JPH0551639A - Method for heating grain oriented silicon steel slab - Google Patents

Method for heating grain oriented silicon steel slab

Info

Publication number
JPH0551639A
JPH0551639A JP20673591A JP20673591A JPH0551639A JP H0551639 A JPH0551639 A JP H0551639A JP 20673591 A JP20673591 A JP 20673591A JP 20673591 A JP20673591 A JP 20673591A JP H0551639 A JPH0551639 A JP H0551639A
Authority
JP
Japan
Prior art keywords
slab
furnace
heating
induction heating
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20673591A
Other languages
Japanese (ja)
Other versions
JP2863351B2 (en
Inventor
Koji Fujii
浩二 藤井
Satoshi Shimazu
智 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16528239&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0551639(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20673591A priority Critical patent/JP2863351B2/en
Publication of JPH0551639A publication Critical patent/JPH0551639A/en
Application granted granted Critical
Publication of JP2863351B2 publication Critical patent/JP2863351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To provide a method for heating a grain oriented silicon steel slab capable of heating even a slab fairy shorter than the length of a furnace at high product yield by a simple equipment. CONSTITUTION:In the method of subjecting a silicon steel slab to preliminary heating by a gas fired heating furnace, next subjecting it to high temp. heating by an induction heating furnace in a nonoxidizing gas atmosphere and holding it for soaking for prescribed time, at the time of subjecting a slab 3 fairy shorter than the furnace length of an induction heating furnace 13 to high temp. heating, as for the longitudinal direction of the slab, the slab 3 is put aside on the side of either furnace wall 15a and is charged to the induction heating furnace 13. The edge part of the slab in close vicinity to the furnace wall face 15a has small thermal radiation and is heated to a prescribed temp. in the similar way to the central part of the slab. Thus, at least either edge part of the slab can be done without being made scraps.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、方向性電磁鋼スラブ
の熱間圧延ラインにおける加熱方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating a grain-oriented electrical steel slab in a hot rolling line.

【0002】[0002]

【従来の技術】方向性電磁鋼板は高磁束密度かつ低鉄損
という優れた磁気特性をもっており、変圧器などの鉄心
材料として広く用いられている。その製造工程におい
て、[110]〈001〉方位に高度に集積した二次再
結晶を得るために、MnS,AlNといった結晶粒方向
を制御するインヒビターを用いている。このインヒビタ
ーが適正に意図した作用をもたらすためには、熱間圧延
に先立つスラブ加熱時にインヒビターを十分に解離固溶
させる必要がある。さらに、スラブを適切な条件で熱間
圧延し、冷却を行って、インヒビターを微細かつ均一に
分散析出させることが重要である。上記インヒビターの
解離固溶のために、スラブをたとえば1200℃以上に
高温加熱を行っている。
2. Description of the Related Art Grain-oriented electrical steel sheets have excellent magnetic properties such as high magnetic flux density and low iron loss, and are widely used as core materials for transformers and the like. In the manufacturing process, an inhibitor such as MnS or AlN that controls the crystal grain direction is used in order to obtain secondary recrystallization highly integrated in the [110] <001> orientation. In order for this inhibitor to properly produce the intended action, it is necessary to sufficiently dissociate and solidify the inhibitor during slab heating prior to hot rolling. Further, it is important that the slab is hot-rolled under appropriate conditions and cooled to disperse and precipitate the inhibitor finely and uniformly. The slab is heated at a high temperature of, for example, 1200 ° C. or higher to dissociate and solidify the inhibitor.

【0003】上記高温加熱については、たとえば特開昭
61−6994号公報,特開昭61−69927号公報
などにより開示されている。これら公報で開示された高
温加熱方法は、スラブを1250℃程度までガス燃焼型
加熱炉で予備加熱し、その後の高温加熱を不活性雰囲気
に制御した誘導加熱炉で短時間に行う。高温加熱を行う
誘導加熱炉は、熱間圧延ラインに沿うようにして設けら
れている。また、スラブはこれの長手方向に移送され、
昇降可能な炉床により熱間圧延ラインからすくい上げら
れて誘導加熱炉内に装入される。炉内に装入されたスラ
ブは下側のスラブ側面が炉床によって下方より支持され
ており、スラブ上下面が垂直となった姿勢で加熱され
る。
The high temperature heating is disclosed in, for example, Japanese Patent Laid-Open Nos. 61-6994 and 61-69927. In the high temperature heating methods disclosed in these publications, the slab is preheated to about 1250 ° C. in a gas combustion type heating furnace, and the subsequent high temperature heating is performed in a short time in an induction heating furnace controlled to an inert atmosphere. The induction heating furnace that performs high-temperature heating is provided along the hot rolling line. Also, the slab is transported in its longitudinal direction,
It is picked up from the hot rolling line by the vertically movable hearth and charged into the induction heating furnace. The slab charged in the furnace has its lower side surface supported by the hearth from below, and is heated in a posture in which the upper and lower surfaces of the slab are vertical.

【0004】ところで、作業スケジュールによっては誘
導加熱炉の炉長よりかなり短い、たとえば炉長の1/2
程度の長さのスラブを高温加熱しなければならない場合
がある。一方、スラブは電磁誘導によってスラブ自身が
発熱して昇温するので、スラブの表面温度は誘導加熱炉
の炉壁表面温度より高くなる。このために、スラブ表面
は炉壁面に向かって熱を放射する。スラブの先後端面が
誘導加熱炉の先後端部の炉壁面より離れるに従い、スラ
ブ先後端部の放射面に対する炉壁放射面の比が大きくな
る。従来では、炉長よりかなり短いスラブであっても炉
長の中心にスラブを装入し、加熱していた。したがっ
て、このような場合、スラブ先後端部と炉壁面との間の
距離が大きくなり、スラブ先後端部は低温となってい
た。低温となった先後端部では、前記インヒビターを十
分に解離固溶できないことがある。このようなスラブで
製造した電磁鋼板の先後端部分は他の部分に比べて磁束
密度が低く、鉄損が高くなる。したがって、電磁鋼板の
先後端部はスクラップとなり、製品歩留りの低下を招い
ていた。なお、スラブの低温となった先後端部を所定温
度まで加熱することが考えられるが、スラブの他の部分
を余分に加熱することになり、むだなエネルギを消費す
る。
By the way, depending on the work schedule, it is considerably shorter than the length of the induction heating furnace, for example, 1/2 of the furnace length.
Slabs of moderate length may have to be heated to high temperatures. On the other hand, since the slab itself generates heat by electromagnetic induction to raise its temperature, the surface temperature of the slab becomes higher than the surface temperature of the furnace wall of the induction heating furnace. For this reason, the slab surface radiates heat toward the furnace wall. As the front and rear end surfaces of the slab move away from the furnace wall surface of the front and rear ends of the induction heating furnace, the ratio of the furnace wall radiation surface to the radiation surface of the slab front and rear ends increases. Conventionally, even if the slab is considerably shorter than the furnace length, the slab is placed in the center of the furnace length and heated. Therefore, in such a case, the distance between the slab front-rear end and the furnace wall surface was large, and the slab front-rear end was at a low temperature. At the front and rear ends where the temperature becomes low, the inhibitor may not be sufficiently dissociated and solid-dissolved. The front and rear end portions of the electromagnetic steel sheet manufactured with such a slab have lower magnetic flux density and higher iron loss than other portions. Therefore, the front and rear ends of the electromagnetic steel sheet are scrapped, resulting in a decrease in product yield. Note that it is conceivable to heat the front and rear end portions of the slab, which have become low temperature, to a predetermined temperature, but this causes additional heating of other portions of the slab, and wastes energy.

【0005】上記問題を解決するための方法として、炉
内に長手方向に沿って複数の仕切り壁を設け、仕切り壁
ごとに不活性ガスを吹き込み、ガス吹込み量を調整して
被加熱材の長手方向温度分布を制御する方法が考えられ
る。(特開平2−11717号公報参照)
As a method for solving the above problems, a plurality of partition walls are provided in the furnace along the longitudinal direction, an inert gas is blown into each of the partition walls, and the gas blowing amount is adjusted to adjust the amount of material to be heated. A method of controlling the temperature distribution in the longitudinal direction can be considered. (See Japanese Patent Laid-Open No. 11717/1990)

【0006】[0006]

【発明が解決しようとする課題】上記複数の仕切り壁を
設け、仕切り壁ごとに不活性ガスを吹き込み、ガス吹込
み量を調整して被加熱材の長手方向温度分布を制御する
方法では、目的を達成するためには仕切り壁と被加熱材
とを接触させるか、または不活性ガスが通過しないよう
に仕切り壁と被加熱材との間を十分に近接させなければ
ならない。このようにすると、ガス吹込み量の調整によ
る被加熱材の長手方向温度分布の調整は可能となるが、
被加熱材から仕切り壁への抜熱が発生し、局部的な温度
偏差が発生することにより製品歩留りの向上は期待でき
ない。さらに、炉体の構造が複雑となるうえに、不活性
ガスの吹込み装置および吹込み量調整装置が必要とな
り、加熱設備全体の構造も複雑となる。このため設備,
運転および保守費用が増大することになる。
The method of controlling the temperature distribution in the longitudinal direction of the material to be heated by providing a plurality of partition walls, injecting an inert gas into each partition wall, and adjusting the gas injection amount, is aimed at. In order to achieve the above, the partition wall and the material to be heated must be brought into contact with each other, or the partition wall and the material to be heated must be sufficiently close to each other so that an inert gas does not pass therethrough. In this way, it is possible to adjust the temperature distribution in the longitudinal direction of the heated material by adjusting the gas injection amount,
It is not possible to expect an improvement in product yield due to heat removal from the heated material to the partition wall and local temperature deviation. Further, the structure of the furnace body becomes complicated, and in addition, a device for blowing an inert gas and a device for adjusting the blowing amount are required, and the structure of the entire heating equipment becomes complicated. Therefore, equipment,
Operating and maintenance costs will increase.

【0007】この発明は、炉長よりかなり短いスラブで
あっても、簡単な設備により高い製品歩留りで加熱する
ことができる方向性電磁鋼スラブの加熱方法を提供しよ
うとするものである。
The present invention aims to provide a method for heating a grain-oriented electrical steel slab capable of heating a slab considerably shorter than the furnace length with a high product yield by simple equipment.

【0008】[0008]

【課題を解決するための手段】この発明の方向性電磁鋼
スラブの加熱方法は、電磁鋼スラブをガス燃焼型加熱炉
で予備加熱し、ついで非酸化性ガス雰囲気中の誘導加熱
炉で高温加熱し、所定の時間均熱保持する方法におい
て、誘導加熱炉の炉長よりかなり短いスラブを高温加熱
する際に、スラブ長手方向に関してスラブを一方の炉壁
面側に片寄せして誘導加熱炉内に装入する。
A method for heating a grain-oriented electrical steel slab according to the present invention is to preheat an electrical steel slab in a gas combustion type heating furnace and then heat it in an induction heating furnace in a non-oxidizing gas atmosphere to high temperature. However, in the method of soaking for a predetermined time, when heating a slab that is considerably shorter than the furnace length of the induction heating furnace at a high temperature, the slab is offset to one furnace wall side in the longitudinal direction of the slab and placed in the induction heating furnace. Charge.

【0009】図1は、スラブ長さが標準的なスラブ長さ
の約1/2であるスラブ3を誘導加熱炉13内に装入し
た状態を示している。スラブ先端面4が炉壁15の先端
側内面または後端側内面15aに近接するようにスラブ
3を片寄せして炉内に装入している。スラブ長手方向に
ついて炉中心に対し左右対称となるようにスラブ3を炉
内に装入したとき、スラブ先後端部が所定温度に加熱さ
れない場合、片寄せして炉内に装入する。片寄せして炉
内に装入しなければならないスラブ長さは、炉長の2/
3程度以下である。スラブ3を片寄せして炉内に装入す
るには、圧延ラインに沿ってガス燃焼型加熱炉から誘導
加熱炉13にスラブ3を搬送する際に、スラブ先端部ま
たは後端部が誘導加熱炉壁15の先端側内面または後端
側内面15a近くに達した時に、スラブ3を停止して炉
内に装入する。
FIG. 1 shows a state in which a slab 3 having a slab length which is about ½ of a standard slab length is charged in an induction heating furnace 13. The slab 3 is biased and loaded into the furnace so that the slab front end surface 4 is close to the front end side inner surface or the rear end side inner surface 15a of the furnace wall 15. When the slab 3 is loaded into the furnace so as to be bilaterally symmetrical with respect to the center of the furnace in the longitudinal direction of the slab, if the slab front and rear ends are not heated to a predetermined temperature, they are biased and loaded into the furnace. The length of the slab that must be loaded into the furnace after being pushed to one side is 2 /
It is about 3 or less. When the slab 3 is conveyed to the induction heating furnace 13 from the gas combustion type heating furnace along the rolling line in order to load the slab 3 into the furnace, the slab front end or rear end is heated by induction heating. When the inner surface of the furnace wall 15 near the front end or the rear end 15a is reached, the slab 3 is stopped and charged into the furnace.

【0010】片寄せして炉内に装入されたスラブは、標
準的な長さのスラブと同様に、炉壁15の外周面に沿っ
て配置された誘導コイル17により加熱される。
The slab which is loaded into the furnace while being biased is heated by an induction coil 17 arranged along the outer peripheral surface of the furnace wall 15, like a slab having a standard length.

【0011】なお、スラブの先端側を片寄せすることが
望ましく、その理由は次の通りである。スラブを誘導加
熱炉から抽出し、粗圧延したのち仕上圧延機群で圧延す
る際に、スラブ先端部の通板(被圧延材のロールへのか
み込み)時が最も圧延現象として不安定である。したが
って、スラブ後端側を片寄せすると、先端部に温度偏差
が生じて被圧延材の変形抵抗が急激に変化し、上記圧延
現象の不安定さを増幅させ、場合によってはかみ込み不
良により圧延設備を緊急停止しなければならないことに
なる。
It is desirable that the tip side of the slab be offset, and the reason is as follows. When the slab is extracted from the induction heating furnace, rough-rolled, and then rolled by the finishing rolling mill group, the most unstable rolling phenomenon occurs when the slab is threaded (biting the rolled material into the roll). .. Therefore, when the rear end side of the slab is offset, a temperature deviation occurs at the front end and the deformation resistance of the material to be rolled changes abruptly, amplifying the instability of the above rolling phenomenon, and in some cases rolling due to defective biting. The equipment will have to be stopped urgently.

【0012】[0012]

【作用】スラブは片寄せして炉内に装入されているの
で、一方のスラブ端部は炉壁面に接近し、他方は炉壁面
より離れている。炉壁面に近接したスラブ端部の放射面
に対する炉壁放射面の比は小さい。したがって、炉壁面
に近接したスラブ端部は熱放射が小さく、スラブ中央部
と同様に所定温度に加熱される。逆に、炉壁面より離れ
たスラブ端部は、熱放射が大きく、所定温度に加熱され
ない場合がある。この結果、少なくとも一方のスラブ端
部はスクラップとせずにすむ。
Since the slabs are loaded into the furnace while being biased, one end of the slab is close to the wall surface of the furnace and the other is away from the wall surface of the furnace. The ratio of the radiating surface of the furnace wall to the radiating surface of the slab end near the furnace wall is small. Therefore, the end portion of the slab that is close to the wall surface of the slab emits little heat, and is heated to a predetermined temperature like the central portion of the slab. On the contrary, the end portion of the slab, which is separated from the wall surface of the furnace, has large heat radiation, and may not be heated to a predetermined temperature. As a result, at least one slab end does not have to be scrapped.

【0013】[0013]

【実施例】第2図は、この発明の方法を実施する熱間圧
延設備の構成例を模式的に示している。図中、スラブ1
は標準長さのスラブであり、またスラブ3は短いスラブ
である。図面に示すように、熱間圧延設備は熱間圧延ラ
インLに沿って順次配列されたガス燃焼型加熱炉11、
誘導加熱炉13、粗圧延機31および仕上圧延機列32
よりなっている。誘導加熱炉13は、炉体14は下方に
向かって開口しており、炉壁15の外周に加熱コイル1
7が取り付けられている。誘導加熱炉13は、スラブ
1,3の上下面が水平姿勢から垂直姿勢となるようにし
90度転回するスラブ転回装置21、炉内のスラブ1,
3を垂直姿勢で支持する炉床25および炉床25を昇降
する電動ウインチ27を備えている。スラブ転回装置2
1は、スラブ1,3を載せる爪22、爪22に連結され
たアーム(図示しない)、およびアームを介して爪22
を90度転回する油圧シリンダ23からなっている。ま
た、誘導加熱炉13は、スラブ1,3を上方より押さえ
て支持する支持軸28を備えている。支持軸28は、エ
アーシリンダ29により昇降される。この実施例では、
支持軸28は4本あって、スラブ長さに応じて所要の支
持軸28でスラブ1,3を押さえる。図2の例では、2
本の支持軸28で短いスラブ3を押さえている。圧延ラ
インLに沿ってローラーテーブル34が設けられてい
る。ローラーテーブル34は駆動モーター35により回
転され、スラブ1,3をこれの長手方向に搬送する。制
御装置39は駆動モーター35を制御し、スラブ1,3
を所定位置に停止させる。制御装置39は、ホストコン
ピュータ(図示しない)から予め入力されたスラブ寸法
およびスラブ検出器37からの信号に基づいて、スラブ
停止位置を求める。
EXAMPLE FIG. 2 schematically shows a structural example of a hot rolling facility for carrying out the method of the present invention. Slab 1 in the figure
Is a standard length slab and slab 3 is a short slab. As shown in the drawing, the hot rolling equipment is a gas combustion type heating furnace 11 arranged in sequence along a hot rolling line L,
Induction heating furnace 13, rough rolling mill 31, and finishing rolling mill train 32
Has become. In the induction heating furnace 13, the furnace body 14 is opened downward, and the heating coil 1 is provided on the outer periphery of the furnace wall 15.
7 is attached. The induction heating furnace 13 includes a slab turning device 21 that turns the slabs 1 and 3 from the horizontal position to the vertical position by 90 degrees and turns the slabs 1 and 3 inside the furnace.
A hearth 25 for supporting the furnace 3 in a vertical posture and an electric winch 27 for raising and lowering the hearth 25 are provided. Slab turning device 2
1 is a claw 22 on which the slabs 1 and 3 are placed, an arm (not shown) connected to the claw 22, and the claw 22 via the arm.
Is composed of a hydraulic cylinder 23 that turns 90 degrees. Further, the induction heating furnace 13 includes a support shaft 28 that supports the slabs 1 and 3 by pressing them from above. The support shaft 28 is moved up and down by an air cylinder 29. In this example,
There are four support shafts 28, and the required support shafts 28 hold down the slabs 1 and 3 according to the slab length. In the example of FIG. 2, 2
The short slab 3 is held by the book support shaft 28. A roller table 34 is provided along the rolling line L. The roller table 34 is rotated by a drive motor 35 and conveys the slabs 1 and 3 in the longitudinal direction thereof. The control device 39 controls the drive motor 35 to control the slabs 1, 3
Is stopped at a predetermined position. The control device 39 determines the slab stop position based on the slab size and a signal from the slab detector 37 which are input in advance from a host computer (not shown).

【0014】ここで、上記のように構成された熱間圧延
設備により、連続鋳造法で製造された電磁鋼スラブを加
熱した例について説明する。
Here, an example in which the electromagnetic steel slab manufactured by the continuous casting method is heated by the hot rolling equipment configured as described above will be described.

【0015】スラブ3をガス燃焼型加熱炉11により1
150℃まで比較的低い昇温速度で予備加熱した。スラ
ブの寸法は、長さ5500mm、幅1000mm、厚み25
0mm(標準長さは11000mm)である。スラブ先端部
4を先端側炉壁面15aに近接して、スラブ3を炉内に
装入した。スラブ先端部4の炉壁面間距離D1 は200
mmであり、後端部5の炉壁面間距離D2 は5700mmで
あった。スラブ3を1350℃まで急速加熱し、炉から
の抽出まで15分間均熱保持した。均熱保持した後のス
ラブ3の表面温度を放射温度計で測定した結果、スラブ
先端部の温度は1345℃、後端部の温度は1310℃
であった。
The slab 3 is heated by the gas combustion type heating furnace 11
Preheating was performed up to 150 ° C. at a relatively low heating rate. The dimensions of the slab are 5500 mm in length, 1000 mm in width, and 25 in thickness.
It is 0 mm (standard length is 11000 mm). The slab 3 was loaded into the furnace with the slab tip 4 being close to the tip side furnace wall surface 15a. The distance D 1 between the furnace wall surfaces of the slab tip 4 is 200
mm, and the distance D 2 between the furnace wall surfaces of the rear end portion 5 was 5700 mm. Slab 3 was rapidly heated to 1350 ° C. and soaked for 15 minutes before extraction from the furnace. As a result of measuring the surface temperature of the slab 3 after the uniform heating with a radiation thermometer, the temperature of the slab front end is 1345 ° C and the temperature of the rear end is 1310 ° C.
Met.

【0016】高温加熱したスラブ3を仕上圧延し、所定
の熱処理をして得られた方向性電磁鋼板について磁気特
性を測定した。その結果、スラブ先端部は中央部と同様
の値であり、鉄損値W17/50 は平均0.810W/kg、磁
束密度B6 は平均1.930Wb/m2 であった。なお、ス
ラブ後端部の鉄損値W17/50 は平均0.850W/kgで、
磁束密度B6 は平均1.915Wb/m2 であった。
The magnetic properties of the grain-oriented electrical steel sheet obtained by finish rolling the slab 3 heated at high temperature and subjecting it to a predetermined heat treatment were measured. As a result, the slab tip had the same value as the center, the iron loss value W 17/50 was 0.810 W / kg on average, and the magnetic flux density B 6 was 1.930 Wb / m 2 on average. The iron loss value W 17/50 at the rear end of the slab is 0.850 W / kg on average,
The average magnetic flux density B 6 was 1.915 Wb / m 2 .

【0017】[0017]

【発明の効果】この発明によれば、少なくとも一方のス
ラブ端部は所定の温度に加熱され、磁気特性の劣化もな
い。したがって、スラブの両端部をスクラップとせずに
すむので、製品の歩留り向上を図ることができる。ま
た、誘導加熱炉内の所定位置にスラブを装入すればよい
ので、簡単な構造の加熱設備によりスラブを加熱するこ
とことができる。
According to the present invention, at least one end of the slab is heated to a predetermined temperature and the magnetic characteristics are not deteriorated. Therefore, both ends of the slab do not have to be scraped, and the yield of products can be improved. Further, since the slab may be loaded at a predetermined position in the induction heating furnace, the slab can be heated by the heating equipment having a simple structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】スラブが装入された状態にある誘導加熱炉の横
断面図である。
FIG. 1 is a cross-sectional view of an induction heating furnace with a slab charged therein.

【図2】この発明の方法を実施する熱間圧延設備の構成
例を模式的に示す図面である。
FIG. 2 is a drawing schematically showing a configuration example of hot rolling equipment for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 スラブ 3 スラブ 4 スラブ先端部 5 スラブ後端部 11 ガス燃焼型加熱炉 13 誘導加熱炉 15 炉壁 17 加熱コイル 21 スラブ転回装置 25 架台 28 支持軸 31 粗圧延機 32 仕上圧延機列 34 ローラーテーブル 35 駆動モーター 39 制御装置 DESCRIPTION OF SYMBOLS 1 slab 3 slab 4 slab front end 5 slab rear end 11 gas combustion type heating furnace 13 induction heating furnace 15 furnace wall 17 heating coil 21 slab turning device 25 mount 28 support shaft 31 rough rolling mill 32 finishing rolling mill row 34 roller table 35 Drive Motor 39 Control Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電磁鋼スラブをガス燃焼型加熱炉で予備
加熱し、ついで非酸化性ガス雰囲気中の誘導加熱炉で高
温加熱し、所定の時間均熱保持する方法において、誘導
加熱炉の炉長よりかなり短いスラブを高温加熱する際
に、スラブ長手方向に関してスラブを一方の炉壁面側に
片寄せして誘導加熱炉内に装入することを特徴とする方
向性電磁鋼スラブの加熱方法。
1. A method of preheating an electromagnetic steel slab in a gas combustion type heating furnace, then heating it to a high temperature in an induction heating furnace in a non-oxidizing gas atmosphere, and holding the soaking for a predetermined time, the furnace of the induction heating furnace. A method for heating a grain-oriented electrical steel slab, characterized in that, when heating a slab much shorter than its length at a high temperature, the slab is biased toward one furnace wall surface side in the longitudinal direction of the slab and charged into an induction heating furnace.
JP20673591A 1991-08-19 1991-08-19 Heating method of directional magnetic steel slab Expired - Lifetime JP2863351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20673591A JP2863351B2 (en) 1991-08-19 1991-08-19 Heating method of directional magnetic steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20673591A JP2863351B2 (en) 1991-08-19 1991-08-19 Heating method of directional magnetic steel slab

Publications (2)

Publication Number Publication Date
JPH0551639A true JPH0551639A (en) 1993-03-02
JP2863351B2 JP2863351B2 (en) 1999-03-03

Family

ID=16528239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20673591A Expired - Lifetime JP2863351B2 (en) 1991-08-19 1991-08-19 Heating method of directional magnetic steel slab

Country Status (1)

Country Link
JP (1) JP2863351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250158A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517425A (en) * 2011-12-06 2012-06-27 中冶南方(武汉)威仕工业炉有限公司 Heating process for inhibiting rolling fracture and perforation of 42CrMo hot rolled plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331422A (en) * 1989-06-28 1991-02-12 Kawasaki Steel Corp Heating method and heating furnace for slab for grain oriented silicon steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331422A (en) * 1989-06-28 1991-02-12 Kawasaki Steel Corp Heating method and heating furnace for slab for grain oriented silicon steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250158A1 (en) * 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP2863351B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
KR100796645B1 (en) Production method and installation for producing thin flat products
JPS59100221A (en) Local annealing treatment for cube-on-edge oriented silicon steel
JP5271512B2 (en) Hot rolling equipment
JP2863351B2 (en) Heating method of directional magnetic steel slab
ES8103187A1 (en) Processing for cube-on-edge oriented silicon steel
JPH0550106A (en) Method for hot rolling grain oriented electromagnetic steel slab
JP2563695B2 (en) Method of heating grain-oriented electrical steel slabs
RU2348702C1 (en) Method of thick sheets production
JPH0551638A (en) Method for heating grain oriented magnetic steel slab
JP4085975B2 (en) Hot rolling method
US4330348A (en) Method for heating continuously cast steel slab for production of grain-oriented silicon steel sheet having high magnetic flux density
JP3858546B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JP4211540B2 (en) Continuous hot rolling mills for grain oriented electrical steel sheets
JP2533987B2 (en) Hot rolling method for continuous cast slab for unidirectional electrical steel sheet.
JP2750251B2 (en) Induction heating method
JP2703468B2 (en) Stable manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH0763725B2 (en) Series of continuous hot rolling equipment for unidirectional electrical steel sheets
JP2637632B2 (en) Heating method for silicon steel slab and holding device for slab in heating furnace
JPH0543935A (en) Method for heating grain oriented electrical steel slab
JPH05117751A (en) Method for hot-rolling continuously cast slab for grain-oriented electrical steel sheet
JPS6210213A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JPS63223128A (en) Manufacture of heat-treated steel bar
JP2520526B2 (en) Induction heating furnace for directional magnetic steel slab
JP2004034069A (en) Method and device for hot-rolling steel sheet
JPH075977B2 (en) Heating method of continuous cast slab for unidirectional electrical steel sheet in hot rolling

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13