JPH0331422A - Heating method and heating furnace for slab for grain oriented silicon steel - Google Patents

Heating method and heating furnace for slab for grain oriented silicon steel

Info

Publication number
JPH0331422A
JPH0331422A JP1163719A JP16371989A JPH0331422A JP H0331422 A JPH0331422 A JP H0331422A JP 1163719 A JP1163719 A JP 1163719A JP 16371989 A JP16371989 A JP 16371989A JP H0331422 A JPH0331422 A JP H0331422A
Authority
JP
Japan
Prior art keywords
slab
heating
silicon steel
heat
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1163719A
Other languages
Japanese (ja)
Other versions
JP2815904B2 (en
Inventor
Hiroshi Shimizu
洋 清水
Masato Koide
正人 小出
Toshiro Fujiyama
寿郎 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1163719A priority Critical patent/JP2815904B2/en
Publication of JPH0331422A publication Critical patent/JPH0331422A/en
Application granted granted Critical
Publication of JP2815904B2 publication Critical patent/JP2815904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To uniformly heat a silicon steel slab over the entire part thereof and to improve the electromagnetic characteristics of the grain oriented silicon steel sheet to be obtd. by the cold rolling after the heating by heating the slab in an induction type heating furnace in the state of disposing exothermic heat insulating plates at both ends of the slab at the time of heating the slab prior to a hot rolling. CONSTITUTION:The silicon steel slab 1 contg. Si at a high ratio and contg., for example, 0.005 to 0.10% at least one kind of inhibitor components, such as S, Se and Al, is disposed in an induction coil 2 of the induction type heating furnace and this coil is energized to heat the slab to >=1300 deg.C. The exothermic heat insulating plates 3, 3 consisting of a stock, such as Fe, which can be induction-heated by the current of the coil 2 are disposed at both ends of the slab 1 in proximity to each other within 200mm in such a manner that the spacings from both ends of the slab 1 can be adjusted by rotation of a supporting rod 4, by which the cooling of both ends of the slab to the temp. lower than the temp. in the central part by heat radiation is prevented and the inhibitor components are uniformly solutionized over the entire part of the slab. The inhibitor components, such as MnS, MnSe and AlN, are uniformly and finely deposited at the time of forming the slab to the sheet material by the hot rolling and cold rolling. The electromagnetic characteristics of the silicon steel sheet which is the final product are thus improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、方向性けい素鋼用スラブの加熱方法および
加熱炉に関し、とくにスラブ加熱時におけるスラブ端部
からの熱放射による温度低下を効果的に防止することに
よって、最終製品板の電磁特性の向上を図ろうとするも
のである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a heating method and a heating furnace for grain-oriented silicon steel slabs, and in particular to a method for reducing temperature due to heat radiation from the end of the slab when heating the slab. The aim is to improve the electromagnetic properties of the final product board by preventing this from occurring.

一方向性けい素鋼板の優れた磁気特性は、最終焼鈍にお
いて、板面に(110)面、圧延方向に[100]軸が
揃った2次再結晶粒を発達させることによって得られる
ことが知られている。そのためには鋼中に、インヒビタ
ーとよばれる微細な析出物、例えばMnS+ MnSe
、 AIN等を微細に分散させることが必要である。イ
ンヒビターの分散形態のコントロールは、熱間圧延に先
立つスラブ加熱中に、これらの析出物を一旦固溶させた
後、適当な冷却パターンの下に熱間圧延を施すことによ
って得られる。
It is known that the excellent magnetic properties of grain-oriented silicon steel sheets are obtained by developing secondary recrystallized grains with (110) planes on the sheet surface and [100] axes aligned in the rolling direction during final annealing. It is being For this purpose, fine precipitates called inhibitors, such as MnS+ MnSe
, AIN, etc. must be finely dispersed. Control of the dispersion form of the inhibitor can be obtained by once dissolving these precipitates into solid solution during slab heating prior to hot rolling, and then hot rolling under an appropriate cooling pattern.

かかる要請に応えるべく行われるスラブ加熱は、通常1
300°C以上の高温を採用しており、インヒビターを
十分固溶させるためにはスラブ最冷点がこの条件を満た
すことが必要である。しかしながら一方で、加熱温度が
高くなり過ぎると、多量の溶融スケールが発生し、加熱
炉の操業に支障をきたすだけでなく、ヘゲ等の表面疵が
発生して表面性状が損なわれると共に、製品の磁性バラ
ツキも大きくなる。従っていたずらに高温、長時間の加
熱を行うことは好ましくなく、短時間でインヒビター固
溶に必要な温度をスラブ全長にわたって確保することが
肝要である。
Slab heating, which is carried out to meet such demands, usually takes 1
A high temperature of 300°C or higher is used, and the coldest point of the slab must satisfy this condition in order to sufficiently dissolve the inhibitor. On the other hand, if the heating temperature becomes too high, a large amount of molten scale is generated, which not only hinders the operation of the heating furnace, but also causes surface flaws such as baldness, which impairs the surface quality of the product. Magnetic variation also increases. Therefore, it is not preferable to perform heating at an unnecessarily high temperature for a long period of time, and it is important to maintain the temperature necessary for solid solution of the inhibitor over the entire length of the slab in a short period of time.

(従来の技術) 上記の要件を満足する加熱方法として、発明者らは先に
、竪型スラブ加熱炉を用い、非酸化性雰囲気でけい素鋼
スラブを加熱する方法を提案した(特開昭60〜145
318号公報)。この方法は、短時間で高温加熱を可能
ならしめ、ノロ発生を伴うことなくインヒビターの解離
固溶を可能にしたことで顕著な改善効果が得られた。
(Prior Art) As a heating method that satisfies the above requirements, the inventors previously proposed a method of heating silicon steel slabs in a non-oxidizing atmosphere using a vertical slab heating furnace (Japanese Patent Application Laid-open No. 60-145
Publication No. 318). This method achieved remarkable improvement effects by enabling high-temperature heating in a short period of time and by enabling the dissociation and solid solution of the inhibitor without the generation of slag.

(発明が解決しようとする課題) しかしながら上記の方法では、スラブ長さが規定よりも
短かい場合には、スラブの端部が熱放散によって所定の
温度まで上昇せず、端部に磁気特性不良を生じる場合が
あった。
(Problem to be Solved by the Invention) However, in the above method, if the slab length is shorter than the specified value, the end of the slab will not rise to the specified temperature due to heat dissipation, and the end will have poor magnetic properties. In some cases, this may occur.

なおスラブ誘導加熱炉におけるスラブ端部の温度確保に
関しては、例えば特公昭52−47179号公報には被
加熱材の端部を耐火物で覆う方法が、また実公昭52−
50447号公報にはコイルの外側に鉄心を置き誘起磁
束を集束させて材料端部を加熱する方法がそれぞれ提案
されているが、これらの方法では、端部温度降下防止装
置の設置位置が固定されているため、スラブ長さが変化
した場合には、やはり端部温度を安定して確保すること
はできなかった。
Regarding ensuring the temperature at the end of the slab in a slab induction heating furnace, for example, Japanese Patent Publication No. 52-47179 describes a method of covering the end of the material to be heated with a refractory;
Publication No. 50447 proposes a method of placing an iron core on the outside of the coil to focus the induced magnetic flux to heat the end of the material, but in these methods, the installation position of the end temperature drop prevention device is fixed. Therefore, when the slab length changed, it was still not possible to maintain a stable end temperature.

この発明は、上記の問題を有利に解決するもので、スラ
ブの長さ如何にかかわらず、短時間でインヒビター固溶
に必要な温度をスラブ全長にわたって確保し得る方向性
けい素鋼用スラブの有利な加熱方法を、その実施に直接
用いて好適な加熱炉と共に提案することを目的とする。
The present invention advantageously solves the above-mentioned problems, and provides a slab for grain-oriented silicon steel that can secure the temperature necessary for solid solution of the inhibitor over the entire length of the slab in a short period of time, regardless of the length of the slab. The purpose of this study is to propose a heating method that can be used directly for its implementation, together with a suitable heating furnace.

(課題を解決するための手段) すなわちこの発明は、方向性けい素鋼用スラブを、誘導
加熱方式によって1300°C以上に加熱するに際し、
導電性の発熱保温板を、該スラブの端部から200mm
以内に近接設置した状態で加熱処理することからなる方
向性けい素鋼用スラブの加熱方法(第1発明)である。
(Means for Solving the Problem) That is, the present invention provides the following steps when heating a grain-oriented silicon steel slab to 1300°C or higher using an induction heating method.
Place a conductive heat generating heat insulating plate 200mm from the end of the slab.
This is a method for heating a grain-oriented silicon steel slab (first invention), which comprises heating a grain-oriented silicon steel slab in a state where the slab is placed in close proximity to each other.

またこの発明は、スラブ加熱用の竪型誘導加熱炉であっ
て、炉内に導入されたスラブの端部からの熱放射による
温度低下防止用の導電性発熱保温板を、該スラブ端部に
対し、前進、後退移動自在に設置したことからなる加熱
炉(第2発明)である。
The present invention also provides a vertical induction heating furnace for heating slabs, in which a conductive heating heat insulating plate is provided at the end of the slab introduced into the furnace to prevent a temperature drop due to heat radiation from the end of the slab. On the other hand, this is a heating furnace (second invention) that is installed so as to be movable forward and backward.

゛以下、この発明を具体的に説明する。゛Hereinafter, this invention will be explained in detail.

第1図に、この発明に従う加熱炉の要部を模式で示し、
図中番号1はスラブ、2はコイル、そして3が導電性の
発熱保温板であり、4はこの発熱保温板3の支持棒であ
る。ここに発熱保温板3の吊り手にはめねじを、一方支
持棒4にはおねじを設け、かつ支持棒4についてはその
中心を境としてねじのリードの向きを逆にしておけば、
単に支持棒4を回すだけで発熱保温板3同士を互いに接
近させたり、離隔させたりすることができる。そしてこ
のように移動自在な保温板3を誘導加熱炉内に設置し、
かかる保温板3をスラブ端部に近接させた状態で誘導加
熱を行えば、保温板3も併せて加熱されることから、ス
ラブ端部における放熱は効果的に防止され、その結果ス
ラブ端部の温度低下が防止されるわけである。
FIG. 1 schematically shows the main parts of a heating furnace according to the present invention,
In the figure, numeral 1 is a slab, 2 is a coil, 3 is a conductive heat-generating heat-insulating plate, and 4 is a support rod for this heat-generating heat-insulating plate 3. Here, if the hanger of the heat-generating and heat-insulating plate 3 is provided with a female thread, and the support rod 4 is provided with a male thread, and the direction of the screw lead of the support rod 4 is reversed with the center as the boundary,
By simply rotating the support rod 4, the heat-generating heat-retaining plates 3 can be brought closer to each other or separated from each other. Then, the movable heat insulating plate 3 is installed in the induction heating furnace,
If induction heating is performed with the heat insulating plate 3 placed close to the end of the slab, the heat insulating plate 3 will also be heated, effectively preventing heat dissipation at the end of the slab. This prevents the temperature from decreasing.

ここに発熱保温板3は、外周コイルからの誘起電流によ
って発熱するものでなければならないから、その材料と
しては、導電性と耐熱性を併せもつ鉄ベースの金属ない
し導電性を有する物質を含むセラミック材料などが有利
に適合する。発熱量をコントロールするためには、適切
な厚さを選ぶ必要がある。またスラブ端部の熱放散を効
果的に防止するにはスラブと発熱保温板との距離を制御
する必要がある。
Since the heat generating heat insulating plate 3 must generate heat by the induced current from the outer circumferential coil, its material may be an iron-based metal that has both conductivity and heat resistance, or a ceramic containing a conductive substance. Materials etc. are advantageously compatible. In order to control the amount of heat generated, it is necessary to choose an appropriate thickness. Furthermore, in order to effectively prevent heat dissipation at the ends of the slab, it is necessary to control the distance between the slab and the heat-generating heat insulating plate.

次に第2図に、発熱板とスラブ端部との距離を種々に変
化させて加熱したときのコイル端部の磁性劣化度(コイ
ル中央部の鉄損と端部の鉄損との差)を示す。
Next, Figure 2 shows the degree of magnetic deterioration at the end of the coil (difference between iron loss at the center of the coil and iron loss at the end) when heated while varying the distance between the heating plate and the end of the slab. shows.

試料は、(AIN + MnS )をインヒビターとす
る方向性けい素鋼用スラブを、誘導加熱炉にて1420
℃で10分間加熱し、2.4 amの熱圧板に仕上げた
後、最終強圧下、温間圧延による冷延2回法で、0.2
3園厚に仕上げたものである。
The sample was a grain-oriented silicon steel slab with (AIN + MnS) as an inhibitor, heated at 1420 °C in an induction heating furnace.
After heating at ℃ for 10 minutes and finishing it into a 2.4 am hot-rolled plate, it was cold-rolled twice by final strong reduction and warm rolling to give a 0.2
It is finished in three layers.

同図より明らかなように、発熱板とスラブとの距離が2
00!MI以内であればスラブ端部の磁性劣化が完全に
解消されている。
As is clear from the figure, the distance between the heating plate and the slab is 2
00! If it is within MI, magnetic deterioration at the end of the slab is completely eliminated.

次に、スラブ端部を発熱保温板によってどの程度加熱す
ることが均一な磁性を得る上で必要かを知るため、発熱
板の材質や厚さをかえ、発熱量をコントロールして、磁
性との関係を調べた。
Next, in order to find out how much heating the end of the slab needs to be done using the heat-generating heat-retaining plate to obtain uniform magnetism, we changed the material and thickness of the heat-generating plate and controlled the amount of heat generated to achieve a uniform magnetic property. I investigated the relationship.

なおスラブ端部の温度を正確に測温することは極めて難
しいことから、粗圧延終了後の鋼片温度(RDT)によ
って判断するものとし、加熱程度は、鋼片端部(鋼片端
部から約5mに相当する位置)と中央部のRDTの平均
値との温度差で評価した。
Since it is extremely difficult to accurately measure the temperature at the end of the slab, it is determined based on the temperature of the slab after rough rolling (RDT). The evaluation was made based on the temperature difference between the position corresponding to

第3図に、熱延時の後端部に相当する位置と長さ方向中
央部に相当する位置との鉄損差を、RDTの端部と中央
部との差に対して示した。
FIG. 3 shows the difference in iron loss between a position corresponding to the rear end and a position corresponding to the longitudinal center during hot rolling, with respect to the difference between the end and center of the RDT.

試料は、(MnSe + Sb )をインヒビターとす
るもので、誘導加熱炉で1420°C10分加熱したの
ち、2.4mm厚の熱延板とし、ついで冷延2回法によ
って0.23mm厚に仕上げたものである。
The sample was made with (MnSe + Sb) as an inhibitor, and was heated in an induction heating furnace at 1420°C for 10 minutes, then made into a 2.4 mm thick hot rolled sheet, and then finished to a 0.23 mm thick sheet by two passes of cold rolling. It is something that

第3図から明らかなように、スラブ端部発熱板によって
、端部RDTが長手方向中央部のRDTの平均温度に対
し、±10°Cの範囲内であれば、均一な磁性を示すこ
とが判明した。
As is clear from Fig. 3, the slab end heat generating plate allows the end RDT to exhibit uniform magnetism as long as it is within a range of ±10°C with respect to the average temperature of the RDT at the center in the longitudinal direction. found.

(作 用) この発明における方向性けい素鋼用スラブの好適組成は
、 Si:  4.5wt%(以下単に%で示す)以下Mn
 :  0.02〜0.10% を含む他、インヒビター成分としてS、 Se、 AI
のうちから選ばれる少なくとも1種を0.005〜0.
10%の範囲において含有するものである。
(Function) The preferred composition of the grain-oriented silicon steel slab in this invention is as follows: Si: 4.5 wt% (hereinafter simply expressed as %) or less Mn
: Contains 0.02 to 0.10%, as well as S, Se, and AI as inhibitor components.
At least one selected from among 0.005 to 0.
It is contained within a range of 10%.

ここにSiの上限は加工性の限界から定めたものであり
、またMnの範囲はMnS、 MnSeの形でインヒビ
ター機能をもたせる必要量として定めた。さらにインヒ
ビター量の規制理由は、0.005%を下回るとインヒ
ビターの絶対量が不足し、2次再結晶の発達が不十分に
なるからで、上限は主に経済的理由に基づく。インヒビ
ターとしてはこの他に、Sb、 Sn、 Cu、 Mo
、 B等の粒界偏析元素が知られているが、これ等を上
記成分に加えて添加することは何ら差し支えない。
Here, the upper limit of Si was determined from the limit of processability, and the range of Mn was determined as the amount necessary to provide an inhibitor function in the form of MnS and MnSe. Furthermore, the reason for regulating the amount of inhibitor is that if it is less than 0.005%, the absolute amount of inhibitor will be insufficient and the development of secondary recrystallization will be insufficient, and the upper limit is mainly based on economic reasons. In addition to this, Sb, Sn, Cu, Mo
, B, and other grain boundary segregation elements are known, but there is no problem in adding these in addition to the above components.

上記成分を有するスラブは、インヒビター固溶を目的と
して竪型誘導加熱炉にて1300°以上好ましくは14
00〜1450°Cの温度域に加熱されるが、この際ス
ラブ温度を全長にわたって均一に加熱することがこの発
明の目的とするところである。通常スラブをこの種の竪
型誘導加熱炉にて加熱する場合、スラブ長さが炉長より
短くなるに従って、両端部は熱放散によって十分加熱さ
れず、インヒビター固溶不足によって磁性不良を生ずる
ことがしばしばある。
The slab containing the above components is heated to 130° or more, preferably 14°, in a vertical induction heating furnace for the purpose of solid dissolving the inhibitor.
The slab is heated to a temperature range of 00 to 1450°C, and the object of the present invention is to uniformly heat the slab temperature over the entire length. Normally, when a slab is heated in this type of vertical induction heating furnace, as the length of the slab becomes shorter than the furnace length, both ends are not sufficiently heated due to heat dissipation, and magnetic defects may occur due to insufficient solid solution of the inhibitor. Often.

これの防止策として、スラブ長に応じて移動可能なスラ
ブ端部発熱保温板を設置し、スラブと発熱板との距離を
両者が接触しない範囲で200鵬以内とすることがこの
発明の特長である。なおスラブ温度を均一にする上で誘
導加熱炉に装入する前に予め、通常のガス加熱炉等で予
熱する方法あるいは鋳造後熱片状態で直ちに誘導加熱炉
に装入する方法との組合せは、スラブ温度均一化には更
に有効である。スラブ誘導加熱炉から抽出されたスラブ
は直ちに粗圧延機と仕上げタンデムミルによって1.5
〜3.0mrn厚の熱延板に仕上げられるが、スラブ端
部の温度降下が端部発熱保温板によってどの程度防止で
きたかは、粗圧延出側温度(RDT)で評価できる。す
なわちスラブ両端部(スラブで両端から500 mmま
でを端部と定義する)に相当する粗圧延後のシートバー
温度が、スラブ中央部平均値に対し±10℃以内となる
よう加熱することが、最終製品で全長にわたり均一良好
な特性を得る上で重要である。
As a preventive measure against this, a feature of the present invention is to install a heat insulating plate at the end of the slab that can be moved according to the length of the slab, and to keep the distance between the slab and the heat generating plate within 200 mm as long as they do not come into contact with each other. be. In addition, in order to make the slab temperature uniform, it is recommended to preheat the slab in a normal gas heating furnace before charging it into the induction heating furnace, or to charge it into the induction heating furnace immediately in the hot slab state after casting. , which is more effective in making the slab temperature uniform. The slab extracted from the slab induction heating furnace is immediately processed into a rough rolling mill and a finishing tandem mill with a 1.5
A hot-rolled sheet with a thickness of ~3.0 mrn is finished, but the degree to which the temperature drop at the end of the slab can be prevented by the end heating and insulation plate can be evaluated by the rough rolling exit temperature (RDT). In other words, the sheet bar temperature after rough rolling corresponding to both ends of the slab (500 mm from both ends of the slab is defined as the end) is heated so that the temperature of the sheet bar after rough rolling is within ±10 ° C. from the average value at the center of the slab. This is important in obtaining uniform and good properties over the entire length of the final product.

かくして得られた熱圧鋼帯は公知の方法に従って1回な
いし中間焼鈍を含む2回冷延法工程によって0.15〜
0.35mm厚の冷延板とし、ついで脱炭・1次再結晶
焼鈍後、最終仕上げ焼鈍を経て方向性けい素鋼板に仕上
げられる。
The thus obtained hot-rolled steel strip is subjected to a cold rolling process of 0.15 to 0.15 or twice including intermediate annealing according to a known method.
It is made into a cold rolled sheet with a thickness of 0.35 mm, then subjected to decarburization and primary recrystallization annealing, and final finish annealing to be finished into a grain-oriented silicon steel sheet.

(実施例) 実施例I Si : 3.15%、C: 0.075%、Mn :
 0.080%、S:0.020%、Al : 0.0
25%、N : 0.0085%およびCu:0.08
0%を含有する組成になる200圓厚のけい素制用スラ
ブ(20ton)を、燃焼型加熱炉で1200°C13
時間加熱したのち、竪型スラブ誘導加熱炉にて1450
℃、10分加熱保持した。この際、肉厚150011の
ステンレス製端部発熱板をスラブエツジから50鵬の位
置に設置したもの(A)と、使用しないもの(B)の2
条件を比較した。加熱後のスラブは粗圧延と仕上げ圧延
とによって2.4閣厚の熱延板に仕上げた。その後1次
冷延で1.511I11厚としたのち、1130°C1
3分の中間焼鈍を行なってから、2次冷延を200.’
Cの温間圧延で行い、0.23mm厚の製品板厚とした
。ついで湿水素中で850℃、3分の脱炭焼鈍を行った
のち、MgOを主成分とする焼鈍分離剤を塗布してから
、■2雰囲気中で1200°C110時間の仕上げ焼鈍
を行った。さらに分離剤除去後、張力コートを施した。
(Example) Example I Si: 3.15%, C: 0.075%, Mn:
0.080%, S: 0.020%, Al: 0.0
25%, N: 0.0085% and Cu: 0.08
A 200 mm thick silicon control slab (20 tons) containing 0% silicon was heated at 1200°C13 in a combustion type heating furnace.
After heating for 1450 hr, it was heated in a vertical slab induction heating furnace.
The mixture was heated and maintained at ℃ for 10 minutes. At this time, two types of stainless steel end heat generating plates with a wall thickness of 150,011 mm were installed at a position of 50 mm from the slab edge (A) and one without (B).
The conditions were compared. The heated slab was finished into a hot-rolled plate with a thickness of 2.4 mm by rough rolling and finish rolling. After that, it was first cold-rolled to a thickness of 1.511I11, and then rolled to a temperature of 1130°C1.
After performing intermediate annealing for 3 minutes, secondary cold rolling was performed for 200. '
C warm rolling was carried out to give a product plate thickness of 0.23 mm. After decarburization annealing at 850°C for 3 minutes in wet hydrogen, an annealing separator containing MgO as a main component was applied, and final annealing was performed at 1200°C for 110 hours in a 2 atmosphere. Furthermore, after removing the separating agent, a tension coating was applied.

かくして得られた最終製品の磁気特性(長手方向5ケ所
)について調べた結果は、表1に示したとおりであり、
この発明の条件でスラグ加熱処理を行ったものはいずれ
も、全長にわたって均一な磁性を示していた。
The results of investigating the magnetic properties (5 locations in the longitudinal direction) of the final product thus obtained are as shown in Table 1.
All slags subjected to heat treatment under the conditions of this invention exhibited uniform magnetism over the entire length.

表1 申スラブ両端部に対応 実施例2 Sl j 3.30%、C: 0.050%、Mn :
 0.075%、Se:0.021%およびSb ? 
0.030%を含有する組成になる200+a+s厚の
けい素鋼用スラブを、連続鋳造後、スラブ温度が800
°Cを下回らないうちに竪型誘導加熱炉に装入し、表面
温度で1440℃、10分加熱した。この際、肉厚12
0mmのステンレス製炭部発熱板をスラブエツジから1
00mmの位置と250mの位置(B)に設置したもの
の2種類を比較した。その後、熱間圧延で2.4am厚
の熱延板に仕上げた後、1次冷延で0.6M厚とし、1
000°C,3分の中間焼鈍に続き、2次冷延で0.2
3mmとした。ついで湿水素中で800°C15分の脱
炭焼鈍を行い、MgOを塗布してから、1200℃、1
0時間の仕上げBOX焼鈍を行った。さらに分離剤除去
後、張力コートを施した。
Table 1 Compatible with both ends of the slab Example 2 Sl j 3.30%, C: 0.050%, Mn:
0.075%, Se: 0.021% and Sb?
After continuous casting, a silicon steel slab with a thickness of 200+a+s having a composition containing 0.030% was heated to a temperature of 800%.
The sample was charged into a vertical induction heating furnace before the temperature dropped below 0.degree. C., and heated at a surface temperature of 1440.degree. C. for 10 minutes. At this time, the wall thickness is 12
0mm stainless steel charcoal heating plate 1 from the slab edge
Two types were compared: one installed at a position of 00 mm and one installed at a position of 250 m (B). After that, it was finished into a hot-rolled sheet with a thickness of 2.4 am by hot rolling, and then it was made into a 0.6 m thick sheet by the first cold rolling.
Following intermediate annealing at 000°C for 3 minutes, secondary cold rolling
It was set to 3 mm. Next, decarburization annealing was performed at 800°C for 15 minutes in wet hydrogen, MgO was applied, and then annealing was performed at 1200°C for 15 minutes.
Finish BOX annealing was performed for 0 hours. Furthermore, after removing the separating agent, a tension coating was applied.

かくして得られた最終製品コイルの長さ方向5ケ所の磁
性は表2に示すとおりであり、この発明に従い得られた
ものはいずれも、全長にわたって均一良好な特性を呈し
ていた。
The magnetic properties of the thus obtained final product coil at five locations in the length direction are as shown in Table 2, and all of the coils obtained according to the present invention exhibited uniform and good characteristics over the entire length.

表2Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う加熱炉の要部を模式で示した
図、 第2図は、スラブ端部と保温板との間の距離とΔWl’
1156との関係を示したグラフ、第3図は、ΔRDT
とΔ1./、。との関係を示したグラフである。 1・・・スラブ      2・・・コイル3・・・発
熱保温板    4・・・支持棒(発明の効果) か(してこの発明によれば、方向性けい素鋼用スラブの
加熱に際し、スラブの長さ如何にかかわりなく、スラブ
全長にわたり短時間でインヒビターの固溶に必要な温度
まで加熱することができ、ひいては製品板における磁気
特性のバラツキ解消に大きく貢献する。 第1 図 第2図
FIG. 1 is a diagram schematically showing the main parts of the heating furnace according to the present invention, and FIG. 2 is a diagram showing the distance between the slab end and the heat insulating plate and ΔWl'
1156, the graph shown in Figure 3 shows the relationship between ΔRDT
and Δ1. /,. This is a graph showing the relationship between 1... Slab 2... Coil 3... Heat generating heat insulating plate 4... Support rod (effect of the invention) (According to the present invention, when heating a grain-oriented silicon steel slab, Regardless of the length of the slab, it is possible to heat the entire length of the slab to the temperature required for solid solution of the inhibitor in a short period of time, which in turn greatly contributes to eliminating variations in magnetic properties in the product plate.

