioration of the magnetic properties of the slab end equivalent part in the final product. Can be prevented, which can greatly contribute to improving the yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】堅型誘導加熱炉に所定長さに未達のスラブを片
側に寄せて装入した場合の横断図である。
FIG. 1 is a cross-sectional view showing a case where a slab that has not reached a predetermined length is loaded into one side of a rigid induction heating furnace by moving it to one side.

【図2】堅型誘導加熱炉に所定長さに未達のスラブを片
側に寄せて装入し、かつ、スラブ端面に近接して誘導発
熱板を配置した場合の横断面図である。
FIG. 2 is a transverse cross-sectional view of a case where a slab that has not reached a predetermined length has been loaded into a rigid induction heating furnace while being pushed to one side, and an induction heating plate is arranged near the end surface of the slab.

【図3】堅型誘導加熱炉に所定長さに未達のスラブを片
側に寄せて装入し、かつ、スラブ端面に近接して誘導発
熱板を配置し、さらに、その誘導発熱板背面に近接して
断熱材を装入した場合の横断面図である。
[Fig. 3] A slab that has not reached a predetermined length is loaded into a rigid induction heating furnace by pushing it to one side, and an induction heating plate is arranged close to the end face of the slab. It is a cross-sectional view when a heat insulating material is charged in close proximity.

【図4】方向性電磁鋼板について、その端部から長さ方
向に測定した鉄損の変化を示すグラフである。
FIG. 4 is a graph showing a change in iron loss measured from the end of the grain-oriented electrical steel sheet in the length direction.

【図5】堅型誘導加熱炉へのスラブ、誘導発熱板、断熱
材の装入手順を示す説明図である。
FIG. 5 is an explanatory diagram showing a procedure for charging a slab, an induction heating plate, and a heat insulating material into a rigid induction heating furnace.

【符号の説明】[Explanation of symbols]

1 スラブ 2 誘導発熱板 3 断熱材 4 誘導加熱コイル 5 炉側壁 6 炉床 7 エキストラクター L 所定長さ 1 slab 2 induction heating plate 3 heat insulating material 4 induction heating coil 5 furnace side wall 6 hearth 7 extractor L prescribed length

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Si : 2.0wt%以上を含有する電磁鋼板用
スラブを素材として特定の結晶方位を有する方向性電磁
鋼板を製造するに当って、 所定長さに達しない電磁鋼板用スラブ端材を堅型誘導加
熱炉により加熱するに際し、該スラブ長さが短いことに
よって生じる炉内空間に、該スラブ端面に近接して端部
補助加熱用誘導発熱板を配置し,さらに、その誘導発熱
板背面に生じる炉内空間に誘導発熱板に近接して断熱材
を配置することを特徴とする電磁鋼板用スラブの誘導加
熱方法。
1. When manufacturing a grain-oriented electrical steel sheet having a specific crystal orientation from a slab for electrical steel sheet containing Si: 2.0 wt% or more, a slab end material for electrical steel sheet that does not reach a predetermined length. When heating the slab with a rigid induction heating furnace, an induction heating plate for auxiliary heating of the end portion is arranged in the furnace space caused by the short length of the slab, close to the end face of the slab, and the induction heating plate is further heated. An induction heating method for an electromagnetic steel sheet slab, characterized in that a heat insulating material is arranged in the furnace space formed on the back surface in the vicinity of the induction heating plate.
JP15612891A 1991-05-31 1991-05-31 Induction heating method for slab for electrical steel sheet Expired - Fee Related JP3151000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15612891A JP3151000B2 (en) 1991-05-31 1991-05-31 Induction heating method for slab for electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15612891A JP3151000B2 (en) 1991-05-31 1991-05-31 Induction heating method for slab for electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH0559437A true JPH0559437A (en) 1993-03-09
JP3151000B2 JP3151000B2 (en) 2001-03-26

Family

ID=15620940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15612891A Expired - Fee Related JP3151000B2 (en) 1991-05-31 1991-05-31 Induction heating method for slab for electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3151000B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2025766A1 (en) * 2006-05-24 2009-02-18 Nippon Steel Corporation Process for producing grain-oriented magnetic steel sheet with high magnetic flux density

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2025766A1 (en) * 2006-05-24 2009-02-18 Nippon Steel Corporation Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
EP2025766A4 (en) * 2006-05-24 2014-03-19 Nippon Steel & Sumitomo Metal Corp Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
EP3018221A1 (en) * 2006-05-24 2016-05-11 Nippon Steel & Sumitomo Metal Corporation Method of production of grain-oriented electrical steel sheet with high magnetic flux density

Also Published As

Publication number Publication date
JP3151000B2 (en) 2001-03-26

Similar Documents

Publication Publication Date Title
KR920006581B1 (en) Method of making non-oriented silicon steel sheets having excellent magnetic properties
JPS61132216A (en) Device related to rolling of slab, band plate or sheet metal
JPH07116507B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2006257486A (en) Method for annealing grain oriented electrical steel sheet, and inner cover for batch annealing of grain oriented electrical steel sheet
JPH0559437A (en) Method for induction-heating slab for electrical steel sheet
JPH0610052A (en) Induction heating method for slab for silicon steel sheet
JP2863351B2 (en) Heating method of directional magnetic steel slab
JP4085975B2 (en) Hot rolling method
JP4894146B2 (en) Heating method for grain-oriented electrical steel slab
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JP5458672B2 (en) Vertical induction furnace for slabs for grain-oriented electrical steel sheets
JP4211540B2 (en) Continuous hot rolling mills for grain oriented electrical steel sheets
JP2637632B2 (en) Heating method for silicon steel slab and holding device for slab in heating furnace
JP4105780B2 (en) Decarburization annealing method and apparatus for grain-oriented electrical steel sheet
US4330348A (en) Method for heating continuously cast steel slab for production of grain-oriented silicon steel sheet having high magnetic flux density
JP3716432B2 (en) Heating method of slab for grain-oriented electrical steel sheet
JP3776963B2 (en) Heating method of heated material
JPH11269538A (en) Induction heating apparatus
JP2004285442A (en) Finish-annealing method for grain oriented electrical steel sheet
JPH06212268A (en) Induction heating furnace
JP4321248B2 (en) Continuous hot rolling equipment line
JP2563695B2 (en) Method of heating grain-oriented electrical steel slabs
JPH0331422A (en) Heating method and heating furnace for slab for grain oriented silicon steel
JPH0550106A (en) Method for hot rolling grain oriented electromagnetic steel slab
KR20000066252A (en) Method for preventing cracks in edge part of grain oriented electrical hot rolled steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees