JPH0558632A - Production of perovskite-type multiple oxide powder - Google Patents
Production of perovskite-type multiple oxide powderInfo
- Publication number
- JPH0558632A JPH0558632A JP22693591A JP22693591A JPH0558632A JP H0558632 A JPH0558632 A JP H0558632A JP 22693591 A JP22693591 A JP 22693591A JP 22693591 A JP22693591 A JP 22693591A JP H0558632 A JPH0558632 A JP H0558632A
- Authority
- JP
- Japan
- Prior art keywords
- alkaline earth
- powder
- earth metal
- precipitate
- perovskite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はペロブスカイト型複合酸
化物粉末の製造方法、特に、エレクトロセラミックス、
即ち、電子分野で使用される誘電体磁器、強誘電体磁
器、半導体磁器、圧電体磁器などセラミック材料として
有用なペロブスカイト型複合酸化物粉末の製造方法に関
するものである。FIELD OF THE INVENTION The present invention relates to a method for producing a perovskite type complex oxide powder, particularly electroceramics,
That is, the present invention relates to a method for producing a perovskite-type composite oxide powder useful as a ceramic material such as a dielectric ceramic, a ferroelectric ceramic, a semiconductor ceramic, and a piezoelectric ceramic used in the electronic field.
【0002】[0002]
【従来の技術】この種のペロブスカイト型複合酸化物粉
末の製造方法としては、(イ)アルカリ土類金属の炭酸
塩、4価金属元素の酸化物及び半導体化剤又はキュリー
点シフト剤としてのドーピング元素の炭酸塩若しくは酸
化物の各粉末を混合、粉砕し、1000℃以上の温度で
仮焼した後、粉砕する方法、及び(ロ)アルカリ土類金
属の水酸化物の温水溶液に、4価金属元素のアルコキシ
ドと前記ドーピング元素のアルコキシドとを含む混合ア
ルコキシド溶液を添加して反応させる方法が知られてい
る。2. Description of the Related Art As a method for producing this type of perovskite type complex oxide powder, (a) an alkaline earth metal carbonate, an oxide of a tetravalent metal element, and a doping agent as a semiconductor agent or Curie point shift agent A method of mixing powders of elemental carbonates or oxides, pulverizing, calcining at a temperature of 1000 ° C. or higher, and pulverizing, and (4) adding a tetravalent solution to a warm aqueous solution of an alkaline earth metal hydroxide A method is known in which a mixed alkoxide solution containing an alkoxide of a metal element and an alkoxide of the doping element is added and reacted.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、(イ)
の方法では、原料として粉末を用いているため、分子レ
ベルで均一に分散させることができず、ミクロ的に均一
な微粉末を得ることは不可能であり、しかも、1000
℃以上の高温での固相反応により生成させているため、
反応生成物が塊状となり、必然的に機械的粉砕が必要と
なる。このため、粉砕時に媒体の摩耗等により不純物が
混入する他、粒度分布が悪く表面活性の低い粉末しか得
られないという問題がある。[Problems to be Solved by the Invention] However, (a)
In the above method, since powder is used as a raw material, it is impossible to uniformly disperse at the molecular level, and it is impossible to obtain a microscopically uniform fine powder.
Since it is generated by a solid phase reaction at a high temperature of ℃ or higher,
The reaction product becomes lumpy and necessarily requires mechanical grinding. For this reason, there are problems that impurities are mixed due to abrasion of the medium during pulverization, and that only powder having poor particle size distribution and low surface activity can be obtained.
【0004】他方、(ロ)の方法では、半導体化剤及び
キュリー点シフト剤を均一に固溶させるために、還流操
作若しくはキレート化剤を添加して複合化が行われてい
るが、これらの操作によってAサイトに固溶すべきドー
ピング元素がBサイトの方に固溶してしまい、所望の特
性を有するエレクトロセラミックスが得られなくなると
いう問題があった。On the other hand, in the method (b), in order to form a solid solution of the semiconducting agent and the Curie point shift agent, a reflux operation or a chelating agent is added to form a composite. There is a problem that the doping element that should be solid-dissolved in the A site is dissolved in the B site by the operation, and an electroceramic having desired characteristics cannot be obtained.
【0005】従って、本発明は、粒径が微細で表面活性
が高く、粒度分布の狭い均一な組成のペロブスカイト型
複合酸化物粉末を得ることを目的とするものである。Therefore, an object of the present invention is to obtain a perovskite type complex oxide powder having a fine particle size, high surface activity, and a narrow particle size distribution and a uniform composition.
【0006】[0006]
【課題を解決するための手段】本発明は、前記課題を解
決するための手段として、一般式:(A1-xA'x)BO3、
(式中、Aは少なくとも一種のアルカリ土類金属、A'は
ビスマス及びランタン系列元素からなる群から選ばれた
少なくとも一種のドーピング元素、Bは少なくとも一種
の4価金属元素を表し、x<0.1である。)で表される
ペロブスカイト型複合酸化物粉末の製造方法において、
少なくとも一種のアルカリ土類金属の水酸化物と該水酸
化物に対して1〜4モル相当のアルカリとを溶解した温
水溶液に4価金属元素のアルコキシドを加えて一般式:
ABO3、(式中、Aは少なくとも一種のアルカリ土類金
属、Bは少なくとも一種の4価金属元素を表す。)で示さ
れる基本組成物を生成沈殿させた後、ドーピング元素の
アルコキシドを添加してドーピング元素化合物を生成沈
殿させ、得られた混合沈殿物を焙焼するようにしたもの
である。SUMMARY OF THE INVENTION The present invention provides, as means for solving the above problems, the general formula: (A 1-x A ' x) BO 3,
(In the formula, A represents at least one alkaline earth metal, A ′ represents at least one doping element selected from the group consisting of bismuth and lanthanum series elements, B represents at least one tetravalent metal element, and x <0. In the production method of the perovskite type complex oxide powder represented by
A alkoxide of a tetravalent metal element is added to a warm aqueous solution obtained by dissolving at least one hydroxide of an alkaline earth metal and 1 to 4 mol of alkali corresponding to the hydroxide to give a general formula:
After the basic composition represented by ABO 3 (wherein A represents at least one alkaline earth metal and B represents at least one tetravalent metal element) is formed and precipitated, an alkoxide of a doping element is added. The doping element compound is produced and precipitated by roasting the obtained mixed precipitate.
【0007】前記アルカリ土類金属としては、Ba、S
r、Mg及びCaが挙げられるが、これらは目的とするペ
ロブスカイト型複合酸化物に応じて単独で若しくは2種
以上を組み合わせて使用できる。複合酸化物を半導体化
又はそのキュリー点を高温側若しくは低温側へシフトす
るために添加されるドーピング元素のうち、ランタン系
列元素の代表的なものとしては、La、Ce、Pr、Nd、
Smなどが挙げられるが、これらに限定されるものでは
ない。また、前記ドーピング元素は単独であるいは2種
以上を組み合わせて使用できる。As the alkaline earth metal, Ba, S
Examples thereof include r, Mg and Ca, and these may be used alone or in combination of two or more depending on the intended perovskite type composite oxide. Among the doping elements added to convert the complex oxide into a semiconductor or to shift its Curie point to the high temperature side or the low temperature side, typical ones of the lanthanum series elements are La, Ce, Pr, Nd,
Examples thereof include, but are not limited to, Sm. The doping elements may be used alone or in combination of two or more.
【0008】また、前記Bサイトを構成する4価金属元
素の代表的なものとしては、Ti、Zr及びSnが挙げら
れるが、これらも単独で若しくは2種以上を組み合わせ
て使用できる。これらの4価金属元素のアルコキシドと
しては、任意のものを使用できるが、アルコキシ基の炭
素数が15以下、好ましくは、8以下のものが望まし
い。代表的なものとしては、チタンアルコキシドを例に
すると、チタン イソブトキシド(Ti(OC4H9)4)、チ
タンイソプロポキシド(Ti(OC3H7)4)、ジブトキシー
ジトリエタノールーアミネートチタン、ジブトキシ−ジ
(2-(ヒドロキシエチルアミノ)エトキシ)チタン(Ti(C
4H9O)2・(N(C2H4OH)2(C2H4O))2)などが挙げ
られるが、これらに限定されるものではない。Further, typical examples of the tetravalent metal element constituting the B site include Ti, Zr and Sn, and these may be used alone or in combination of two or more kinds. As the alkoxide of these tetravalent metal elements, any one can be used, but an alkoxy group having 15 or less, preferably 8 or less carbon atoms is desirable. Representative examples of titanium alkoxides are titanium isobutoxide (Ti (OC 4 H 9 ) 4 ), titanium isopropoxide (Ti (OC 3 H 7 ) 4 ), dibutoxyditriethanol-aminate. Titanium, dibutoxy
(2- (hydroxyethylamino) ethoxy) titanium (Ti (C
4 H 9 O) 2. (N (C 2 H 4 OH) 2 (C 2 H 4 O)) 2 ) and the like, but are not limited thereto.
【0009】また、アルカリとしては、一般式:MOH
(但し、Mはアルカリ金属又はアンモニウム基を表す)
で表される水酸化物、具体的には、NaOH、KOH、
LiOH及びNH4OHがあるが、これらは単独で若し
くは2種以上を組み合わせて使用できる。As the alkali, the general formula: MOH
(However, M represents an alkali metal or ammonium group)
Hydroxide represented by, specifically, NaOH, KOH,
There are LiOH and NH 4 OH, which can be used alone or in combination of two or more kinds.
【0010】前記ペロブスカイト型複合酸化物の製造工
程において、一般式:ABO3で示される基本組成物を
生成する工程からそれに続くドーピング元素の化合物を
生成させる工程までの全工程を通じて、pHが12以
上、好ましくは、14以上で、温度が60〜95℃の条
件下で行うのが好適である。また、焙焼は、通常、10
00℃以下の温度で行われる。In the process of manufacturing the perovskite type complex oxide, the pH is 12 or more throughout the whole process from the step of forming the basic composition represented by the general formula: ABO 3 to the step of forming the compound of the doping element. Preferably, it is carried out under conditions of 14 or more and a temperature of 60 to 95 ° C. Also, roasting is usually 10
It is performed at a temperature of 00 ° C. or lower.
【0011】[0011]
【作用】少なくとも一種のアルカリ土類金属の水酸化物
の温水溶液にアルカリ下で4価金属元素のアルコキシド
を添加すると、半導体化剤等のドーピング元素を含まな
い一般式:ABO3、(式中、Aは少なくとも一種のアル
カリ土類金属、Bは少なくとも一種の4価金属元素を表
す。)で示されるペロブスカイト型複合酸化物の基本組成
物が生成沈殿し、その反応液に更にドーピング元素のア
ルコキシドを添加すると、それが加水分解してドーピン
グ元素の化合物、たとえばCe(OH)3が前記基本組
成物沈殿物に均一に分散した状態で生成沈殿する。この
混合沈殿物を熱処理すると、半導体化剤及び/又はキュ
リー点シフト剤はAサイトにのみ固溶するため、所望の
組成のペロブスカイト型複合酸化物粉末が生成される。When an alkoxide of a tetravalent metal element is added to a warm aqueous solution of at least one alkaline earth metal hydroxide under alkali, a general formula: ABO 3 , (wherein , A represents at least one alkaline earth metal, and B represents at least one tetravalent metal element.) The basic composition of the perovskite-type composite oxide represented by the formula (3) is formed and precipitated, and the reaction solution is further alkoxide of a doping element. Is added, the compound is hydrolyzed and a compound of the doping element, for example, Ce (OH) 3 is produced and precipitated in a state of being uniformly dispersed in the precipitate of the basic composition. When this mixed precipitate is heat-treated, the semiconducting agent and / or Curie point shift agent dissolves only in the A site, so that a perovskite type complex oxide powder having a desired composition is produced.
【0012】以下、本発明の実施例について説明する。An embodiment of the present invention will be described below.
【0013】[0013]
【実施例】3リットルの沸騰水に水酸化バリウム0.3
34モルと水酸化ナトリウム1.05モルを溶解した
後、その溶液を撹拌しながら、チタンイソプロポキシド
(Ti(OC3H7)4)0.35モルをイソプロピルアルコー
ル150mlで希釈したアルコキシド溶液を添加し、チ
タン酸バリウムと余剰チタンのアモルファス酸化チタン
を生成沈殿させ、その反応液を90〜95℃に維持しな
がら3時間エージング行う。エージング中、反応液の量
を一定に保持させるため沸騰水を時々補給する。Example: Barium hydroxide 0.3 in 3 liters of boiling water
After dissolving 34 mol and 1.05 mol of sodium hydroxide, while stirring the solution, titanium isopropoxide was added.
An alkoxide solution prepared by diluting 0.35 mol of (Ti (OC 3 H 7 ) 4 ) with 150 ml of isopropyl alcohol is added to form and precipitate barium titanate and excess titanium amorphous titanium oxide, and the reaction solution is heated to 90 to 95 ° C. Aging for 3 hours while maintaining During aging, boiling water is occasionally replenished to keep the amount of the reaction solution constant.
【0014】エージング終了後、前記温度でセリウムイ
ソプロポキシド0.0157モルをイソプロピルアルコ
ール50mlで希釈したアルコキシド溶液を添加し、セ
リウム化合物(Ce(OH)3)を生成沈殿させ、次い
で、その反応液を1時間エージングを行う。なお、反応
及びエージングの全工程中、反応容器内に常時窒素ガス
を吹き込み、空気中の炭酸ガスの反応液への溶解溶存を
防止する。沈殿物を濾別し、濾液のpHが9.5〜10
になるまで純水で洗浄を繰り返してNaイオンを除去
し、洗浄した沈殿物を純水中に分散してスラリーを調製
し、これをスプレードライ法により乾燥させ、その乾燥
粉末を空気中900℃で焙焼してチタン酸バリウム系誘
電体磁器粉末を得る。After completion of aging, an alkoxide solution prepared by diluting 0.0157 mol of cerium isopropoxide with 50 ml of isopropyl alcohol at the above temperature was added to form and precipitate a cerium compound (Ce (OH) 3 ), and then the reaction solution. Aging for 1 hour. During the entire reaction and aging steps, nitrogen gas is constantly blown into the reaction vessel to prevent carbon dioxide gas in the air from being dissolved and dissolved in the reaction solution. The precipitate is filtered off and the filtrate pH is 9.5-10.
It is repeatedly washed with pure water to remove Na ions, and the washed precipitate is dispersed in pure water to prepare a slurry, which is dried by a spray drying method, and the dried powder is dried in air at 900 ° C. To obtain a barium titanate-based dielectric ceramic powder.
【0015】得られた粉末をX線回折分析した結果を図
1に示す。図1から、生成粉末はCeが完全に固溶した
(Ba0.955Ce0.045)TiO3の単相であることが解
る。また、この粉末を透過型電子顕微鏡を用いて観察し
たところ、粒径が0.1〜0.2μmと非常に微細であっ
た。The result of X-ray diffraction analysis of the obtained powder is shown in FIG. From FIG. 1, it is understood that the produced powder is a single phase of (Ba 0.955 Ce 0.045 ) TiO 3 in which Ce is completely dissolved. Further, when the powder was observed with a transmission electron microscope, the particle size was very fine as 0.1 to 0.2 μm.
【0016】[0016]
【比較例】(Ba0.955Ce0.045)TiO3の組成を有す
るペロブスカイト型複合酸化物粉末を得るため、炭酸バ
リウム188.5g、酸化チタン79.9g、酸化セリウ
ム7.55gをボールミルで十分に混合粉砕し、その混
合粉末を1300℃で焙焼した後、ボールミルで16時
間粉砕して誘電体粉末を得る。[Comparative Example] In order to obtain a perovskite-type composite oxide powder having a composition of (Ba 0.955 Ce 0.045 ) TiO 3 , 188.5 g of barium carbonate, 79.9 g of titanium oxide, and 7.55 g of cerium oxide were sufficiently mixed and ground by a ball mill. Then, the mixed powder is roasted at 1300 ° C. and then pulverized by a ball mill for 16 hours to obtain a dielectric powder.
【0017】得られた粉末をX線回折分析した結果を図
2に示す。この図から、生成粉末は(Ba0.955Ce
0.045)TiO3の単相ではなく、TiO2、CeOその他
の酸化物を含有していることが解る。また、粒径は0.
5〜1.5μmであった。このことから、粒度分布幅が
広いことが解る。The result of X-ray diffraction analysis of the obtained powder is shown in FIG. From this figure, the produced powder is (Ba 0.955 Ce
0.045 ) It is understood that TiO 2 , CeO and other oxides are contained instead of the single phase of TiO 3 . The particle size is 0.
It was 5 to 1.5 μm. From this, it is understood that the particle size distribution width is wide.
【0018】[0018]
【発明の効果】以上の説明から明らかなように、本発明
によれば、予め溶液反応により基本組成となるペロブス
カイト型複合酸化物を生成させ、その反応液に半導体化
剤及び/又はキュリー点シフト剤となるドーピング元素
を含む溶液を添加して該ドーピング元素の化合物を前記
ペロブスカイト型複合酸化物と共に沈殿させ、生成した
混合沈殿物を焙焼するようにしたので、希望するドーピ
ング元素が固溶した単一相のペロブスカイト型複合酸化
物粉末を得ることができ、しかも900℃前後の低い温
度で焙焼することができる。また、得られた粉末は粒径
が0.1〜0.2μm前後と微細であり、表面活性の高
いものを得ることができるなど、優れた効果が得られ
る。As is apparent from the above description, according to the present invention, a perovskite-type composite oxide having a basic composition is formed in advance by a solution reaction, and a semiconducting agent and / or Curie point shift is generated in the reaction solution. A solution containing a doping element serving as an agent was added to precipitate a compound of the doping element together with the perovskite-type composite oxide, and the formed mixed precipitate was roasted, so that the desired doping element was dissolved. A single-phase perovskite-type composite oxide powder can be obtained, and furthermore, it can be roasted at a low temperature of around 900 ° C. Moreover, the obtained powder has a fine particle size of about 0.1 to 0.2 μm, and it is possible to obtain a powder having high surface activity, which is an excellent effect.
【図1】 本発明方法により製造したペロブスカイト型
複合酸化物のX線回折パターンを示す図である。FIG. 1 is a view showing an X-ray diffraction pattern of a perovskite type complex oxide produced by the method of the present invention.
【図2】 従来法により製造したペロブスカイト型複合
酸化物のX線回折パターンを示す図である。FIG. 2 is a view showing an X-ray diffraction pattern of a perovskite type complex oxide manufactured by a conventional method.
Claims (1)
は少なくとも一種のアルカリ土類金属、A'はビスマス
及びランタン系列元素からなる群から選ばれた少なくと
も一種のドーピング元素、Bは少なくとも一種の4価金
属元素を表し、x<0.1である。)で表されるペロブス
カイト型複合酸化物粉末の製造方法において、少なくと
も一種のアルカリ土類金属の水酸化物と該水酸化物に対
して1〜4モル相当のアルカリとを溶解した温水溶液に
4価金属元素のアルコキシドを加えて一般式:AB
O3、(式中、Aは少なくとも一種のアルカリ土類金属、
Bは少なくとも一種の4価金属元素を表す。)で示される
基本組成物を生成沈殿させた後、ドーピング元素のアル
コキシドを添加してドーピング元素化合物を生成沈殿さ
せ、得られた混合沈殿物を焙焼することを特徴とするペ
ロブスカイト型複合酸化物粉末の製造方法。1. The general formula: (A 1-x A ′ x ) BO 3 , (wherein A
Is at least one alkaline earth metal, A ′ is at least one doping element selected from the group consisting of bismuth and lanthanum series elements, B is at least one tetravalent metal element, and x <0.1. In the method for producing a perovskite-type composite oxide powder represented by the formula (4), 4 parts are added to a warm aqueous solution in which at least one hydroxide of an alkaline earth metal and 1 to 4 mol of alkali corresponding to the hydroxide are dissolved. Addition of alkoxide of valent metal element General formula: AB
O 3 , (wherein A is at least one alkaline earth metal,
B represents at least one tetravalent metal element. ), The perovskite-type composite oxide, characterized in that after the basic composition shown in (1) is formed and precipitated, an alkoxide of a doping element is added to form and precipitate a doping element compound, and the obtained mixed precipitate is roasted. Powder manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22693591A JP3216160B2 (en) | 1991-09-06 | 1991-09-06 | Method for producing perovskite-type composite oxide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22693591A JP3216160B2 (en) | 1991-09-06 | 1991-09-06 | Method for producing perovskite-type composite oxide powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0558632A true JPH0558632A (en) | 1993-03-09 |
JP3216160B2 JP3216160B2 (en) | 2001-10-09 |
Family
ID=16852915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22693591A Expired - Lifetime JP3216160B2 (en) | 1991-09-06 | 1991-09-06 | Method for producing perovskite-type composite oxide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3216160B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0641740A1 (en) * | 1993-09-03 | 1995-03-08 | Chon International Co. Ltd. | Process for the synthesis of crystalline ceramic powders of perovskite compounds |
JP2004067504A (en) * | 1997-02-18 | 2004-03-04 | Cabot Corp | Method for producing coated barium titanate |
JP2006298746A (en) * | 2005-03-22 | 2006-11-02 | Tdk Corp | Method of producing powder, powder, and multilayered ceramic capacitor using the powder |
KR20160065415A (en) * | 2014-11-28 | 2016-06-09 | 주식회사 대양신소재 | A semiconductor ceramics composition of perovskite structure |
CN110776310A (en) * | 2019-11-06 | 2020-02-11 | 常州大学 | Method for preparing perovskite type composite oxide high-entropy ceramic powder by coprecipitation of ion compensation mixture |
-
1991
- 1991-09-06 JP JP22693591A patent/JP3216160B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0641740A1 (en) * | 1993-09-03 | 1995-03-08 | Chon International Co. Ltd. | Process for the synthesis of crystalline ceramic powders of perovskite compounds |
JP2004067504A (en) * | 1997-02-18 | 2004-03-04 | Cabot Corp | Method for producing coated barium titanate |
JP2006298746A (en) * | 2005-03-22 | 2006-11-02 | Tdk Corp | Method of producing powder, powder, and multilayered ceramic capacitor using the powder |
KR20160065415A (en) * | 2014-11-28 | 2016-06-09 | 주식회사 대양신소재 | A semiconductor ceramics composition of perovskite structure |
CN110776310A (en) * | 2019-11-06 | 2020-02-11 | 常州大学 | Method for preparing perovskite type composite oxide high-entropy ceramic powder by coprecipitation of ion compensation mixture |
CN110776310B (en) * | 2019-11-06 | 2021-09-28 | 常州大学 | Method for preparing perovskite type composite oxide high-entropy ceramic powder by coprecipitation of ion compensation mixture |
Also Published As
Publication number | Publication date |
---|---|
JP3216160B2 (en) | 2001-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5445806A (en) | Process for preparing fine powder of perovskite-type compound | |
CN101014538B (en) | Method for producing perovskite compound powder | |
JPH0459261B2 (en) | ||
JPS63156057A (en) | Manufacture of high density perovskite ceramics | |
JPS61275108A (en) | Preparation of powder of dielectric substance | |
JP5353728B2 (en) | Method for producing the composition | |
US8431109B2 (en) | Process for production of composition | |
JP4556398B2 (en) | Method for producing the composition | |
JP3319807B2 (en) | Perovskite-type compound fine particle powder and method for producing the same | |
EP0439620B1 (en) | Method of producing pulverized perovskite compound | |
JP3216160B2 (en) | Method for producing perovskite-type composite oxide powder | |
JPS6153113A (en) | Production of powdery raw material of easily sintering perovskite and its solid solution by wet process | |
JPH07277710A (en) | Production of perovskite-type multiple oxide powder | |
JPH0769645A (en) | Production of lead-containing multiple oxide | |
JP2999821B2 (en) | Method for producing fine powder of perovskite compound | |
KR100290247B1 (en) | Method for manufacturing barium titanate and perovskite type composite oxide | |
JPS63151673A (en) | Manufacture of lead zirconate titanate base piezoelectric ceramic | |
JPH06279110A (en) | Barium titanate-containing powdery composition and production of semiconductor porcelain composition using the same | |
JPH0262496B2 (en) | ||
JPH10236824A (en) | Titania-zirconia multiple oxide fine powder and its production | |
JPS61127624A (en) | Production of perovskite type oxide solid | |
JPH04132614A (en) | Production of perovskite-type multiple oxide powder | |
KR100437482B1 (en) | Method for producing multi-metal oxide powder | |
JPH0329729B2 (en) | ||
JPH0262497B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20080803 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20080803 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20090803 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090803 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20110803 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20120803 |