JPH055582B2 - - Google Patents

Info

Publication number
JPH055582B2
JPH055582B2 JP61158547A JP15854786A JPH055582B2 JP H055582 B2 JPH055582 B2 JP H055582B2 JP 61158547 A JP61158547 A JP 61158547A JP 15854786 A JP15854786 A JP 15854786A JP H055582 B2 JPH055582 B2 JP H055582B2
Authority
JP
Japan
Prior art keywords
welding
wire
flux
bead
upward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61158547A
Other languages
Japanese (ja)
Other versions
JPS6313671A (en
Inventor
Katsuhiko Ootake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15854786A priority Critical patent/JPS6313671A/en
Publication of JPS6313671A publication Critical patent/JPS6313671A/en
Publication of JPH055582B2 publication Critical patent/JPH055582B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はフラツクス入りワイヤを使用する上向
片面溶接方法に関し、詳細には開先変動が大きく
ても安定した裏波ビードを形成することができる
上向片面溶接方法に関するものである。 [従来の技術] 造船における船底の溶接や橋梁における大ブロ
ツクの建造等に当たつては、上向姿勢で行なわな
ければならない溶接箇所にしばしば遭遇する。と
ころが上向姿勢の溶接では溶接金属の溶け落ちが
発生し易く溶接の中断を余儀なくされることが多
い。従つて溶接欠陥を生じる危険があり、溶接箇
所の裏面側から下向姿勢で溶接(補修溶接を含
む)を実施することになるので挟隘部に入りこん
での溶接作業となり、余分な工程や工数が増えて
しまう。 そこで上向片面溶接においても良好な溶接継手
を得ることのできる方法について色々の工夫及び
提案がなされてはいるものの、実用面において完
壁と考えられるものは未だ知られていない。 その原因の1つとしては母材の開先形状が一定
でないことを挙げることができる。即ち母材間の
ギヤツプが小さ過ぎると裏波ビードが形成され
ず、反対にギヤツプが大き過ぎると裏波ビードに
へこみが生じたり或は表ビードん凸部が生じ、次
層での融合不良を引き起こしたり又は溶け落ち等
の不都合を引き起こすので、開先ルート幅は溶接
線全長に亘つて可及的均等なものにしなければな
らない。そこで例えば特開昭48−56543号では、
開先幅の変動を打消し得る様な幅に調整された薄
鋼板をギヤツプ内に挿入するという試みがなされ
ているが、この様な条件を満足する薄鋼板を形成
することは実用上ほとんど不可能である。 [発明が解決しようとする問題点] また立向姿勢や上向姿勢の溶接では、表ビード
の凸形化を防止する溶接方法としてソリツドワイ
ヤを用いた短絡移行(シヨートアーク)溶接が採
用されることがある。短絡移行ではアーク電圧を
低くして溶融金属を接触させることにより安定移
行させるのであるが、ソリツドワイヤを使用する
場合の実質的なアーク電圧は16〜23V程度の比較
的狭い範囲であり、この範囲を外れるとアークが
不安定となつて安定溶接の連続実施が困難とな
る。 また短絡回数は約70〜130回と比較的多く、短
絡回数が少なくなると表ビードが凸形となつたり
溶け落ちを発生する。このようにソリツドワイヤ
を用いた短絡移行での溶接条件幅は非常に狭い。
さらに上向姿勢の片面溶接においても母材の許容
ギヤツプ範囲が狭い(実質上4±1mm)という限
定が緩和される訳ではない。従つてソリツドワイ
ヤを用いて短絡移行を行なう上記改良方法であつ
ても母材間のギヤツプが一定しない上向溶接には
不向きであり、実用性に乏しいものであつた。 そこで本発明者はギヤツプ変動を伴なう開先で
あつても上向姿勢で安定して連続溶接を行なうこ
とのできる方法を提供すべく種々研究を積み重ね
た結果、本発明を完成させるに至つた。 [問題点を解決するための手段] 上記目的を達成し得た本発明方法は、50重量%
以上が造滓剤であるフラツクスをワイヤ全重量に
対して10〜30%含有させたフラツクス入りワイヤ
を用い、該ワイヤの後退角度を20〜50度の範囲に
設定しつつ、短絡回数を15〜50回/秒の範囲で上
向溶接する点を要旨とするものである。 [作用] 本発明はフラツクス入りワイヤを用いて上向溶
接する方法であり、ワイヤ重量に対するフラツク
スの充填割合は10〜30%(重量%の意味、以下同
じ)の範囲とする。即ちフラツクスが10%未満で
あるとソリツドワイヤの溶接特性と類似した性質
を呈し、前項で述べた様な不具合点が解消され
ず、逆に30%超えるとワイヤの強度不足による送
給不良が発生し、アーク不安定となつて表ビード
形状も不良となる。 またフラツクス中の造滓剤はフラツクス全体の
50%以上とし、スラグによる表ビードの保持効果
を安定的に発揮せしめる。本発明で用いられる造
滓剤は、スラグ形成を主目的とするものの他、結
果的にスラグとして残留するものを含み、例えば
TiO2,ZrO2,SiO2,Al2O3,K2O,Na2O等が
挙げられる。 なお以下に記載するフラツクス入りワイヤとは
上記範囲のものとする。 第1図は水平母材1を上向溶接する場合の説明
図である。このとき溶接進行方向(矢印B)に対
する垂直線Hと溶接用ワイヤ4のなす後退角度
A1は20〜50度の範囲に設定する必要があり、後
退角度A1が20度未満の場合にはアーク切れが発
生し易く、逆に50度を超えるとアーク状態の監視
及びアーク狙いの位置調整が困難となつて溶接作
業に支障をきたし、溶接が不安定となる。 尚図中の符号2は溶接金属、3a,3bはスラ
グ、5は溶接トーチ、6はウイーバー、7は裏当
材を夫々示す。 フラツクス入りワイヤは通常フリーフライト
(粒状移行や噴霧状移行)状態で使用されること
が多いが、アーク電圧を下げることによつて短絡
移行となり本発明はこの短絡移行を積極的に利用
するものである。いまアーク電流一定の条件下で
アーク電圧を下げると短絡回数は増加するが、短
絡回数が50回/秒より多くなると入熱が不足して
母材の溶込みが不十分となり安定した溶接はでき
ない。逆に短絡回数が15回/秒より少ないと入熱
量が多くなり過ぎて裏ビードが凹状となり、極端
な場合には溶け落ちを生じる。 溶接用ワイヤのウイービングは母材間のギヤツ
プの大きさに応じて第4図aに示す様に開先左右
方向に振幅させて行なうが、図示した様な直線的
ウイービングでは溶融金属の溶け落ちが生じ易く
なり表ビードが凸状に、また裏ビードが凹状とな
る。そこで本発明の好ましい実施態様では第4図
b,cに示す様に開先左右方向及び母材板厚方向
を含む2次元面内でウイービングさせることと
し、その結果溶融金属の濡れ性が良好となつて溶
融金属の溶け落ちが少なくなり、ビード外観も良
好となる。 [実施例] 第1表は母材SM41B(厚さ16mm)をフラツクス
充填割合の異なるワイヤによつて上向溶接した場
合の溶接結果を示す。尚溶接条件は下記する通り
である。 溶接条件 電流:140〜160A 電圧:17〜19V 速度:6〜9cm/分 開先形状:ギヤツプ6mm、50°V字型開先 シールドガス:Ar−20%CO2 ワイヤ:YCW−2 裏当材:KL−3 ウイービング条件 振幅W:5〜8mm 振幅D:2mm フラツクス組成:造滓剤60%、鉄粉10%、脱酸
剤30%
[Industrial Application Field] The present invention relates to an upward single-sided welding method using a flux-cored wire, and more particularly to an upward single-sided welding method that can form a stable Uranami bead even with large groove fluctuations. It is something. [Prior Art] When welding the bottom of a ship in shipbuilding or constructing large blocks for bridges, welding points that must be performed in an upward position are often encountered. However, when welding in an upward position, burn-through of the weld metal tends to occur, often forcing welding to be interrupted. Therefore, there is a risk of welding defects occurring, and since welding (including repair welding) must be performed from the back side of the welded area in a downward position, welding work must be performed by entering the narrow area, resulting in extra steps and man-hours. will increase. Therefore, although various ideas and proposals have been made regarding methods for obtaining a good welded joint even in upward single-sided welding, there is still no known method that can be considered perfect in practical terms. One of the reasons for this is that the groove shape of the base material is not constant. In other words, if the gap between the base materials is too small, the underwave bead will not be formed, and on the other hand, if the gap is too large, a dent will occur in the underwave bead or a protrusion will occur on the front bead, which will lead to poor fusion in the next layer. The groove root width must be made as uniform as possible over the entire length of the weld line to avoid problems such as burn-through. For example, in JP-A-48-56543,
Attempts have been made to insert a thin steel plate into the gap with a width adjusted to cancel out variations in the groove width, but it is virtually impossible to form a thin steel plate that satisfies these conditions. It is possible. [Problems to be Solved by the Invention] In addition, when welding in a vertical or upward position, short arc welding using a solid wire is sometimes adopted as a welding method to prevent the surface bead from becoming convex. be. In short-circuit transition, stable transition is achieved by lowering the arc voltage and bringing the molten metal into contact.However, when using solid wire, the actual arc voltage is within a relatively narrow range of about 16 to 23V, and this range is If it comes off, the arc becomes unstable and it becomes difficult to perform continuous stable welding. In addition, the number of short circuits is relatively high, about 70 to 130 times, and when the number of short circuits decreases, the surface bead becomes convex or burns through. In this way, the range of welding conditions for short-circuit transition using solid wire is extremely narrow.
Furthermore, even in single-sided welding in an upward position, the limitation that the allowable gap range of the base metal is narrow (substantially 4±1 mm) is not relaxed. Therefore, even the above-mentioned improved method of performing short-circuit transition using a solid wire is not suitable for upward welding where the gap between the base materials is not constant, and is therefore impractical. Therefore, the present inventor has conducted various researches to provide a method that can stably perform continuous welding in an upward position even on a groove with gap fluctuations, and as a result has completed the present invention. Ivy. [Means for Solving the Problems] The method of the present invention that achieves the above object is based on
Using a flux-cored wire containing 10 to 30% flux, which is a sludge forming agent, based on the total weight of the wire, the receding angle of the wire is set in the range of 20 to 50 degrees, and the number of short circuits is set to 15 to 50 degrees. The gist is to perform upward welding at a rate of 50 times/second. [Function] The present invention is a method of upward welding using a flux-cored wire, and the filling ratio of flux to the weight of the wire is in the range of 10 to 30% (the meaning of % by weight, the same applies hereinafter). In other words, if the flux is less than 10%, the welding characteristics will be similar to that of solid wire, and the problems mentioned in the previous section will not be resolved, while if it exceeds 30%, feeding defects will occur due to insufficient wire strength. , the arc becomes unstable and the surface bead shape becomes poor. In addition, the slag forming agent in the flux is
50% or more, so that the slag can stably exhibit the effect of holding the surface bead. The slag forming agent used in the present invention includes those whose main purpose is to form slag, as well as those that remain as a result of slag, such as
Examples include TiO 2 , ZrO 2 , SiO 2 , Al 2 O 3 , K 2 O, Na 2 O, and the like. The flux-cored wire described below is within the above range. FIG. 1 is an explanatory diagram of upward welding of the horizontal base material 1. At this time, the receding angle formed by the welding wire 4 and the perpendicular line H with respect to the welding progress direction (arrow B)
A 1 must be set in the range of 20 to 50 degrees; if the receding angle A 1 is less than 20 degrees, arc breakage is likely to occur; on the other hand, if it exceeds 50 degrees, arc condition monitoring and arc aiming are required. Position adjustment becomes difficult, which interferes with welding work and makes welding unstable. In the figure, reference numeral 2 represents weld metal, 3a and 3b slag, 5 a welding torch, 6 a weaver, and 7 a backing material, respectively. Flux-cored wire is usually used in a free flight state (granular transfer or atomized transfer), but by lowering the arc voltage, short-circuit transfer occurs, and the present invention actively utilizes this short-circuit transfer. be. Now, if the arc voltage is lowered under the condition of constant arc current, the number of short circuits will increase, but if the number of short circuits exceeds 50 times/second, there will be insufficient heat input and penetration into the base metal will be insufficient, making stable welding impossible. . On the other hand, if the number of short circuits is less than 15 times/second, the amount of heat input will be too large and the back bead will become concave, and in extreme cases, burn-through will occur. Weaving of the welding wire is carried out by oscillating the welding wire in the left and right direction of the groove as shown in Figure 4a, depending on the size of the gap between the base metals, but linear weaving as shown does not allow the molten metal to burn through. This tends to occur, making the front bead convex and the back bead concave. Therefore, in a preferred embodiment of the present invention, weaving is carried out in a two-dimensional plane including the left-right direction of the groove and the thickness direction of the base material, as shown in FIGS. As a result, there is less melting through of the molten metal, and the bead appearance is also good. [Example] Table 1 shows the welding results when base material SM41B (thickness 16 mm) was upwardly welded using wires with different flux filling ratios. The welding conditions are as follows. Welding conditions Current: 140-160A Voltage: 17-19V Speed: 6-9cm/min Bevel shape: Gap 6mm, 50° V-shaped bevel Shielding gas: Ar-20%CO 2 Wire: YCW-2 Backing material :KL-3 Weaving conditions Amplitude W: 5 to 8 mm Amplitude D: 2 mm Flux composition: slag forming agent 60%, iron powder 10%, deoxidizing agent 30%

【表】 この結果フラツクスの充填割合が10〜30%の範
囲内であれば表ビード形状及び裏ビード形状は良
好な溶接部が得られることが分かる。 また第2表は上記と同様の溶接条件下において
フラツクス充填割合を20%として、該フラツクス
中の造滓剤の割合を変化させた場合の上向溶接結
果を示す。尚フラツクス中の造滓剤以外の組成が
脱酸剤を20%とし、残部を鉄粉とした。
[Table] The results show that if the flux filling ratio is within the range of 10 to 30%, a welded part with good front bead shape and back bead shape can be obtained. Further, Table 2 shows the results of upward welding under the same welding conditions as above, when the flux filling ratio was 20% and the ratio of slag forming agent in the flux was varied. The composition of the flux other than the slag forming agent was 20% deoxidizing agent and the remainder was iron powder.

【表】 この結果フラツクス中の造滓剤の割合が50%以
上であれば表ビードのスラグは均一に付着され、
裏ビードの形状も良好とすることができる。 第3図は基礎実験結果を示すグラフで、ソリツ
ドワイヤ(□印及び◇印)及びフラツクス入りワ
イヤ(○印と△印)を用いて母材SM41B(厚さ12
mm)上に短絡移行状態で下向溶接したときの短絡
回数とアーク電圧の関係を示す。尚溶接ワイヤは
1.2mmφのものを使用し、ワイヤ角度は母材に対
して直角とし、シールドガスとしてCO2を用い
た。溶接電流は夫々150A(□印)、130A(◇印)、
160A(○印)、140A(△印)とした。その結果ソ
リツドワイヤを用いた場合には、アーク電圧がお
およそ23V以上となるとアークがふらつく状態と
なり安定した溶接ができず、また約16V以下とな
るとワイヤを溶融させる熱量が不足してアーク切
れを生じることがあつた。 一方フラツクス入りワイヤを用いた場合には、
上記電流範囲では高電圧状態でフリーライトとな
つて大粒のスパツタを発生し作業性を悪化させた
が、電圧を下げることによつて安定した短絡移行
が行なえる様になり、短絡回数15〜50回/秒にお
いて良好な溶接部を得ることができた。 第2図は片面上向溶接における短絡回数と許容
ギヤツプ範囲の関係を示すグラフであり、ソリツ
ドワイヤにおける適正な短絡回数は60〜130回/
秒程度と比較的許容度が広いが母材間の許容ギヤ
ツプ範囲は4±1mm程度と非常に狭い。これに対
しフラツクス入りワイヤでは短絡回数の許容範囲
は15〜50回/秒と狭くなるが逆に許容ギヤツプ範
囲は3〜12mmと広くなり、大きなギヤツプ変動に
対しても適応性が良くなることが分かる。尚ギヤ
ツプが3mm以下では裏ビードが出なかつたり、出
ても凹状を呈し、さらに1mm以下では融合不良を
発生し、逆にギヤツプが12mmを超えると入熱増加
に対してスラグによるビード保持効果が期待でき
なくなつて表ビードが凸状を呈し、ギヤツプがさ
らに広がると溶け落ちを発生する。 本発明の好ましいウイービングパターンは第4
図b,cに例示した通りであるが、溶接トーチ5
に第1図の様な後退角度A1が与えられているの
で、ワイヤの移動方向を側面から見ると第1図に
示す様になり(但し溶接台車の矢印B方向への進
行を停止させた状態で考えている)、同図に示す
様な傾き角度A2(90−A1)が与えられる。この傾
き角度A2がクレータの傾き角度A3と同等の場合
にはウイービング中のワイヤ突出し長さの変動が
ない為安定した溶接が可能であり、実用上はこの
傾き角度A2を10〜60度とすることが好ましい。 またウイービングの開先左右方向の振幅W[第
4図b]は、母材ギヤツプ+4mmから母材ギヤツ
プ間−2mmの範囲であることが好ましく、振幅W
が小さ過ぎると溶接金属がギヤツプ間にブリツジ
されないので母材表面への溶け込みが不十分とな
つて溶接不可能となり、また逆に大き過ぎるとア
ークの不安定を招く。 第5図はウイービングの板厚方向振幅Dとビー
ド形状との関係を示すグラフである。母材として
SM41B、溶接ワイヤとして前記成分のフラツク
ス入りワイヤYCW−24、裏当材として固形フラ
ツクスタイプのKL−3、シールドガスとして
CO2を夫々用い、後退角度40度で上向溶接を行な
つた。尚開先はギヤツプ6mmで50°のV字形開先
とした。図中の○印は裏ビード余盛高さを示し、
△印は表ビード中央部高さを示す。 この結果振幅Dが0mmでは、電流、電圧を下げ
て入熱を減らしたり、或はウイービングの両端で
ワイヤの移動を止めてビードのなじみを向上させ
ても表ビードの凸状化を防ぐことはできず、逆に
振幅Dを6mmより大きくすると溶接初層ののど厚
以上の運棒となつてアークが不安定になり、裏ビ
ードが凹状化する。従つて振幅Dの適正な範囲は
0.5〜6mm内に設定されることが好ましい。 短絡回数は15〜50回/秒とするための定電圧特
性の電源としては、サイリスタを用いるものより
はトランジスタを用いるもののほうが良い。これ
は、サイリスタ型では短絡時とアーク発生時の平
均電圧しか調整できないのに対し、トランジスタ
型ではアーク発生時の電圧調整も可能であり、短
絡回数を増加することが可能だからである。 裏当材については格別の制限はないが、通常使
用される炭酸ガス溶接用裏当材がもつとも好都合
であり、また材料面においてもセラミツクタイプ
及びフラツクスを成形したタイプのいずれを適用
してもよく、上向溶接用として特殊なものを準備
する必要はない。 さらにシールドガスについても制限は無いが、
例えばCO2やAr−CO2を用いる場合にはフラツク
スに含有させる造滓材としてTiO2を50%以上充
填したものを使用したときに最適の溶接作業性を
得ることができる。 第3表は溶接条件を種々変更して上向溶接した
ときの裏・表ビード形状を観察した結果を示す。
実験番号1〜16では、母材としてSM50A(厚さ16
mm)シールドガスとしてAr−20%CO2、裏当材
としてKL−3、ソリツドワイヤとしてYCW−
2、フラツクス入りワイヤとしてYFW−34を
夫々用い、50°V字型開先の母材に後退角度30〜
40度で上向溶接を実施した。また実験番号17〜22
は母材やワイヤ等を変更して上向溶接した場合の
例を示す。
[Table] As a result, if the ratio of slag forming agent in the flux is 50% or more, the slag on the surface bead will be uniformly deposited.
The shape of the back bead can also be made good. Figure 3 is a graph showing the results of basic experiments, using solid wire (□ and ◇) and flux-cored wire (○ and △) as base material SM41B (thickness 12 mm).
mm) shows the relationship between the number of short circuits and arc voltage when downward welding is performed in a short-circuit transition state. The welding wire is
A wire with a diameter of 1.2 mm was used, the wire angle was set at right angles to the base material, and CO 2 was used as the shielding gas. Welding current is 150A (□ mark), 130A (◇ mark), respectively.
160A (○ mark) and 140A (△ mark). As a result, when using a solid wire, if the arc voltage exceeds approximately 23V, the arc will become unstable and stable welding will not be possible, and if it falls below approximately 16V, there will be insufficient heat to melt the wire, causing arc breakage. It was hot. On the other hand, when flux-cored wire is used,
In the above current range, free writing occurs under high voltage conditions, generating large spatter and deteriorating workability. However, by lowering the voltage, stable short-circuit transition can be performed, and the number of short-circuits is 15 to 50. It was possible to obtain a good welded part at a speed of 1000 times per second. Figure 2 is a graph showing the relationship between the number of short circuits and the allowable gap range in single-sided upward welding, and the appropriate number of short circuits in solid wire is 60 to 130 times/
The tolerance is relatively wide, about seconds, but the allowable gap range between the base materials is very narrow, about 4±1 mm. On the other hand, with flux-cored wire, the allowable range for the number of short circuits is narrower at 15 to 50 times/sec, but the allowable gap range is wider at 3 to 12 mm, making it more adaptable to large gap fluctuations. I understand. If the gap is less than 3 mm, the back bead may not come out, or even if it does come out, it will be concave. If the gap is less than 1 mm, poor fusion will occur, and if the gap exceeds 12 mm, the slag will not have a bead retention effect against the increase in heat input. As expectations are lost, the top bead becomes convex, and as the gap widens further, burn-through occurs. A preferred weaving pattern of the present invention is the fourth weaving pattern.
As illustrated in Figures b and c, welding torch 5
Since the receding angle A 1 as shown in Fig. 1 is given to ), the inclination angle A 2 (90−A 1 ) as shown in the same figure is given. If this inclination angle A 2 is equivalent to the inclination angle A 3 of the crater, stable welding is possible because there is no change in the wire protrusion length during weaving.In practice, this inclination angle A 2 should be set at 10 to 60. It is preferable to set it as degree. Further, the amplitude W in the left-right direction of the weaving groove [Fig. 4b] is preferably in the range from base material gap +4 mm to base material gap -2 mm, and the amplitude W
If it is too small, the weld metal will not bridge between the gaps, resulting in insufficient penetration into the surface of the base metal, making it impossible to weld; on the other hand, if it is too large, it will cause instability of the arc. FIG. 5 is a graph showing the relationship between the thickness direction amplitude D of weaving and the bead shape. as base material
SM41B, flux-cored wire YCW-24 with the above components as welding wire, solid flux type KL-3 as backing material, as shielding gas
Upward welding was performed using CO 2 and a setback angle of 40 degrees. The groove was a 50° V-shaped groove with a gap of 6 mm. The ○ mark in the figure indicates the back bead extra height.
The △ mark indicates the height of the center of the front bead. As a result, when the amplitude D is 0 mm, it is not possible to prevent the surface bead from becoming convex even if the current and voltage are lowered to reduce heat input, or the movement of the wire is stopped at both ends of the weaving to improve bead conformity. On the other hand, if the amplitude D is made larger than 6 mm, the arc becomes unstable because the throat thickness of the initial welding layer is exceeded, and the back bead becomes concave. Therefore, the appropriate range of amplitude D is
It is preferable to set it within 0.5 to 6 mm. For a power supply with constant voltage characteristics that allows the number of short circuits to be 15 to 50 times/second, it is better to use a transistor than a thyristor. This is because the thyristor type can only adjust the average voltage when a short circuit and an arc occurs, whereas the transistor type can also adjust the voltage when an arc occurs, making it possible to increase the number of short circuits. There are no particular restrictions on the backing material, but it is convenient to use the normally used backing material for carbon dioxide gas welding, and in terms of materials, either ceramic type or flux molded type may be used. , there is no need to prepare anything special for upward welding. Furthermore, there are no restrictions on shielding gas,
For example, when CO 2 or Ar-CO 2 is used, optimal welding workability can be obtained when the flux is filled with 50% or more of TiO 2 as a slag material. Table 3 shows the results of observing the back and front bead shapes when upward welding was performed under various welding conditions.
In experiment numbers 1 to 16, SM50A (thickness 16 mm) was used as the base material.
mm) Ar-20% CO 2 as shielding gas, KL-3 as backing material, YCW- as solid wire
2. Using YFW-34 as the flux-cored wire, set the receding angle of 30 to 30 to the base material with a 50° V-shaped groove.
Upward welding was performed at 40 degrees. Also experiment number 17-22
Shows an example where upward welding is performed by changing the base material, wire, etc.

【表】 実験番号1〜5はソリツドワイヤを用いた従来
例であり、短絡回数が70〜130回/秒の範囲内で
なければ良好なビード形状を得ることはできず、
ギヤツプは4mm程度でなければ良好なビード形状
は得られない。 実験番号6〜8は本発明に対する比較例であ
り、ギヤツプが狭すぎる場合(実験番号6)には
裏ビードが凹状になり、また短絡回数が少ない場
合(実験番号7)にはアークが安定せずに裏ビー
ドが凹状になり、短絡回数が多い場合(実験番号
8)には入熱不足となつて融合不良が発生した。 実験番号9〜14は本発明実施例であり、良好な
ビード形状及び溶接作業性能を示した。 実験番号15,16はウイービング条件を変更した
比較例であり、振幅D(母材板厚方向の振幅)が
高すぎる場合(実験番号15)にはアークが不安定
となつてビード形状は悪く、逆に振幅Dが0の場
合(実験番号16)には振幅Wの両端で停止時間を
設定しても表ビードが凸状を呈した。 実験番号17は母材を60HTに変更し、フラツク
ス入りワイヤも60HT用に変更した例を示し、実
験番号18,19は開先角度を変更した例を示すが、
いずれも良好なビード形状が得られた。また実験
番号20はシールドガスをCO2に変えた例を示し、
実験番号21は裏当材をFBB−3に変更した例を
示し、これらの例でも良好なビード形状が得られ
た。 実験番号22はフラツクス中の造滓剤をBaF2
LiF等の弗化物主体のものに変え、ガスシールド
を行なわないで1.8mmφのセルフシールドアーク
溶接用ワイヤを使用した例であるが、この場合で
も良好なビード形状を得ることができた。 [発明の効果] 本発明によるギヤツプ変動の大きい母材であつ
ても安定して連続的な上向溶接ができる様にな
り、上向片面溶接の自動化が推進され、船底ブロ
ツクの継手や橋梁等の大ブロツクの継手において
も良好な溶接作業性を発揮させることが可能にな
つた。
[Table] Experiment numbers 1 to 5 are conventional examples using solid wire, and it is not possible to obtain a good bead shape unless the number of short circuits is within the range of 70 to 130 times/second.
A good bead shape cannot be obtained unless the gap is about 4 mm. Experiments Nos. 6 to 8 are comparative examples for the present invention. When the gap is too narrow (Experiment No. 6), the back bead becomes concave, and when the number of short circuits is small (Experiment No. 7), the arc becomes unstable. When the number of short circuits was high (Experiment No. 8), the back bead became concave and the heat input was insufficient, resulting in poor fusion. Experiment numbers 9 to 14 are examples of the present invention, and showed good bead shape and welding work performance. Experiments Nos. 15 and 16 are comparative examples in which weaving conditions were changed; when the amplitude D (amplitude in the thickness direction of the base material) is too high (Experiment No. 15), the arc becomes unstable and the bead shape is poor. On the other hand, when the amplitude D was 0 (experiment number 16), the top bead had a convex shape even if the stopping time was set at both ends of the amplitude W. Experiment number 17 shows an example in which the base material was changed to 60HT and the flux-cored wire was also changed to 60HT, and experiment numbers 18 and 19 show examples in which the groove angle was changed.
Good bead shapes were obtained in all cases. Experiment number 20 shows an example in which the shielding gas was changed to CO 2 .
Experiment No. 21 shows an example in which the backing material was changed to FBB-3, and a good bead shape was obtained in these examples as well. In experiment number 22, the slag forming agent in the flux was BaF 2 ,
In this example, a 1.8 mm diameter self-shielded arc welding wire was used without gas shielding, instead of using a fluoride-based wire such as LiF, and even in this case, a good bead shape could be obtained. [Effects of the invention] According to the present invention, it is now possible to perform stable and continuous upward welding even for base materials with large gap fluctuations, and automation of upward single-sided welding is promoted, which can be used for joints of ship bottom blocks, bridges, etc. It has become possible to demonstrate good welding workability even in large block joints.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は上向溶接の例を示す説明図、第2図は
短絡回数と許容ギヤツプの関係を示すグラフ、第
3図はアーク電圧と短絡回数との関係を示すグラ
フ、第4図a〜cはウイービングの移動軌跡を示
す説明図、第5図は板厚方向の振幅とビード形状
の関係を示すグラフである。
Fig. 1 is an explanatory diagram showing an example of upward welding, Fig. 2 is a graph showing the relationship between the number of short circuits and allowable gap, Fig. 3 is a graph showing the relationship between arc voltage and the number of short circuits, and Figs. 4 a- c is an explanatory diagram showing the locus of movement of weaving, and FIG. 5 is a graph showing the relationship between the amplitude in the plate thickness direction and the bead shape.

Claims (1)

【特許請求の範囲】 1 50重量%以上が造滓剤であるフラツクスをワ
イヤ全重量に対して10〜30%含有させたフラツク
ス入りワイヤを用い、該ワイヤの後退角度を20〜
50度の範囲に設定しつつ、短絡回数を15〜50回/
秒の範囲で上向溶接することを特徴とする上向片
面溶接方法。 2 フラツクス入りワイヤを開先左右方向及び母
材板厚方向を含む2次元平面内でウイービングし
て溶接する特許請求の範囲第1項に記載の上向片
面溶接方法。
[Claims] 1. Using a flux-cored wire containing 10 to 30% of the total weight of the wire, 50% by weight or more of flux is a slag forming agent, and the receding angle of the wire is 20 to 30% by weight.
While setting the range of 50 degrees, the number of short circuits is 15 to 50 times/
An upward single-sided welding method characterized by upward welding in a range of seconds. 2. The upward single-sided welding method according to claim 1, in which the flux-cored wire is weaved and welded within a two-dimensional plane including the left-right direction of the groove and the thickness direction of the base material.
JP15854786A 1986-07-04 1986-07-04 Overhead one-side welding method Granted JPS6313671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15854786A JPS6313671A (en) 1986-07-04 1986-07-04 Overhead one-side welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15854786A JPS6313671A (en) 1986-07-04 1986-07-04 Overhead one-side welding method

Publications (2)

Publication Number Publication Date
JPS6313671A JPS6313671A (en) 1988-01-20
JPH055582B2 true JPH055582B2 (en) 1993-01-22

Family

ID=15674091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15854786A Granted JPS6313671A (en) 1986-07-04 1986-07-04 Overhead one-side welding method

Country Status (1)

Country Link
JP (1) JPS6313671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074169U (en) * 1993-06-16 1995-01-20 ▲吉▼久 新居 Car rear view device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286939A (en) * 1976-01-16 1977-07-20 Kobe Steel Ltd Overhead position gas shielded one side welding process
JPS606275A (en) * 1983-06-24 1985-01-12 Hitachi Zosen Corp Automatic overhead welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286939A (en) * 1976-01-16 1977-07-20 Kobe Steel Ltd Overhead position gas shielded one side welding process
JPS606275A (en) * 1983-06-24 1985-01-12 Hitachi Zosen Corp Automatic overhead welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074169U (en) * 1993-06-16 1995-01-20 ▲吉▼久 新居 Car rear view device

Also Published As

Publication number Publication date
JPS6313671A (en) 1988-01-20

Similar Documents

Publication Publication Date Title
US4125758A (en) Vertical welding method
CN107921569A (en) Stand to narrow groove gas-shielded arc welding method
JPS5913307B2 (en) Welding method
US3922519A (en) Method for a build-up welding of different metals
US3732393A (en) Electric arc welding process
US4037078A (en) Process for welding aluminum and aluminum alloys in horizontal welding position
JPH06114587A (en) Butt welding method for thick plates
CN108367376A (en) Vertical narrow groove gas-shielded arc welding method
GB2037639A (en) Arc welding method
JPH055582B2 (en)
JP3525977B2 (en) Downward single-sided gas shielded arc welding method
KR20230021579A (en) One-side submerged arc welding method for multielectrode
CN108290239A (en) Vertical narrow groove gas-shielded arc welding method
JP3867164B2 (en) Welding method
JPH0994658A (en) One side butt welding method
KR102424484B1 (en) Tandem gas shield arc welding method and welding device
US3557340A (en) Selenium bearing wire for steel welding
JP6607677B2 (en) Four-electrode single-sided single-layer submerged arc welding method
Mandal et al. Fusion Welding Methods
JP2646388B2 (en) Gas shielded arc welding method
JPS60210368A (en) Three o'clock welding method
JPH11226735A (en) Gas shield arc welding method
JP3583561B2 (en) Horizontal electrogas welding method
JP6715682B2 (en) Submerged arc welding method
JP3574038B2 (en) High-speed MAG welding method