Claims (1)

【特許請求の範囲】 1、方向性けい素鋼用スラブを、誘導加熱方式によって
1300℃以上に加熱するに際し、導電性の発熱保温板
を、該スラブの端部から200mm以内に近接設置した
状態で加熱を施すことを特徴とする方向性けい素鋼用ス
ラブの加熱方法。 2、スラブ加熱用の竪型誘導加熱炉であって、炉内に導
入されたスラブの端部からの熱放射による温度低下防止
用の導電性発熱保温板を、該スラブ端部に対し、前進、
後退移動自在に設置したことを特徴とする加熱炉。
[Claims] 1. When heating a slab for grain-oriented silicon steel to 1,300°C or higher using an induction heating method, a conductive heating heat insulating plate is installed within 200 mm from the end of the slab. A heating method for a grain-oriented silicon steel slab, characterized by heating the slab. 2. In a vertical induction heating furnace for heating slabs, a conductive heat generating heat insulating plate for preventing temperature drop due to heat radiation from the end of the slab introduced into the furnace is advanced against the end of the slab. ,
A heating furnace characterized by being installed so that it can be moved backwards.
JP1163719A 1989-06-28 1989-06-28 Heating method and heating furnace for slab for oriented silicon steel Expired - Fee Related JP2815904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1163719A JP2815904B2 (en) 1989-06-28 1989-06-28 Heating method and heating furnace for slab for oriented silicon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163719A JP2815904B2 (en) 1989-06-28 1989-06-28 Heating method and heating furnace for slab for oriented silicon steel

Publications (2)

Publication Number Publication Date
JPH0331422A true JPH0331422A (en) 1991-02-12
JP2815904B2 JP2815904B2 (en) 1998-10-27

Family

ID=15779353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163719A Expired - Fee Related JP2815904B2 (en) 1989-06-28 1989-06-28 Heating method and heating furnace for slab for oriented silicon steel

Country Status (1)

Country Link
JP (1) JP2815904B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293728A (en) * 1991-03-20 1992-10-19 Kawasaki Steel Corp Method for heating silicon-containing steel slab and device for holding slab in heating furnace
JPH0551639A (en) * 1991-08-19 1993-03-02 Nippon Steel Corp Method for heating grain oriented silicon steel slab
CN106435136A (en) * 2016-09-23 2017-02-22 武汉钢铁股份有限公司 Sample inlet and outlet device used for box type annealing furnace and using method for sample inlet and outlet device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293728A (en) * 1991-03-20 1992-10-19 Kawasaki Steel Corp Method for heating silicon-containing steel slab and device for holding slab in heating furnace
JPH0551639A (en) * 1991-08-19 1993-03-02 Nippon Steel Corp Method for heating grain oriented silicon steel slab
CN106435136A (en) * 2016-09-23 2017-02-22 武汉钢铁股份有限公司 Sample inlet and outlet device used for box type annealing furnace and using method for sample inlet and outlet device

Also Published As

Publication number Publication date
JP2815904B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US4493739A (en) Process for producing a grain-oriented electromagnetic steel sheet or strip having a low watt loss and a grain-oriented electromagnetic steel strip having uniform magnetic properties
EP0019289B1 (en) Process for producing grain-oriented silicon steel strip
JPH10121213A (en) Grain oriented silicon steel sheet excellent in iron loss characteristic in low magnetic field as compared with high magnetic field, and its production
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JPS631371B2 (en)
KR100831756B1 (en) Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips
JPH0331422A (en) Heating method and heating furnace for slab for grain oriented silicon steel
CN117460851A (en) Method for producing oriented electrical steel sheet
GB2114600A (en) Process for producing a grain-oriented electromagnetic steel sheet or strip
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP4894146B2 (en) Heating method for grain-oriented electrical steel slab
JP4377477B2 (en) Method for producing high magnetic flux density unidirectional electrical steel sheet
JP2580403B2 (en) Hot rolling method for continuous cast slab for unidirectional electrical steel sheet.
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPS63109115A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JP3369408B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH0699751B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JP2533987B2 (en) Hot rolling method for continuous cast slab for unidirectional electrical steel sheet.
JPH02259016A (en) Production of grain-oriented silicon steel sheet free from surface blister defect
JP3338257B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPS63100128A (en) Manufacture of grain-oriented silicon steel sheet having satisfactory magnetic characteristic and surface property
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH06104867B2 (en) Method of heating grain-oriented silicon steel slabs
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080814

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees