JPH055882B2 - - Google Patents

Info

Publication number
JPH055882B2
JPH055882B2 JP62041471A JP4147187A JPH055882B2 JP H055882 B2 JPH055882 B2 JP H055882B2 JP 62041471 A JP62041471 A JP 62041471A JP 4147187 A JP4147187 A JP 4147187A JP H055882 B2 JPH055882 B2 JP H055882B2
Authority
JP
Japan
Prior art keywords
powder
alloy
cutting
sintered
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62041471A
Other languages
Japanese (ja)
Other versions
JPS63210202A (en
Inventor
Wataru Yamagishi
Tsutomu Iikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4147187A priority Critical patent/JPS63210202A/en
Publication of JPS63210202A publication Critical patent/JPS63210202A/en
Publication of JPH055882B2 publication Critical patent/JPH055882B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の概要〕 Fe−Co焼結合金またはFe−Co−Mn焼結合金
を切削加工した後に、非酸化性雰囲気中で750〜
1100℃に焼鈍し、切削加工によつて劣化した磁気
特性を向上させる。
[Detailed Description of the Invention] [Summary of the Invention] After cutting the Fe-Co sintered alloy or the Fe-Co-Mn sintered alloy, the
Annealed to 1100℃ to improve magnetic properties that have deteriorated due to cutting.

〔産業上の利用分野〕[Industrial application field]

本発明は、Fe−Co系焼結合金の磁気特性の向
上方法に関する。
The present invention relates to a method for improving the magnetic properties of a Fe-Co based sintered alloy.

〔従来の技術〕[Conventional technology]

Fe−Co合金、特に50重量%Fe−50重量%Co合
金は軟質磁性材料として最高の飽和磁束密度を示
すことが知られている。しかし、この合金の溶製
材は硬くて脆いので切削加工することができない
欠点がある。また、この組成の合金は、一般には
焼結材として製造されていないので、さきに本発
明者らが、特願昭60−281885号において粉末冶金
法による製造を提案した。たとえば、50重量%
Fe−50重量%Coとなるように混合した80重量%
Fe−20重量%Co合金粉と、Co粉との混合物を非
酸化性雰囲気中で圧粉、焼成する。この焼結合金
は、切削加工することが可能であるが、磁気的性
質が劣化する欠点がある。
It is known that Fe--Co alloys, particularly 50 wt.% Fe-50 wt.% Co alloys, exhibit the highest saturation magnetic flux density as soft magnetic materials. However, the melted material of this alloy is hard and brittle, so it has the disadvantage that it cannot be cut. Moreover, since alloys with this composition are not generally produced as sintered materials, the present inventors previously proposed production by powder metallurgy in Japanese Patent Application No. 60-281885. For example, 50% by weight
Fe - 80% by weight mixed to 50% Co
A mixture of Fe-20% by weight Co alloy powder and Co powder is compacted and fired in a non-oxidizing atmosphere. Although this sintered alloy can be machined, it has the disadvantage that its magnetic properties deteriorate.

電磁部品の形状では、今後ますます複雑化する
傾向にあるので、溶製材は勿論、焼結材にしても
二次加工が必要となる場合が多くなる。
As the shapes of electromagnetic parts tend to become more and more complex in the future, secondary processing is often required not only for ingots but also for sintered materials.

R.M.Bozorth:Ferromagnetism、D.Von
Nostrand Co.、(1963)200.は、2重量%V−49
重量%Fe−49重量%Co合金の溶製材の冷間加工
によつて劣化した磁気的性質、特に透磁率を向上
させる手段として、 850℃で焼鈍とすることを開示する。しかし、
Fe−Co合金の焼結材については、このような検
討が行なわれた例がない。
RMBozorth: Ferromagnetism, D.Von
Nostrand Co., (1963) 200. is 2% V-49 by weight.
As a means to improve the magnetic properties, particularly the magnetic permeability, which have deteriorated due to cold working of a cast material of wt%Fe-49wt%Co alloy, annealing at 850°C is disclosed. but,
There are no examples of such studies being conducted on sintered materials of Fe-Co alloys.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

焼結合金は、ある程度の成形が可能であるが、
それにしても金型の形状によつて制約を受ける。
軟質磁性材料として使用するFe−Co系合金は切
削加工することによつて電磁部品として必要な磁
気的性質が劣化する。
Sintered alloys can be formed to some extent, but
Even so, it is restricted by the shape of the mold.
When Fe--Co alloys used as soft magnetic materials are cut, the magnetic properties necessary for electromagnetic parts deteriorate.

