JPH0559190B2 - - Google Patents

Info

Publication number
JPH0559190B2
JPH0559190B2 JP61274944A JP27494486A JPH0559190B2 JP H0559190 B2 JPH0559190 B2 JP H0559190B2 JP 61274944 A JP61274944 A JP 61274944A JP 27494486 A JP27494486 A JP 27494486A JP H0559190 B2 JPH0559190 B2 JP H0559190B2
Authority
JP
Japan
Prior art keywords
refractories
aluminum
wire rod
metal fiber
alloy steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61274944A
Other languages
Japanese (ja)
Other versions
JPS63128151A (en
Inventor
Shuichi Inagaki
Mototsugu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Toyo Seiko Co Ltd
Original Assignee
Daido Steel Co Ltd
Toyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Toyo Seiko Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP27494486A priority Critical patent/JPS63128151A/en
Publication of JPS63128151A publication Critical patent/JPS63128151A/en
Publication of JPH0559190B2 publication Critical patent/JPH0559190B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は主として鉄鋼製造に用いる高温用途の
高アルミナ質不定形耐火物の崩落を防ぐために、
その耐火物の中に埋設して使用する合金鋼で製造
された金属フアイバーに関するものである。 〔従来技術の課題〕 従来から、不定形耐火物の崩落を防ぐために使
用されている金属フアイバーの材質は、中温用で
は軟鋼、高温用では各種のフテンレス鋼、超高温
用に25Cr −20Ni耐熱鋼を素材とするものであ
つた。これらの材質で製造したものは、鍛造又は
圧延加熱炉のような中温域や、鋼塊や鋳片の均質
化加熱炉のように高温域では十分な耐熱性を発揮
する。しかし、溶鋼と長時間接触したり、溶鋼か
らの輻射熱を近距離で受けたり、溶鋼の精錬時の
高熱の輻射熱を受ける連続鋳造用タンデイツシユ
やその蓋、脱ガス精錬に用いる浸漬管のような超
高温用には上記従来の合金鋼でもない耐酸化性が
不足しており、その寿命は出鋼回数で40回程度が
限度であつた。 このためさらに耐酸化性が優れなおかつ材料コ
ストが低廉なるものが要望されていた。 また、従来の金属フアイバーは高温用途の高ア
ルミナ質不定形耐火物との結合強度が充分でなく
そのことが崩落を早める原因ともなつていた。 〔課題を達成するための手段〕 そこで本発明は上記要望に対応し得る耐火物補
強用金属フアイバーを提供しようとするものであ
る。その目的を達成するため本発明は、クロムを
10〜27%、アルミニウムを1〜7%含み、残りが
鉄および不可避的不純物よりなる合金鋼を素材と
して線材を形成し、該線材を波形に折曲すると共
に定寸に切断してなる補強用として高アルミナ質
不定形耐火物中に埋設するための耐火物補強用金
属フアイバーを提供しようとするものである。ま
た本発明は同様の目的を達成するため、クロムを
10〜27%、アルミニウムを1〜7%含み、さらに
チタン0.1〜0.6%、ニオブ0.01〜0.5%、ボロン
0.002〜0.015%、希土類元素0.005〜0.1%の中か
ら一種または二種以上を含み、残りが鉄および不
可避的不純物よりなる合金鋼を素材として線材を
形成し、該線材を波形に折曲すると共に定寸に切
断してなる高アルミナ質不定形耐火物中に埋設す
るための耐火物補強用金属フアイバーを提供しよ
うとするものである。 〔実施例〕 この実施例の合金鋼は、クロムを16%、アルミ
ニウムを2%含み、残りが鉄および不可避的不純
物よりなる。この不可避的不純物としては、炭素
0.15%以下、ケイ素0.01〜2.0%、マンガン0.01〜
1.5%、ニツケル0.02%〜2.0%等がある。 この合金鋼は、クロムが10%以上にて耐酸化性
が改善され27%を超えると冷間加工性が極度に悪
くなるので、クロム含量は10〜27%の範囲になけ
ればならない。またこれにアルミニウムを添加す
ることにより耐酸化性が著しく改善される。これ
は合金表層にアルミニウム酸化物被膜が折出し、
これが地金を酸化から保護することによるものと
考えられる。また同時に、このアルミニウム酸化
物被膜が、高温用途の耐火物中に含有されるアル
ミナと高温下で化合し、そのために金属フアイバ
ーがアルミニウム酸化物被膜を介してアルミナと
の化学反応的結合が行われるので、耐火物にクラ
ツクが入つてもフアイバーが抜けにくく、従つて
耐火物の崩落を防ぐものと考えられる。そのよう
な効果はアルミニウム含有率が1%から認められ
通常は2%以上含めば十分であるが、7%を超す
と原料代が高くなるので不経済であるだけでなく
アルミニウム酸化物の発生量が必要以上に多くな
りその硬い被膜が圧延時にそのロールの摩耗を著
しくするのでアルミニウムの含量は1〜7%の範
囲になければならない。 なお、この合金鋼にチタン0.1〜0.6%、ニオブ
0.01〜0.5%、ボロン0.002〜0.015%、その他の希
土類元素0.005〜0.1%の中から一種または二種以
上を添加することにより、この合金鋼の結晶粒度
が調整され加工性を向上させることができる。た
だしこれらの添加成分は上記下限以下では効果が
なく、また、上限を超すとかえつて加工性を悪く
するうえにアルミニウム酸化物の折出を妨害する
ので上記添加成分は上記範囲内になければならな
い。 しかしてこの合金鋼を素材として金属フアイバ
ーを成形するには、該合金鋼をまず線状或いは帯
状に圧延し、軽度の冷間加工を加えて常温強度を
増す。そしてこの線材を波形に折曲すると共に定
寸に切断することにより本発明の耐火物補強用金
属フアイバーを得る。 なお第4図〜第7図に示した本発明に係る波形
の金属フアイバーと、第1図〜第3図に示した直
線棒状の金属フアイバーとの崇高性の比較テスト
の結果を表1に示した。即ち、第1図に例示した
ような丸断面軸状をなしたもの、或いは帯状材を
裁断して第2図に示したように角断面軸状をなし
たもの、或いはこれにプレス加工を加えて第3図
に例示したように定ピツチで軸径が大小可変した
形態のものを成形する一方、第4図に示したよう
に線材を等ピツチ、等幅の波形或いは第5図に示
したような矩形波状、或いは第6図に示したよう
な不等ピツチ波形、さらには第7図に示したよう
な不等ピツチ波、不等幅の波形に折曲し、定寸に
切断することにより種々の形態の金属フアイバー
を形成する。 表1は上記第1図〜第6図の形態の金属フアイ
バーを多数(200g)を容量0.2リツトルのガラス
容器に入れ該容器を5回程左右に振つた後の該金
属フアイバーの平均上面の容器底面からの高さを
測定した結果を表わしたものである。このように
第4図〜第7図に示した波状、或いは矩形波状形
態の金属フアイバーは第1図〜第3図に示したよ
うな直線棒状の金属フアイバーに比べて5倍以上
の崇高性があることが確かめられた。 このことからして波形形状は著しくからみ合い
状態が良好で嵩高になり易いことが判り、その波
形を不等ピツチおよびまたは不等幅にすることは
さらにその嵩高性を向上させると言える。
[Industrial Application Field] The present invention is aimed at preventing the collapse of high-alumina monolithic refractories mainly used for high-temperature applications in steel manufacturing.
This invention relates to a metal fiber made of alloy steel that is used by being embedded in the refractory. [Problems with conventional technology] The materials of metal fibers conventionally used to prevent the collapse of monolithic refractories are mild steel for medium temperature applications, various types of stainless steel for high temperature applications, and 25Cr-20Ni heat-resistant steel for ultra-high temperature applications. The material was Products manufactured from these materials exhibit sufficient heat resistance in medium temperature ranges such as forging or rolling heating furnaces, and high temperature ranges such as homogenization heating furnaces for steel ingots and slabs. However, ultraviolet rays such as tandates and their lids for continuous casting, which come into contact with molten steel for long periods of time, receive radiant heat from molten steel at close range, or receive high-temperature radiant heat during molten steel refining, and immersion tubes used for degassing refining. For high-temperature applications, it lacks oxidation resistance, even compared to the conventional alloy steels mentioned above, and its lifespan is limited to about 40 tappings. For this reason, there has been a demand for a material with even better oxidation resistance and lower material costs. Furthermore, conventional metal fibers do not have sufficient bond strength with high-alumina monolithic refractories for high-temperature applications, which hastened their collapse. [Means for Achieving the Object] Therefore, the present invention aims to provide a metal fiber for reinforcing refractories that can meet the above requirements. To achieve that purpose, the present invention uses chromium.
For reinforcement, a wire rod is formed from alloy steel containing 10 to 27% aluminum, 1 to 7% aluminum, and the remainder iron and unavoidable impurities, and the wire is bent into a wave shape and cut to size. The present invention aims to provide a metal fiber for reinforcing refractories that can be embedded in high alumina monolithic refractories. The present invention also uses chromium to achieve the same purpose.
Contains 10-27% aluminum, 1-7% aluminum, and 0.1-0.6% titanium, 0.01-0.5% niobium, and boron.
Forming a wire rod using alloy steel containing one or more of 0.002 to 0.015% and 0.005 to 0.1% of rare earth elements, with the remainder consisting of iron and unavoidable impurities, and bending the wire into a wave shape. The object of the present invention is to provide a metal fiber for reinforcing a refractory that can be cut into a fixed size and embedded in a high alumina monolithic refractory. [Example] The alloy steel of this example contains 16% chromium, 2% aluminum, and the remainder consists of iron and unavoidable impurities. This unavoidable impurity is carbon
0.15% or less, silicon 0.01~2.0%, manganese 0.01~
1.5%, Nickel 0.02% to 2.0%, etc. In this alloy steel, the chromium content must be in the range of 10 to 27%, since the oxidation resistance is improved when the chromium content exceeds 27%, and the cold workability becomes extremely poor. Furthermore, by adding aluminum to this, oxidation resistance is significantly improved. This is because an aluminum oxide film is deposited on the surface of the alloy.
This is thought to be due to protecting the base metal from oxidation. At the same time, this aluminum oxide coating is combined with alumina contained in refractories for high-temperature applications at high temperatures, and as a result, the metal fibers are chemically bonded with alumina through the aluminum oxide coating. Therefore, even if a crack occurs in the refractory, the fibers will not easily come out, which is thought to prevent the refractory from collapsing. Such an effect can be seen from an aluminum content of 1%, and it is usually sufficient to include 2% or more, but if it exceeds 7%, it is not only uneconomical because the cost of raw materials increases, but also reduces the amount of aluminum oxide generated. The aluminum content should be in the range of 1 to 7%, since the aluminum content would be excessively high and the hard coating would cause significant roll wear during rolling. In addition, this alloy steel contains 0.1 to 0.6% titanium and niobium.
By adding one or more of 0.01 to 0.5%, boron 0.002 to 0.015%, and other rare earth elements 0.005 to 0.1%, the grain size of this alloy steel can be adjusted and workability can be improved. . However, these additive components have no effect below the above lower limit, and if they exceed the upper limit, they not only worsen workability but also interfere with precipitation of aluminum oxide, so the above additive components must be within the above range. . However, in order to form a metal fiber using the alloy steel of the lever, the alloy steel is first rolled into a wire or strip shape, and then subjected to mild cold working to increase its strength at room temperature. The metal fiber for reinforcing refractories of the present invention is obtained by bending this wire into a wave shape and cutting it into a fixed size. Table 1 shows the results of a sublimeness comparison test between the corrugated metal fiber according to the present invention shown in FIGS. 4 to 7 and the straight bar-shaped metal fiber shown in FIGS. 1 to 3. Ta. In other words, it can be made into a shaft with a round cross-section as shown in Figure 1, or a belt-shaped material can be cut into a shaft with an angular cross-section as shown in Figure 2. As shown in Fig. 3, the wire rod is formed into a shape with a constant pitch and variable shaft diameter, while the wire is formed into a waveform with a constant pitch and width as shown in Fig. 4, or a waveform with a constant width as shown in Fig. 5. It can be bent into a rectangular waveform such as the one shown in FIG. Various forms of metal fibers are formed by this process. Table 1 shows the average top surface of the metal fibers and the bottom surface of the container after a large number (200 g) of the metal fibers in the form shown in FIGS. This figure shows the results of measuring the height from . In this way, the wavy or rectangular wavy metal fibers shown in Figures 4 to 7 have more than five times the sublime quality than the straight rod-shaped metal fibers shown in Figures 1 to 3. One thing was confirmed. From this, it can be seen that the waveform shape is highly intertwined and tends to be bulky, and it can be said that making the waveform have unequal pitch and/or width can further improve the bulkiness.

【表】 こうして成形した金属フアイバーは高アルミナ
質不定形耐火物に混錬して炉壁等の所要耐火物に
構築されるが、そのとき該金属フアイバーは該耐
火物中にて立体的に網状にからみあつた状態にて
埋設されそのからみ合い構造が該耐火物の機械的
強度を増長させる。 なお、線材の断面形状は円形だけでなく長円
形、長方形等でもよく、その場合の線径は経済性
を高めるため短径又は厚さ0.1〜1mm、長径又は
幅0.2〜2mm、長さ10〜80mmのものが、また波形
のピツチは2〜6mmのものが実用上有効であつ
た。 また、線材を裁断する際にバリやカエリを生じ
させ或いは軽度のわん曲やねじりを生じさせ、さ
らにはこれらが複合した形状にすることにより耐
火物との機械的な結合がより強固となり、耐火物
にクラツクが生じてもフアイバーが抜けにくくな
る効果がある。 こうして製造された金属フアイバーを高アルミ
ナ質不定形耐火物中に混入し転炉用タンデイシユ
として使用した場合、従来の材質のものよりも寿
命は約1.5倍に延長された。即ち、従来の転炉用
タンデイシユの寿命は出鋼回数で40回程度であつ
たが本発明の金属フアイバーを混入した場合その
寿命は60回にも延長された。 表2に従来から使用されている軟鋼、各種クロ
ム鋼、各種ステンレス鋼と本発明の合金鋼の化学
成分とこれを夫々高アルミナ質不定形耐火物中に
埋設し1250℃で200時間加熱した後の酸化深さを
示した。 一般に耐火物と金属との間の結合強度は、金属
酸化物被膜の強度、および、その被膜と耐火物と
の境界強度に依存する。金属酸化物被膜は厚けれ
[Table] The metal fibers formed in this way are kneaded into high alumina monolithic refractories and constructed into required refractories such as furnace walls. At that time, the metal fibers form a three-dimensional network in the refractories. The refractories are buried in an entangled state, and the intertwined structure increases the mechanical strength of the refractory. In addition, the cross-sectional shape of the wire may be not only circular but also oval, rectangular, etc. In that case, the wire diameter in order to improve economic efficiency is a short axis or thickness of 0.1 to 1 mm, a major axis or width of 0.2 to 2 mm, and a length of 10 to 1 mm. A waveform of 80 mm and a waveform pitch of 2 to 6 mm were practically effective. In addition, when cutting the wire rod, it causes burrs, burrs, slight bends and twists, and by creating a shape that is a combination of these, the mechanical bond with the refractory becomes stronger, making it fireproof. This has the effect of making it difficult for the fiber to come out even if a crack occurs in the object. When the metal fibers produced in this way were mixed into high-alumina monolithic refractories and used as converter tundishes, the lifespan was approximately 1.5 times longer than that of conventional materials. That is, the life of the conventional converter tundish was about 40 times, but when the metal fiber of the present invention was mixed in, the life was extended to 60 times. Table 2 shows the chemical composition of conventionally used mild steels, various chromium steels, various stainless steels, and the alloy steel of the present invention, and after embedding them in high alumina monolithic refractories and heating them at 1250°C for 200 hours. showed the oxidation depth of Generally, the bond strength between a refractory and a metal depends on the strength of the metal oxide coating and the boundary strength between the coating and the refractory. If the metal oxide film is thick,

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上実施例について説明したように本発明の耐
火物補強用金属フアイバーは、クロムとアルミニ
ウムを夫々所定量含有せしめることによつて、耐
酸化性を著しく向上させると共に、高アルミナ質
不定形耐火物中に埋設することによつてアルミナ
が該金属フアイバーから折出した薄くて強度のあ
るアルミニウム酸化物被膜と化学的に強固に結合
する。このためその強固な結合と耐酸化性との複
合作用により耐火物との離脱が抑制されその構造
物を強固に補強し得る。また、線材を波形に折曲
した形態であるために該金属フアイバーは耐火物
中にて互いに立体的な網状にからみ合いその機械
的強度を増大させ耐久性をさらに向上させる効果
があるものである。
As explained above with respect to the embodiments, the metal fiber for reinforcing refractories of the present invention significantly improves oxidation resistance by containing predetermined amounts of chromium and aluminum. By embedding the metal fiber in the metal fiber, the alumina is chemically and firmly bonded to the thin and strong aluminum oxide film precipitated from the metal fiber. Therefore, due to the combined effect of its strong bond and oxidation resistance, separation from the refractory is suppressed and the structure can be strongly reinforced. In addition, since the metal fibers are formed by bending wire rods into a wave shape, the metal fibers intertwine with each other in a three-dimensional net shape in the refractory material, which has the effect of increasing its mechanical strength and further improving its durability. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は直線棒状の金属フアイバーの
斜視図、第4図〜第7図は本発明の実施例を示し
た波形の金属フアイバーの斜視図である。
1 to 3 are perspective views of straight bar-shaped metal fibers, and FIGS. 4 to 7 are perspective views of corrugated metal fibers showing embodiments of the present invention.

Claims (1)

【特許請求の範囲】 1 クロムを10〜27%、アルミニウムを1〜7%
含み、残りが鉄および不可避的不純物よりなる合
金鋼を素材として線材を形成し、該線材を波形に
折曲すると共に定寸に切断してなる補強用として
高アルミナ質不定形耐火物中に埋設するための耐
火物補強用金属フアイバー。 2 クロムを10〜27%、アルミニウムを1〜7%
含み、さらにチタン0.1〜0.6%、ニオブ0.01〜0.5
%、ボロン0.002〜0.015%、希土類元素0.005〜
0.1%の中から一種または二種以上を含み、残り
が鉄および不可避的不純物よりなる合金鋼を素材
として線材を形成し、該線材を波形に折曲すると
共に定寸に切断してなる高アルミナ質不定形耐火
物中に埋設するための耐火物補強用金属フアイバ
ー。
[Claims] 1 10 to 27% chromium, 1 to 7% aluminum
A wire rod is formed from alloy steel with the remainder being iron and unavoidable impurities, and the wire rod is bent into a wave shape and cut to a specified size.The wire rod is embedded in a high alumina monolithic refractory for reinforcement. Metal fiber for reinforcing refractories. 2 Chromium 10-27%, aluminum 1-7%
Contains 0.1-0.6% titanium and 0.01-0.5 niobium
%, boron 0.002~0.015%, rare earth elements 0.005~
High alumina made by forming a wire rod from alloy steel containing one or more of 0.1% and the rest consisting of iron and unavoidable impurities, bending the wire into a wave shape and cutting it to a fixed size. Metal fiber for reinforcing refractories to be embedded in monolithic refractories.
JP27494486A 1986-11-18 1986-11-18 Metal product for reinforcing refractory Granted JPS63128151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27494486A JPS63128151A (en) 1986-11-18 1986-11-18 Metal product for reinforcing refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27494486A JPS63128151A (en) 1986-11-18 1986-11-18 Metal product for reinforcing refractory

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2222016A Division JPH0418125A (en) 1990-08-22 1990-08-22 Production of metal fiber for reinforcement of refractory

Publications (2)

Publication Number Publication Date
JPS63128151A JPS63128151A (en) 1988-05-31
JPH0559190B2 true JPH0559190B2 (en) 1993-08-30

Family

ID=17548728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27494486A Granted JPS63128151A (en) 1986-11-18 1986-11-18 Metal product for reinforcing refractory

Country Status (1)

Country Link
JP (1) JPS63128151A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888017A (en) * 1972-02-26 1973-11-19
JPS4889118A (en) * 1972-02-29 1973-11-21
JPS497772A (en) * 1972-05-12 1974-01-23
JPS49121720A (en) * 1973-03-24 1974-11-21
JPS5071510A (en) * 1973-07-20 1975-06-13
JPS5388618A (en) * 1976-09-17 1978-08-04 Osaka City Heat resistant steel
JPS54128420A (en) * 1978-03-30 1979-10-05 Kobe Steel Ltd Heat and oxidation resistant ferritic stainless steel with superior workability and toughness
JPS5544572A (en) * 1978-09-26 1980-03-28 Kawasaki Steel Corp Inner cover for metallic material annealing furnace
JPS5757859A (en) * 1980-09-19 1982-04-07 Oosakashi Heat resistant steel
JPS57164968A (en) * 1981-03-31 1982-10-09 Sumitomo Metal Ind Ltd Ferrite stainless steel with superior discoloration resistance at high temperature
JPS5953657A (en) * 1982-09-20 1984-03-28 Hitachi Metals Ltd Oxidation resistant alloy
JPS6092452A (en) * 1983-10-24 1985-05-24 Hitachi Metals Ltd Oxidation-resistant alloy

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888017A (en) * 1972-02-26 1973-11-19
JPS4889118A (en) * 1972-02-29 1973-11-21
JPS497772A (en) * 1972-05-12 1974-01-23
JPS49121720A (en) * 1973-03-24 1974-11-21
JPS5071510A (en) * 1973-07-20 1975-06-13
JPS5388618A (en) * 1976-09-17 1978-08-04 Osaka City Heat resistant steel
JPS54128420A (en) * 1978-03-30 1979-10-05 Kobe Steel Ltd Heat and oxidation resistant ferritic stainless steel with superior workability and toughness
JPS5544572A (en) * 1978-09-26 1980-03-28 Kawasaki Steel Corp Inner cover for metallic material annealing furnace
JPS5757859A (en) * 1980-09-19 1982-04-07 Oosakashi Heat resistant steel
JPS57164968A (en) * 1981-03-31 1982-10-09 Sumitomo Metal Ind Ltd Ferrite stainless steel with superior discoloration resistance at high temperature
JPS5953657A (en) * 1982-09-20 1984-03-28 Hitachi Metals Ltd Oxidation resistant alloy
JPS6092452A (en) * 1983-10-24 1985-05-24 Hitachi Metals Ltd Oxidation-resistant alloy

Also Published As

Publication number Publication date
JPS63128151A (en) 1988-05-31

Similar Documents

Publication Publication Date Title
US4204862A (en) Austenitic heat-resistant steel which forms Al2 O3 film in high-temperature oxidizing atmosphere
JP2672386B2 (en) Mechanically alloyed nickel-cobalt-chromium-iron compositions
JP2024079699A (en) Ferrite Alloy
US4444589A (en) Heat resistant alloy excellent in bending property and ductility after aging and its products
JPH0559190B2 (en)
JP2000096192A (en) Heat resistant cast steel excellent in surface roughing resistance and the like
JPH0617516B2 (en) Manufacturing method of ferritic stainless steel hot rolled strip
US6905651B2 (en) Ferritic stainless steel alloy and its use as a substrate for catalytic converters
JPH0418125A (en) Production of metal fiber for reinforcement of refractory
JP2614210B2 (en) Cu alloy for continuous casting mold
CN112025215B (en) Production process of three-layer composite aluminum plate for cooker
EP3868731B1 (en) Grains for the production of a sintered refractory product, a batch for the production of a sintered refractory product, a process for the production of a sintered refractory product and a sintered refractory product
JP3486713B2 (en) Heat-resistant cast steel with excellent high-temperature strength and heat-resistant fatigue properties for furnace coiler drum casting of reversible hot rolling mill
JP5554180B2 (en) Austenitic stainless steel
WO1993018196A1 (en) Fe-Cr-Al ALLOY STEEL SHEET AND PRODUCTION THEREOF
JP2004059962A (en) Stainless steel fiber for refractory, and manufacturing method
JPS63128156A (en) Metal product for reinforcing refractory
JPH0156138B2 (en)
JPH0676638B2 (en) High strength Ni-Cr alloy with excellent corrosion resistance and heat resistance
CN1203839A (en) Composite steel sheet billet and manufacturing method thereof
JPS6310114B2 (en)
SU1700094A1 (en) Corrosion resistant steel
KR20000069224A (en) Oxidation-resistant metal foil, its use and method for its production
CN115856004A (en) Method for predicting deformation capacity of inclusions in 430 ferritic stainless steel in hot rolling process
JPS63213634A (en) Cu-containing stainless steel excellent in hot workability