JPH0418125A - Production of metal fiber for reinforcement of refractory - Google Patents

Production of metal fiber for reinforcement of refractory

Info

Publication number
JPH0418125A
JPH0418125A JP2222016A JP22201690A JPH0418125A JP H0418125 A JPH0418125 A JP H0418125A JP 2222016 A JP2222016 A JP 2222016A JP 22201690 A JP22201690 A JP 22201690A JP H0418125 A JPH0418125 A JP H0418125A
Authority
JP
Japan
Prior art keywords
refractory
wire
aluminum
refractories
metal fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2222016A
Other languages
Japanese (ja)
Inventor
Shuichi Inagaki
修一 稲垣
Mototsugu Watanabe
渡辺 基嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Toyo Seiko Co Ltd
Original Assignee
Daido Steel Co Ltd
Toyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Toyo Seiko Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2222016A priority Critical patent/JPH0418125A/en
Publication of JPH0418125A publication Critical patent/JPH0418125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber having increased strength at normal temperature and useful for embedding in a high-alumina castable refractory to prevent the collapse of the refractory by forming an alloyed steel containing chromium and aluminum in the form of a wire, etc., and hardening the wire by cold working. CONSTITUTION:An alloyed steel composed of 10-27% chromium, 1-7% aluminum and the remaining amount of iron and inevitable impurities (e.g. carbon and silicon) is rolled to form a wire or ribbon, which is subjected to cold working and then press-forming, etc., to obtain the objective fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は王として鉄鋼製造に用いる高温用途の高アルミ
ナ質不定形耐火物の崩落を防くために、その耐火物の中
に埋設して使用する金属ファイバーの製造方法に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is aimed at preventing the collapse of high-alumina monolithic refractories used in high-temperature applications in steel manufacturing by embedding them in the refractories. The present invention relates to a method for manufacturing the metal fiber used.

〔従来技術の課題〕[Issues with conventional technology]

従来から、不定形耐火物の崩落を防ぐために使用されて
いる金属ファイバーの材質は、中温用では軟綱、高温用
では各種のステンレス鋼、NK?に用に250.−2O
N4耐熱鋼を素材とするものであった。これらの材質で
製造したものは、鍛造又は圧延加熱炉のような中温域や
、鋼塊や鋳片の均質化加熱炉のように高温域では十分な
耐熱性を発揮する。しかし、溶鋼と長時間接触したり、
7容鋼からの輻射熱を近距畷で受けたり、溶鋼の精練時
の高熱の輻射熱を受ける連続鋳造用タンプイノツユやそ
の蓋、脱ガス精練ムご用いる浸漬管のような超高温用に
は上記従来の合金鋼でもなお耐酸化性が不足しており、
その寿命は出鋼回数で40回程度が限度であった。
Traditionally, the materials of metal fibers used to prevent the collapse of monolithic refractories have been soft steel for medium-temperature applications, various types of stainless steel, and NK? for high-temperature applications. 250. -2O
It was made of N4 heat-resistant steel. Products manufactured from these materials exhibit sufficient heat resistance in medium temperature ranges such as forging or rolling heating furnaces, and high temperature ranges such as homogenization heating furnaces for steel ingots and slabs. However, long-term contact with molten steel,
The above-mentioned conventional method is used for ultra-high temperature applications such as tamp tubes and lids for continuous casting that receive radiant heat from 7-volume steel in a nearby furrow or receive high-temperature radiant heat during smelting of molten steel, and immersion tubes used in degassing scouring systems. Even alloy steels still lack oxidation resistance,
Its lifespan was limited to about 40 tappings.

このためさらに耐酸化性が優PLなおかつ材料コストが
低度なる′ものが要望されていた。
For this reason, there has been a demand for a PL with excellent oxidation resistance and low material cost.

また、従来の金属ファイバーは高温用途の高アルミナ質
不定形耐火物との結合強度が充分でなくそのことが崩落
を早める原因ともなっていた。
Furthermore, conventional metal fibers do not have sufficient bonding strength with high-alumina monolithic refractories for high-temperature applications, which hastened their collapse.

さらに、従来の金属ファイバーは、線径の細いものでは
柔軟であるために耐火物中に混錬させる際にその金属フ
ァイバーどうしが団子状に固すってしまって耐火物中に
均等に分散せず耐火物中に金属ファイバーが存在しない
個所を作ってしまうので強度を著しく低下させるという
問題があった。
Furthermore, conventional metal fibers are flexible when they have a small diameter, so when they are kneaded into refractories, the metal fibers tend to clump together and are not evenly dispersed in the refractories. This creates areas in the refractory where no metal fibers exist, resulting in a significant decrease in strength.

このため相当に線径の太いもの使用せざるを得すそうす
ると材料費が高くなるという問題があった。
For this reason, it is necessary to use a wire with a considerably large diameter, which raises the problem of increased material costs.

〔課題を達成するための手段〕[Means to accomplish the task]

そこで本発明は上記課題に対応し得る耐火物補強用金属
ファイバーを製造する方法を提供しようとするものであ
る。その目的を達成するため本発明は、クロムを10〜
27%、アルミニウムを1〜7%含む合金鋼を線状或い
は帯状にした後、該素材にさらムこ冷間加工を施して加
工硬化により常温強度を増大させることを特徴とした高
アルミナ質不定形耐火物中ムこ埋設するための耐火物補
強用金属ファイバーの製造方法である。
Therefore, the present invention seeks to provide a method for producing metal fibers for reinforcing refractories that can address the above-mentioned problems. In order to achieve that purpose, the present invention uses 10 to 10% of chromium.
27% aluminum, and 1 to 7% aluminum is made into a wire or band shape, and then the material is subjected to further cold working to increase the strength at room temperature through work hardening. This is a method for producing metal fibers for reinforcing refractories to be embedded in shaped refractories.

〔実施例〕〔Example〕

この実施例で使用する合金鋼は、クロムを16%。 The alloy steel used in this example contains 16% chromium.

アルミニウムを2%含み、残りが鉄および不可避的不純
物よりなる。この不可避的不純物としては、炭素0.1
5%以下、ケイ素0501〜2.0%、マンガン0、0
1〜1.5%、ニッケル0.02%〜2.0%等がある
Contains 2% aluminum, with the remainder consisting of iron and unavoidable impurities. This unavoidable impurity includes carbon 0.1
5% or less, silicon 0501-2.0%, manganese 0,0
1 to 1.5%, nickel 0.02% to 2.0%, etc.

この合金鋼は、クロムが10%以上にて耐酸化性が改善
され27%を超えると冷間加工性が極度に悪くなるので
、クロム含量は10〜27%の範囲になければならない
。またこれにアルミニウムを添加す、ることにより耐酸
化性が著しく改善される。これは合金表層にアルミニウ
ム酸化物被膜が析出し、これが地金を酸化から保護する
ことによるものと考えられる。また同時に、このアルミ
ニウム酸化物被膜が、高温用途の耐火物中に含有される
アルミナと高温下で化合し、そのために金属ファイバー
がアルミニウム酸化物被膜を介じてアルミナとの化学反
応的結合が行われるので、耐火物にクラックが入っても
ファイバーが抜けに<<、従って耐火物の崩落を防くも
のと考えられる。そのような効果はアルミニウム含有率
が1%から認められ通常は2%以上含めば十分であるが
、7%を超すと原料代が高くなるので不経済であるだけ
でなくアルミニウム酸化物の発生量が必要以上に多くな
りその硬い被膜が圧延時にそのロールの摩耗を著しくす
るのでアルミニウムの含量は1〜7%の範囲になければ
ならない。
In this alloy steel, the chromium content must be in the range of 10 to 27%, since oxidation resistance is improved when the chromium content is 10% or more, and cold workability becomes extremely poor when the chromium content exceeds 27%. Furthermore, by adding aluminum to this, oxidation resistance is significantly improved. This is thought to be due to the fact that an aluminum oxide film is deposited on the surface layer of the alloy, which protects the base metal from oxidation. At the same time, this aluminum oxide film combines with alumina contained in refractories for high-temperature applications at high temperatures, and as a result, the metal fibers chemically bond with alumina through the aluminum oxide film. Therefore, even if a crack occurs in the refractory, the fibers will not come out, which is thought to prevent the refractory from collapsing. Such an effect can be seen from an aluminum content of 1%, and it is usually sufficient to include 2% or more, but if it exceeds 7%, it is not only uneconomical because the cost of raw materials increases, but also reduces the amount of aluminum oxide generated. The aluminum content should be in the range of 1 to 7%, since the aluminum content would be excessively high and the hard coating would cause significant roll wear during rolling.

なお、この合金鋼にチタン0.1〜0.6%、ニオブ0
,01〜0.5%、ポロン0.002〜0.015%、
その他の希土類元素0.005〜0.1%の中から一種
または二種以上を添加することにより、この合金鋼の結
晶粒度が調整され加工性を向上させることもできる。た
だしこれらの添加成分は上記下限以下では効果がなく、
また、上限を超すとかえって加工性を悪くするうえにア
ルミニウム酸化物の析出を妨害するので上記添加成分は
上記範囲内になければならない。
In addition, this alloy steel contains 0.1 to 0.6% titanium and 0 niobium.
,01-0.5%, Poron 0.002-0.015%,
By adding one or more of 0.005 to 0.1% of other rare earth elements, the grain size of this alloy steel can be adjusted and the workability can be improved. However, these additive ingredients have no effect below the above lower limit,
Furthermore, if the upper limit is exceeded, the workability will be deteriorated and the precipitation of aluminum oxide will be hindered, so the above additive components must be within the above range.

しかして本発明に係る耐火物補強用金属ファイバーの製
造方法は、上記組成の合金鋼を先ず線状或いは帯状に圧
延し、その後その線状或いは帯状の素材にさらに冷間加
工を施して素材を加工硬化させることにより常温強度を
増大させる。なお線材を冷間加工することにより第1図
に例示したような丸断面軸状をなしたもの、或いは帯状
材を冷間加工し第2図に示したように角断面軸状をなし
たもの、或いは第1図のものにさらにプレス加工を加え
て第3図に例示したように定ピツチで軸径が大小可変し
た形態の金属ファイバーを成形する。
However, in the method for producing metal fibers for reinforcing refractories according to the present invention, alloy steel having the above composition is first rolled into a wire or strip shape, and then the wire or strip material is further cold-worked to form the material. The room temperature strength is increased by work hardening. In addition, wire rods are cold-worked to form a round cross-sectional shaft shape as shown in Fig. 1, or belt-shaped materials are cold-worked to form an angular cross-section shaft shape as shown in Fig. 2. Alternatively, press processing may be further added to that shown in FIG. 1 to form a metal fiber having a shaft diameter varying in size at a constant pitch, as illustrated in FIG. 3.

或いは第4図に示したように線材を等ピッチ、等幅の波
形に折曲げし、第5図乙こボしたような矩形波状、或い
は第6図に示したような不等ピッチ波形、さらには第7
図に示したような不等ピッチ波、不等幅の波形に折曲し
、定寸に切断することにより種々の形態の金属ファイバ
ーを製造し得る。
Alternatively, the wire can be bent into a waveform of equal pitch and width as shown in Fig. 4, a rectangular waveform as shown in Fig. 5, or an unequal pitch waveform as shown in Fig. 6. is the seventh
Metal fibers of various shapes can be manufactured by bending the fiber into a waveform of unequal pitch or unequal width as shown in the figure, and cutting it to a fixed size.

こうして製造された金属ファイバーは、冷間加工をしな
いで製造されたものに比べて加工硬化により剛性が増す
。このため耐火物中に混錬させた場合に、該金属ファイ
バーどうしが団子状に固まってしまうことなく、よく分
散する。こうして金属ファイバーを混錬させた高アルミ
ナ質不定形耐火物は固化して炉壁、或いは転炉用タンデ
イツシュ等の超高温用構造物に構築される。そのとき該
金属ファイバーは該耐火物中にて立体的に網状にからみ
あった状態にて埋設されそのからみ合い構造が該耐火物
の機械的強度を増長させる。
The metal fibers produced in this way have increased rigidity due to work hardening compared to those produced without cold working. Therefore, when kneaded into a refractory, the metal fibers are well dispersed without clumping together into lumps. The high-alumina monolithic refractories kneaded with metal fibers are solidified and constructed into ultra-high temperature structures such as furnace walls or converter tundishes. At this time, the metal fibers are buried in the refractory in a three-dimensional entwined state in a net shape, and the intertwined structure increases the mechanical strength of the refractory.

なお、線材の断面形状は円形だけでなく長円形。Note that the cross-sectional shape of the wire is not only circular but also oval.

長方形等でもよく、その場合の線径は経済性を高めるた
め短径又は厚さ0.1〜1n+、長径又は幅0゜2〜2
鶴、長さ10〜80蘭のものが、また波形のピッチは2
〜6fiのものが実用上有効であった。
It may be rectangular or the like, and in that case, the wire diameter should be 0.1 to 1n+ in short diameter or thickness and 0.2 to 2 in long diameter or width to improve economic efficiency.
Cranes, 10 to 80 orchid in length, and the pitch of the waveform is 2
~6fi was practically effective.

また、線材を裁断する際にパリやカエリを生しさせ或い
は軽度のわん曲やねじりを生しさせ、さらにはこれらが
複合した形状にすることにより耐火物との機械的な結合
がより強固となり、耐火物にクラックが生してもファイ
バーが抜けにくくできる。
In addition, when cutting the wire rod, the mechanical bond with the refractory becomes stronger by making the wire rod have burrs, burrs, slight bends, and twists, and by creating a shape that is a combination of these. This makes it difficult for fibers to come out even if cracks form in the refractory.

こうして製造された金属ファイバーを高アルミナ質不定
形耐火物中に混入し転炉用タンデイツユとして使用した
場合、従来の材質のものよりも寿命は約1.5倍に延長
された。即ち、従来の転炉用タンデイシュの寿命は出鋼
回数で40回程度であったが本発明の金属ファイバーを
混入した場合その寿命は60回にも延長された。
When the metal fibers produced in this way were mixed into a high alumina monolithic refractory and used as a tandem refractory for a converter, the lifespan was approximately 1.5 times longer than that of conventional materials. That is, the life of the conventional converter tundish was about 40 times, but when the metal fiber of the present invention was mixed, the life was extended to 60 times.

表1に従来から使用されている軟鋼、各種クロム鋼、各
種ステンレス鋼と本発明の合金鋼の化学成分とこれを夫
々高アルミナ質不定形耐火物中に埋設し1250℃で2
00特開加熱した後の酸化深さを示した。
Table 1 shows the chemical compositions of conventionally used mild steels, various chromium steels, various stainless steels, and the alloy steel of the present invention, each of which was embedded in a high alumina monolithic refractory and heated at 1250°C.
The oxidation depth after heating is shown in 00 JP-A.

一般に耐火物と金属との間の結合強度は、金属酸化物被
膜の強度、および、その被膜と耐火物との境界強度に依
存する。金属酸化物被膜は厚ければ耐火物との境界強度
は強くなるが、酸化物被膜自体の強度は低下するので耐
火物の崩落性は増す。
Generally, the bond strength between a refractory and a metal depends on the strength of the metal oxide coating and the boundary strength between the coating and the refractory. The thicker the metal oxide film, the stronger the boundary strength with the refractory, but the strength of the oxide film itself decreases, making the refractory more likely to collapse.

本発明のように、アルミニウムを]〜7%含んだ合金鋼
は表面にアルミニウム酸化物被膜を析出させ、これが高
アルミナ質不定形耐火物中のアルミナとの化学反応的結
合を起こし該耐火物との境界強度を大ならしめる。この
結果、アルミニウム酸化物被膜を薄くすることができ結
合強度を向上させる。
As in the present invention, the alloy steel containing ~7% aluminum deposits an aluminum oxide film on the surface, which chemically bonds with alumina in the high alumina monolithic refractory and forms a bond with the refractory. increases the boundary strength of As a result, the aluminum oxide film can be made thinner and the bonding strength can be improved.

〔発明の効果〕〔Effect of the invention〕

以上実施例について説明したように本発明の耐火物補強
用金属ファイバーは、クロムとアルミニウムを夫々所定
量含有せしめることによって、耐酸化性を著しく向上さ
せると共ムこ、高アルミナ質不定形耐火物中に埋設する
ことによってアルミナが該金属ファイバーから析出した
薄くて強度のあるアルミニウム酸化物被膜と化学的に強
固に結合する。このためその強固な結合と耐酸化性との
複合作用により耐火物との離脱が抑制されその構造物を
強固に補強し得る。しがも該金属ファイバーは素材に冷
間加工を施して製造されたので、加工 □硬化により剛
性が増し細い線径或いは薄い板厚のものであっても固ま
ることなく耐火物中に均一に分散させ易いなど有益な効
果がある。
As explained in the examples above, the metal fiber for reinforcing refractories of the present invention significantly improves oxidation resistance by containing predetermined amounts of chromium and aluminum. By embedding the alumina in the metal fiber, the alumina is chemically and firmly bonded to the thin and strong aluminum oxide coating deposited from the metal fiber. Therefore, due to the combined effect of its strong bond and oxidation resistance, separation from the refractory is suppressed and the structure can be strongly reinforced. However, since the metal fibers are manufactured by subjecting the material to cold working, the rigidity increases through processing and hardening, and even if the wire diameter is small or the thickness of the plate is thin, it will not harden and be uniformly dispersed in the refractory. It has beneficial effects such as ease of use.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る耐火物補強用金属ファイバーを示し
、第1図〜第3図は直線棒状の金属ファイバーの斜視図
、第4図〜第7図は波形の金属ファイバーの斜視図であ
る。 第1図 第2図 第8図 第4図 第5− 4、、   4.、   4−へ I  B 図 第7図
The drawings show metal fibers for reinforcing refractories according to the present invention, and FIGS. 1 to 3 are perspective views of straight rod-shaped metal fibers, and FIGS. 4 to 7 are perspective views of corrugated metal fibers. Figure 1 Figure 2 Figure 8 Figure 4 Figure 5-4, 4. , 4-I B Figure 7

Claims (1)

【特許請求の範囲】[Claims]  クロムを10〜27%,アルミニウムを1〜7%含む
合金鋼を線状或いは帯状にした後、該素材にさらに冷間
加工を施して加工硬化により常温強度を増大させること
を特徴とした高アルミナ質不定形耐火物中に埋設するた
めの耐火物補強用金属フアイバーの製造方法
High alumina, which is characterized by making alloy steel containing 10 to 27% chromium and 1 to 7% aluminum into a wire or band shape, and then cold working the material to increase its strength at room temperature through work hardening. Method for producing metal fiber for reinforcing refractories to be embedded in monolithic refractories
JP2222016A 1990-08-22 1990-08-22 Production of metal fiber for reinforcement of refractory Pending JPH0418125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2222016A JPH0418125A (en) 1990-08-22 1990-08-22 Production of metal fiber for reinforcement of refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2222016A JPH0418125A (en) 1990-08-22 1990-08-22 Production of metal fiber for reinforcement of refractory

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27494486A Division JPS63128151A (en) 1986-11-18 1986-11-18 Metal product for reinforcing refractory

Publications (1)

Publication Number Publication Date
JPH0418125A true JPH0418125A (en) 1992-01-22

Family

ID=16775787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2222016A Pending JPH0418125A (en) 1990-08-22 1990-08-22 Production of metal fiber for reinforcement of refractory

Country Status (1)

Country Link
JP (1) JPH0418125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023776A1 (en) * 1994-03-02 1995-09-08 Bhp Steel (Rp) Pty. Ltd. 'iron aluminide alloy' reinforced composite materials
KR101370635B1 (en) * 2011-12-01 2014-03-10 재단법인 포항산업과학연구원 Refractory for steel making

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889118A (en) * 1972-02-29 1973-11-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889118A (en) * 1972-02-29 1973-11-21

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023776A1 (en) * 1994-03-02 1995-09-08 Bhp Steel (Rp) Pty. Ltd. 'iron aluminide alloy' reinforced composite materials
KR101370635B1 (en) * 2011-12-01 2014-03-10 재단법인 포항산업과학연구원 Refractory for steel making

Similar Documents

Publication Publication Date Title
EP3441497B1 (en) Lightweight steel sheet with enhanced elastic modulus, and manufacturing method thereof
JP2022046521A (en) Ferritic alloy
CN104294146A (en) Hot-rolled base plate for steel aluminum composite plate and production method of hot-rolled base plate
JPS60190552A (en) Sintered stainless steel and its manufacture
JP7067998B2 (en) Stainless steel
JP2011195880A (en) Austenitic stainless steel
JP6718510B2 (en) High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof
JPH0418125A (en) Production of metal fiber for reinforcement of refractory
SK515783A3 (en) Method of manufacture of fine-grained weldable sheets
JPH03133630A (en) Clad steel sheet having good formability excellent in dent resistance and surface strain resistance
CN103993241A (en) Hot-rolled flat plate for composite acid-resistant pipeline steel base and production method thereof
JP3559455B2 (en) Low-yield-ratio type refractory steel, steel pipe, and method for producing the same
JP2000282167A (en) Low yield ratio type steel product and steel pipe, excellent in toughness, and their manufacture
JPH0559190B2 (en)
JP2662198B2 (en) Manufacturing method of cast steel with excellent fire resistance, strength and toughness
JP5554180B2 (en) Austenitic stainless steel
JP2004059962A (en) Stainless steel fiber for refractory, and manufacturing method
JP2000248335A (en) Low yield ratio type fire resistant hot rolled steel sheet and steel pipe excellent in toughness and their production
JPS63128156A (en) Metal product for reinforcing refractory
JP2021505775A (en) Ferritic stainless steel with improved tube expansion workability and its manufacturing method
JPH02173224A (en) Manufacture of sintered aluminum bronze alloy
JP4454117B2 (en) Method for producing Cr-containing thin steel sheet
JP4675771B2 (en) Ferritic stainless steel wire for glass encapsulation
KR102556266B1 (en) High strength steel wire rod and steel wire with excellent oxidation resistance and method for manufacturing the same
JPS62222044A (en) Hot-working method for two-phase stainless steel powder