本発明は、Fe−Co合金粉を原料として粉末冶
金法によつて製造するので切削加工が可能であ
り、しかも溶製材の長所を利用して歪の生成によ
る磁気的性質の劣化を少なくすることを目的とす
る。
The present invention is manufactured using a powder metallurgy method using Fe-Co alloy powder as a raw material, so it can be cut and processed, and furthermore, it utilizes the advantages of molten material to reduce the deterioration of magnetic properties due to the generation of strain. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、Fe−Co合金粉と、Co粉とを混
合して粉末冶金法によつて製造したFe−Co焼結
合金を切削加工した後に、非酸化性雰囲気中で
750〜1100℃で焼鈍し、切削加工によつて劣化し
た磁気的性質を向上させることを特徴とする焼結
合金の熱処理方法、およびFe−Co合金粉と、Fe
−Mn粉と、Co粉とを混合して粉末冶金法によつ
て製造したFe−Co−Mn焼結合金を切削加工した
後に、非酸化性雰囲気中で750〜1100℃で焼鈍し、
切削加工によつて劣化した磁気的性質を向上させ
ることを特徴とする焼結合金の熱処理方法によつ
て解決することができる。
The above problem occurs when an Fe-Co sintered alloy manufactured by mixing Fe-Co alloy powder and Co powder by powder metallurgy is cut and processed in a non-oxidizing atmosphere.
A heat treatment method for a sintered alloy characterized by annealing at 750 to 1100°C to improve magnetic properties deteriorated by cutting, and a Fe-Co alloy powder and an Fe
- After cutting a Fe-Co-Mn sintered alloy produced by mixing Mn powder and Co powder by powder metallurgy, annealing it at 750 to 1100 °C in a non-oxidizing atmosphere,
This problem can be solved by a method of heat treating a sintered alloy, which is characterized by improving the magnetic properties deteriorated by cutting.

〔作用〕[Effect]

予めFe−Co合金粉を製造し、この合金粉とCo
粉とを粉末冶金法により焼結し、これを切削加工
した焼結合金を750〜1100℃に昇温することによ
つて加工歪を除去し、炉冷によつて規則格子の生
成および結晶粒の成長を行ない、切削加工によつ
て低下した磁気的性質をかなり回復することがで
きる。
Fe-Co alloy powder is produced in advance, and this alloy powder and Co
The powder is sintered by powder metallurgy, the sintered alloy is machined and heated to 750 to 1100°C to remove processing strain, and by furnace cooling, regular lattices are formed and crystal grains are removed. The magnetic properties degraded by the cutting process can be recovered to a large extent.

〔実施例〕〔Example〕

実施例 1 粒度−325メツシユの80重量%Fe−20重量%Co
合金粉と、粒度−400メツシユのCo粉とを原料粉
として50重量%Fe−50重量%Coとなるように秤
量し、これに潤滑剤としてステアリン酸亜鉛を全
体重量の0.75%を加えた混合粉を、392MPa(4t/
cm2)で加圧して直径50mm、厚さ10mmの円柱状の成
形体とし、これを400℃、1時間加熱して脱脂し、
水素雰囲気中で600〜750℃、1時間予備焼結した
後に、588MPa(6t/cm2)で再圧縮し、水素雰囲
気中で1400〜1450℃、1時間焼結を行なつた。こ
の焼結体の磁気的的性質は第1図に一点鎖線で示
す。この焼結体を旋盤加工して外径4.5mm、内径
35mm、長さ7mmのリング状とした。この加工製品
の磁気的性質は、第1図に破線で示すように、測
定印加磁場が4KA/mのときの磁束密度B4K、お
よび最大透磁率μmが加工によつて低下した。
Example 1 Particle size - 80 wt% Fe - 20 wt% Co with 325 mesh
Alloy powder and Co powder with particle size -400 mesh were weighed as raw material powder to give 50 wt% Fe - 50 wt% Co, and mixed with 0.75% of the total weight of zinc stearate as a lubricant. powder at 392MPa (4t/
cm 2 ) to form a cylindrical molded body with a diameter of 50 mm and a thickness of 10 mm, which was heated at 400°C for 1 hour to degrease it.
After preliminary sintering at 600-750°C for 1 hour in a hydrogen atmosphere, it was compressed again at 588 MPa (6 t/cm 2 ) and sintered at 1400-1450°C for 1 hour in a hydrogen atmosphere. The magnetic properties of this sintered body are shown by dashed lines in FIG. This sintered body is lathe-processed to have an outer diameter of 4.5 mm and an inner diameter of 4.5 mm.
It was made into a ring shape with a length of 35 mm and a length of 7 mm. As for the magnetic properties of this processed product, as shown by the broken line in FIG. 1, the magnetic flux density B 4K and the maximum magnetic permeability μm when the measured applied magnetic field was 4 KA/m decreased due to processing.

この加工製品を水素雰囲気中、750〜1100℃の
間の温度で2時間加熱した後、炉冷した。この焼
鈍によつて、磁気的性質は、第1図に実線で示す
ように変化し、冷間加工前の状態にかなり近づい
たことを確かめた。
The processed product was heated in a hydrogen atmosphere at a temperature between 750 and 1100°C for 2 hours and then cooled in a furnace. As a result of this annealing, the magnetic properties changed as shown by the solid line in FIG. 1, and it was confirmed that the magnetic properties approached the state before cold working.

実施例 2 粒度−325メツシユの80重量%Fe−20重量%Co
合金粉と、粒度−400メツシユのCo粉と、粒度−
250メツシユの25重量%Fe−75重量%Mn合金粉
とを原料粉として2重量%Mn−49重量%Fe−49
重量%Coとなるように秤量したことの他は、実
施例1と同様にして、焼結体を製造し、これを切
削加工し、さらに焼鈍し、磁気的性質をそれぞれ
測定した。第2図にこれらの値を示す。
Example 2 Particle size - 80 wt% Fe - 20 wt% Co with 325 mesh
Alloy powder, particle size - 400 mesh Co powder, particle size -
250 mesh of 25wt%Fe-75wt%Mn alloy powder and 2wt%Mn-49wt%Fe-49 as raw material powder
A sintered body was produced in the same manner as in Example 1, except that it was weighed to give a weight % of Co, and the sintered body was cut, further annealed, and its magnetic properties were measured. Figure 2 shows these values.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Fe−Co系合金焼結体は冷間
加工によつて低下した磁気的性質を向上させるこ
とができる。
According to the present invention, the magnetic properties of the Fe-Co alloy sintered body that have been degraded by cold working can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、50重量%Fe−50重量%Co焼結合金
の切削加工前後、および焼鈍後の保磁力、磁束密
度、および最大透磁率を示すグラフであり、第2
図は49重量%Fe−49重量%Co−2重量%Mn焼結
合金の切削加工前後、および焼鈍後の保磁力、磁
束密度、および最大透磁率を示すグラフである。 a……切削加工前、b……切削加工後、c……
焼鈍後。
Figure 1 is a graph showing the coercive force, magnetic flux density, and maximum magnetic permeability of a 50 wt% Fe-50 wt% Co sintered alloy before and after cutting and after annealing.
The figure is a graph showing the coercive force, magnetic flux density, and maximum magnetic permeability of a 49 wt% Fe-49 wt% Co-2 wt% Mn sintered alloy before and after cutting and after annealing. a...Before cutting, b...After cutting, c...
After annealing.

