JPH0557237B2 - - Google Patents

Info

Publication number
JPH0557237B2
JPH0557237B2 JP15127984A JP15127984A JPH0557237B2 JP H0557237 B2 JPH0557237 B2 JP H0557237B2 JP 15127984 A JP15127984 A JP 15127984A JP 15127984 A JP15127984 A JP 15127984A JP H0557237 B2 JPH0557237 B2 JP H0557237B2
Authority
JP
Japan
Prior art keywords
growth
gallium
solution
temperature
preliminary chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15127984A
Other languages
Japanese (ja)
Other versions
JPS6131385A (en
Inventor
Susumu Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP15127984A priority Critical patent/JPS6131385A/en
Publication of JPS6131385A publication Critical patent/JPS6131385A/en
Publication of JPH0557237B2 publication Critical patent/JPH0557237B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は−族化合物半導体の量産型液相エ
ピタキシヤル成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for mass-producing liquid phase epitaxial growth of - group compound semiconductors.

従来技術 リン化ガリウム、ヒ化ガリウムなどの−族
化合物半導体は、現在、主として発光素子、受光
素子として大量に使用されており、それらの製造
法であるエピタキシヤル成長は、産業上、重要な
技術となつている。エピタキシヤル成長は、気相
成長と液相成長に大別されるが、液相成長は気相
成長に比べ、ガリウムなどの溶媒の原単位が大き
く、量産性が劣るとされていた。
Prior Art - Group compound semiconductors such as gallium phosphide and gallium arsenide are currently used in large quantities mainly as light-emitting elements and light-receiving elements, and their manufacturing method, epitaxial growth, is an industrially important technology. It is becoming. Epitaxial growth can be broadly classified into vapor phase growth and liquid phase growth, but liquid phase growth has been thought to require a greater amount of solvent, such as gallium, than vapor phase growth, and is inferior in mass productivity.

一般に、リン化ガリウム、ヒ化ガリウムなどの
液相エピタキシヤル成長は、ガリウム金属を溶媒
として高温で飽和させた後基板を溶液に接触さ
せ、除冷析出させることによる。液相エピタキシ
ヤル成長法に関しては、種々の装置、方法が考案
され、第2図に示すような横型炉を用いたスライ
ドボート法、回転法などが一般に採用されてい
る。
In general, liquid phase epitaxial growth of gallium phosphide, gallium arsenide, etc. is carried out by using gallium metal as a solvent and saturating it at high temperature, then bringing the substrate into contact with the solution, and allowing slow cooling to precipitate it. Regarding the liquid phase epitaxial growth method, various apparatuses and methods have been devised, and the slide boat method using a horizontal furnace as shown in FIG. 2, the rotation method, etc. are generally adopted.

発明が解決しようとする問題点 従来技術の欠点として装置の構造上の問題及
び汚染の問題などで成長炉全体が100℃程度以下
ならないと取り出しができない。したがつてセツ
トから取り出しまでの成長1回当りの時間が12〜
24時間となり量産性が劣る。ガリウム溶液が使
い捨てである。あるいは同一ガリウム溶液を繰り
返し使用する場合でも、基板結晶に成長した分に
見合う多結晶を追加しなければならないが追加す
る多結晶量が不正確となり、飽和溶解温度を一定
に管理することができない。特に追加量が不足
し、飽和溶解温度が成長開始温度以下になつた場
合基板結晶の溶失などの問題が生じ、同一ガリウ
ム溶液を使用して安定した連続運転ができない。
スライドボート法の場合は特に基板1枚当り1
溶液が必要であり、溶液の調整基板のセツトなど
が煩雑である。
Problems to be Solved by the Invention The disadvantages of the prior art include problems with the structure of the equipment and problems with contamination, which make it impossible to take out the reactor until the temperature of the entire growth reactor is below about 100°C. Therefore, the time per growth from setting to removal is 12~
It takes 24 hours, so mass production is poor. Gallium solution is disposable. Alternatively, even when the same gallium solution is used repeatedly, it is necessary to add polycrystals to match the amount that has grown on the substrate crystal, but the amount of polycrystals to be added becomes inaccurate, making it impossible to control the saturated dissolution temperature at a constant level. In particular, if the added amount is insufficient and the saturation dissolution temperature falls below the growth start temperature, problems such as melting of the substrate crystals will occur, making stable continuous operation impossible using the same gallium solution.
Especially in the case of the slide boat method, 1 per board.
A solution is required, and setting up a solution adjustment substrate is complicated.

本発明者は種々の検討の結果、縦型浸漬法を採
用することにより問題の解決を計つた。縦型浸漬
法の長所としては、第1図のようにガリウム溶液
槽と成長用治具とを分離した構成とすることが有
効でありガリウム溶液槽を固定し、基板結晶を装
着した成長用治具のみの出し入れの工夫をすれ
ば、連続運転が可能となることである。一方横型
炉によるスライドボート法、回転法などを採用し
た場合、ガリウム溶液、基板結晶などが一体とな
つている為エピタキシヤル成長させた基板結晶部
分だけを取り出すことは不可能である。又、同一
ガリウム溶液を繰り返し使用する場合の飽和溶解
温度を一定に管理する方法として多結晶のブロツ
クを収納した飽和用容器を所定温度、所定時間、
浸漬することにより溶液を飽和させる方法を独自
に考案した。第3図にリン化ガリウム多結晶のブ
ロツクを収納した飽和用容器を1000℃でガリウム
溶液に浸漬した場合の浸漬時間と溶解量(Ga100
g当りのGaP多結晶の溶解量)の関係を示す。浸
漬時間約50分で飽和溶液となることがわかる。し
たがつて多結晶を収納した飽和用容器を所定温度
で所定時間溶液中に浸漬して置くことにより、飽
和溶解温度を正確に制御可能となる。
As a result of various studies, the inventor of the present invention attempted to solve the problem by adopting a vertical immersion method. An advantage of the vertical immersion method is that it is effective to separate the gallium solution bath and the growth jig as shown in Figure 1. Continuous operation is possible if you take care to put in and take out only the ingredients. On the other hand, when a slide boat method, a rotation method, etc. using a horizontal furnace is adopted, it is impossible to extract only the epitaxially grown substrate crystal part because the gallium solution, substrate crystal, etc. are integrated. In addition, as a method to keep the saturation dissolution temperature constant when the same gallium solution is used repeatedly, a saturation container containing a polycrystalline block is heated at a predetermined temperature for a predetermined time.
We devised a unique method to saturate the solution by immersion. Figure 3 shows the immersion time and dissolution amount (Ga100
The relationship between the amount of GaP polycrystal dissolved per gram is shown. It can be seen that the solution becomes saturated after about 50 minutes of soaking time. Therefore, by immersing a saturation container containing polycrystals in a solution at a predetermined temperature for a predetermined period of time, the saturation dissolution temperature can be accurately controlled.

発明の構成 本発明は、上記の検討結果及び事実に鑑みてな
されたもので、第1図のようにガリウム溶液槽を
設置した成長系とゲートバルブにより成長系と遮
断可能な予備室とで装置を構成したことにより、
成長系が高温の状態で飽和用容器及び成長用治具
の出し入れが可能な縦型浸漬型成長装置を用い、
多結晶を収納した飽和用容器を所定温度で所定時
間、ガリウム溶液槽に浸漬することにより溶液を
飽和させる工程(以下飽和工程)、及び溶液を飽
和させた後、予備室内において基板結晶を装着し
た成長用治具と交換し成長を行う工程(以下成長
工程)とにより構成され、飽和工程と成長工程と
を繰り返すことにより連続運転が可能な量産型の
液相エピタキシヤル成長法を提供するものであ
る。
Structure of the Invention The present invention has been made in view of the above study results and facts, and as shown in Fig. 1, the apparatus consists of a growth system equipped with a gallium solution tank and a preliminary chamber that can be shut off from the growth system by a gate valve. By configuring
Using a vertical immersion type growth device that allows the saturation container and growth jig to be taken in and out while the growth system is at high temperature,
A step of saturating the solution by immersing the saturation container containing the polycrystal in a gallium solution bath at a predetermined temperature for a predetermined time (hereinafter referred to as the saturation step), and after the solution was saturated, a substrate crystal was mounted in a preliminary chamber. This method consists of a step of replacing the growth jig and performing growth (hereinafter referred to as the growth step), and provides a mass-produced liquid phase epitaxial growth method that can be operated continuously by repeating the saturation step and the growth step. be.

実施例 以下、図面を参照して本発明の一実施例を説明
する。第1図aは本発明の実施において用いた縦
型浸漬型成長装置を模式的に示したもので、成長
系13及び成長系13とゲートバルブ4により遮
断可能な予備室5とで構成される。石英反応管1
内には、ガリウム溶液槽2が配置され反応管外側
には加熱用電気炉3が設けられている。予備室内
で多結晶を収納した飽和用容器6と基板結晶を装
置した成長用治具7の出し入れ及び交換が可能で
あり、予備室は成長系と独立に真空引き及びガス
置換ができる構造となつている。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1a schematically shows a vertical immersion growth apparatus used in the practice of the present invention, which is composed of a growth system 13 and a preliminary chamber 5 that can be shut off by a gate valve 4. . Quartz reaction tube 1
A gallium solution tank 2 is arranged inside the reaction tube, and a heating electric furnace 3 is provided outside the reaction tube. The saturation container 6 containing the polycrystal and the growth jig 7 containing the substrate crystal can be taken out and replaced in the preliminary chamber, and the preliminary chamber has a structure that allows evacuation and gas replacement independently of the growth system. ing.

以下リン化ガリウム(GaPP)を例として説明
する。
The following will explain using gallium phosphide (GaPP) as an example.

ガリウム溶液槽2に金属ガリウム(Ga)5Kg
を収容し真空置換後アルゴンガス(Ar)3/
分を流入しながら1000℃まで昇温する。一方予備
室5内にGaP多結晶を収納した飽和用容器6をセ
ツトし予備室を真空置換後Ar3/分を流入する
(第1図a参照)。1000℃に達した時ゲートバルブ
4を開き飽和用容器6をガリウム溶液槽2に浸漬
し、1時間この温度で保持する(第1図b参照)。
1時間経過後飽和用容器2を予備室5内に引き上
げゲートバルブ4を閉じる。一方ガリウム溶液槽
2の温度を成長開始温度である980℃に下げる。
予備室5内で飽和用容器2を基板結晶8を装着し
た成長用治具7と交換し予備室5を真空置換後
Ar3/分を流入する(第1図c参照)。ゲート
バルブ4を開きガリウム溶液槽2の直上で予熱後
成長用治具7を浸漬し、900℃まで冷却し、成長
を行う(第1図d参照)。900℃に到達した時成長
用治具7を分離し、予備室内5に引き上げゲート
バルブ4を閉じる。同時に再び1000℃まで昇温を
始める。上記の操作を第4図の温度プログラムの
ごとく繰り返すことにより連続運転が可能となつ
た。
5 kg of metallic gallium (Ga) in gallium solution tank 2
After vacuum displacement, argon gas (Ar) 3/
Raise the temperature to 1000℃ while flowing water. On the other hand, a saturation container 6 containing GaP polycrystals is set in the preliminary chamber 5, and after the preliminary chamber is evacuated, Ar3/min is injected (see FIG. 1a). When the temperature reaches 1000°C, the gate valve 4 is opened and the saturation container 6 is immersed in the gallium solution bath 2, and maintained at this temperature for 1 hour (see Figure 1b).
After one hour has elapsed, the saturation container 2 is pulled up into the preliminary chamber 5 and the gate valve 4 is closed. Meanwhile, the temperature of the gallium solution bath 2 is lowered to 980°C, which is the growth starting temperature.
After replacing the saturation container 2 with the growth jig 7 equipped with the substrate crystal 8 in the preliminary chamber 5 and replacing the preliminary chamber 5 with vacuum.
Flow Ar3/min (see Figure 1c). The gate valve 4 is opened, and the growth jig 7 is immersed in the gallium solution bath 2 after preheating, cooled to 900° C., and growth is performed (see FIG. 1d). When the temperature reaches 900°C, the growth jig 7 is separated and pulled into the preliminary chamber 5 and the gate valve 4 is closed. At the same time, the temperature begins to rise again to 1000℃. Continuous operation became possible by repeating the above operations as shown in the temperature program shown in FIG.

以上のようにゲートバルブ4により成長系13
と遮断可能な予備室5を設けた縦型浸漬成長装置
を用いることにより、1サイクル約3時間で連続
運転が可能になり、また飽和用容器2を用いるこ
とにより飽和溶解温度を極めて精度良く制御でき
るようになり、結果として安定した連続液相エピ
タキシヤル成長が可能となつた。
As described above, the growth system 13 is controlled by the gate valve 4.
By using a vertical immersion growth apparatus equipped with a preliminary chamber 5 that can be shut off, continuous operation is possible for one cycle of about 3 hours, and by using a saturation container 2, the saturation dissolution temperature can be controlled with extreme precision. As a result, stable continuous liquid phase epitaxial growth became possible.

上記実施例ではGaPを例に説明したが、
GaAs、GaAlAsなどに応用することも可能であ
る。成長温度範囲は目的により適当に変えること
ができるのは当然である。また添加剤を選択する
ことによりN型成長層またはP型成長層が得ら
れ、添加量を変えることによりドナー濃度または
アクセプタ濃度を制御可能である。
In the above embodiment, GaP was used as an example, but
It is also possible to apply it to GaAs, GaAlAs, etc. It goes without saying that the growth temperature range can be changed appropriately depending on the purpose. Further, by selecting the additive, an N-type growth layer or a P-type growth layer can be obtained, and by changing the amount added, the donor concentration or acceptor concentration can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は縦型浸漬型成長装置を示す図で、aは
ガリウム溶液を溶解する工程、bはガリウムリン
飽和溶液を作る工程、cは予備室内で交換装着す
る工程、dはエピタキシヤル成長工程を示す。 1……石英反応管、2……ガリウム溶液槽、3
……加熱炉、4……ゲートバルブ、5……予備
室、6……飽和用容器、7……成長用治具、8…
…基板結晶、9……ガス供給口、10……ガス排
出口、11……ガス供給口、12……ガス排出
口、13……成長系。 第2図は横型スライドボート法装置を示す図で
ある。 1……加熱炉、2……石英反応管、3……スラ
イドボート、4……ガリウム溶液、5……基板結
晶、6……ガス供給口、7……ガス排出口。 第3図は1000℃に於けるGaPの溶解時間と溶解
量の関係を示す図である。第4図は本発明の一実
施例における温度プログラム図を示す図である。
Figure 1 shows a vertical immersion growth apparatus, in which a shows the process of dissolving a gallium solution, b shows a process of making a gallium phosphorus saturated solution, c shows a process of replacing and mounting in a preliminary chamber, and d shows an epitaxial growth process. shows. 1...Quartz reaction tube, 2...Gallium solution tank, 3
...Heating furnace, 4...Gate valve, 5...Preliminary chamber, 6...Saturation container, 7...Growth jig, 8...
...Substrate crystal, 9...Gas supply port, 10...Gas discharge port, 11...Gas supply port, 12...Gas discharge port, 13...Growth system. FIG. 2 is a diagram showing a horizontal slide boat method device. DESCRIPTION OF SYMBOLS 1... Heating furnace, 2... Quartz reaction tube, 3... Slide boat, 4... Gallium solution, 5... Substrate crystal, 6... Gas supply port, 7... Gas discharge port. FIG. 3 is a diagram showing the relationship between the dissolution time and the amount of GaP dissolved at 1000°C. FIG. 4 is a diagram showing a temperature program diagram in one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ガリウム溶液を用いて−族化合物結晶の
液相エピタキシヤル成長を行うに際してガリウム
溶液槽を設置した成長系とゲートバルブにより成
長系と遮断可能な予備室とで構成された縦型浸漬
型成長装置を用い、多結晶を収納した飽和用容器
を所定温度で所定時間ガリウム溶液槽に浸漬する
ことにより、溶液を飽和させる工程及び溶液を飽
和させた後、予備室内において基板結晶を装着し
た成長用治具と交換し成長を行う工程とにより構
成されることを特徴とする液相エピタキシヤル成
長方法。
1. Vertical immersion type growth apparatus, which consists of a growth system equipped with a gallium solution tank and a preliminary chamber that can be shut off from the growth system by a gate valve, when performing liquid phase epitaxial growth of - group compound crystals using a gallium solution. The process of saturating the solution by immersing the saturation container containing the polycrystal in a gallium solution bath at a predetermined temperature for a predetermined time using a A liquid phase epitaxial growth method characterized by comprising a step of replacing a tool and performing growth.
JP15127984A 1984-07-23 1984-07-23 Liquid phase epitaxial growth process Granted JPS6131385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15127984A JPS6131385A (en) 1984-07-23 1984-07-23 Liquid phase epitaxial growth process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15127984A JPS6131385A (en) 1984-07-23 1984-07-23 Liquid phase epitaxial growth process

Publications (2)

Publication Number Publication Date
JPS6131385A JPS6131385A (en) 1986-02-13
JPH0557237B2 true JPH0557237B2 (en) 1993-08-23

Family

ID=15515204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15127984A Granted JPS6131385A (en) 1984-07-23 1984-07-23 Liquid phase epitaxial growth process

Country Status (1)

Country Link
JP (1) JPS6131385A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183275U (en) * 1987-05-19 1988-11-25
JP2915787B2 (en) * 1994-05-31 1999-07-05 日本碍子株式会社 Method and apparatus for producing oxide single crystal film
TW344100B (en) * 1996-05-31 1998-11-01 Toshiba Co Ltd Semiconductor liquid phase epitaxial growth method and apparatus

Also Published As

Publication number Publication date
JPS6131385A (en) 1986-02-13

Similar Documents

Publication Publication Date Title
US3632431A (en) Method of crystallizing a binary semiconductor compound
US6872248B2 (en) Liquid-phase growth process and liquid-phase growth apparatus
US3941647A (en) Method of producing epitaxially semiconductor layers
EP0751242B1 (en) Process for bulk crystal growth
JPH0557237B2 (en)
JPS58156598A (en) Method for crystal growth
US5234534A (en) Liquid-phase growth process of compound semiconductor
van Oirschot et al. LPE growth of DH laser structures with the double source method
US4371420A (en) Method for controlling impurities in liquid phase epitaxial growth
JPS5920639B2 (en) Liquid phase epitaxial growth method
JPS63144191A (en) Production of compound semiconductor single crystal and apparatus therefor
JPH06279178A (en) Production of semiconductor device and device therefor
JPS6325292A (en) Crystal growth of mixed crystal of indium gallium phosphide
JPS5683933A (en) Liquid phase epitaxial growth
KR20030070476A (en) Method and apparatus of surface treatment for PBN crucible in fabrication of GaAs single crystal
JPH02120298A (en) Semi-insulating gallium arsenide single crystal and production thereof
JPS63184326A (en) Crystal growth method
JPH0369591A (en) Method for growing crystal of semiconductor
JPS6129121A (en) Gaas liquid phase epitaxial growth method
JPS57103314A (en) Method for liquid phase epitaxial growth
JPS554947A (en) Method of growing liquid phase epitaxial
JPS5567130A (en) Method of manufacturing semiconductor crystal
JPS622453B2 (en)
JPH02184024A (en) Liquid-phase epitaxial growth method
JP2003146794A (en) Method of refining gallium for liquid phase epitaxial growth