Claims (1)

【特許請求の範囲】 1 Fe−Co合金粉と、Co粉とを混合して粉末冶
金法によつて製造したFe−Co焼結合金を切削加
工した後に、 非酸化性雰囲気中で750〜1100℃で焼鈍し、 切削加工によつて劣化した磁気的性質を向上さ
せることを特徴とする 焼結合金の熱処理方法。 2 Fe−Co合金粉と、Fe−Mn粉と、Co粉の2
種以上を混合して粉末冶金法によつて製造した
Fe−Co系焼結合金を切削加工した後に、 非酸化性雰囲気中で750〜1100℃で焼鈍し、 切削加工によつて劣化した磁気的性質を向上さ
せることを特徴とする 焼結合金の熱処理方法。
[Claims] 1. After cutting an Fe-Co sintered alloy produced by mixing Fe-Co alloy powder and Co powder by powder metallurgy, A method for heat treatment of a sintered alloy, characterized by annealing at ℃ and improving magnetic properties deteriorated by cutting. 2 Fe-Co alloy powder, Fe-Mn powder, and Co powder 2
Manufactured by powder metallurgy by mixing more than one species
Heat treatment of sintered alloy characterized by cutting Fe-Co-based sintered alloy and then annealing it at 750 to 1100℃ in a non-oxidizing atmosphere to improve magnetic properties deteriorated by cutting. Method.
JP4147187A 1987-02-26 1987-02-26 Heat treatment of sintered fe-co alloy Granted JPS63210202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4147187A JPS63210202A (en) 1987-02-26 1987-02-26 Heat treatment of sintered fe-co alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4147187A JPS63210202A (en) 1987-02-26 1987-02-26 Heat treatment of sintered fe-co alloy

Publications (2)

Publication Number Publication Date
JPS63210202A JPS63210202A (en) 1988-08-31
JPH055882B2 true JPH055882B2 (en) 1993-01-25

Family

ID=12609279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4147187A Granted JPS63210202A (en) 1987-02-26 1987-02-26 Heat treatment of sintered fe-co alloy

Country Status (1)

Country Link
JP (1) JPS63210202A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125835A (en) * 1988-11-04 1990-05-14 Sumitomo Metal Mining Co Ltd Manufacture of fe-co alloy soft magnetic material sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128407A (en) * 1978-03-29 1979-10-05 Fujitsu Ltd Manufacture of sintered iron-cobalt product
JPS5647943A (en) * 1979-09-07 1981-04-30 Voxson Spa Tape feeder for magnetic tape recorder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128407A (en) * 1978-03-29 1979-10-05 Fujitsu Ltd Manufacture of sintered iron-cobalt product
JPS5647943A (en) * 1979-09-07 1981-04-30 Voxson Spa Tape feeder for magnetic tape recorder

Also Published As

Publication number Publication date
JPS63210202A (en) 1988-08-31

Similar Documents

Publication Publication Date Title
US4221613A (en) Rare earth-cobalt system permanent magnetic alloys and method of preparing same
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
US4047983A (en) Process for producing soft magnetic material
US3769100A (en) Method for manufacturing semi-hard magnetic material
JPH055882B2 (en)
US4601876A (en) Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof
US3211592A (en) Method of manufacturing permanent magnets having large coercive force
JPS61295342A (en) Manufacture of permanent magnet alloy
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
US4152179A (en) Process for producing phosphorous-bearing soft magnetic material
JPS61208807A (en) Permanent magnet
JPS61119006A (en) Manufacture of sintered magnet
JPH0583602B2 (en)
JPH02138706A (en) Anisotropic permanent magnet
JPS61208808A (en) Manufacture of sintered magnet
JP3003225B2 (en) Method for producing sintered body of Fe-based soft magnetic material containing B
JPS61208809A (en) Manufacture of sintered magnet
US3519502A (en) Method of manufacturing sintered metallic magnets
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPS6331540B2 (en)
JP2783287B2 (en) Method for producing iron-cobalt soft magnetic material
JPH0568841B2 (en)
KR860001237B1 (en) Permanent magnet
JPH079004B2 (en) Sintering method for iron-based powder compacts
JPH0377264B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees