JPH0555572B2 - - Google Patents

Info

Publication number
JPH0555572B2
JPH0555572B2 JP61020246A JP2024686A JPH0555572B2 JP H0555572 B2 JPH0555572 B2 JP H0555572B2 JP 61020246 A JP61020246 A JP 61020246A JP 2024686 A JP2024686 A JP 2024686A JP H0555572 B2 JPH0555572 B2 JP H0555572B2
Authority
JP
Japan
Prior art keywords
hot
strength
temperature
phase
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61020246A
Other languages
Japanese (ja)
Other versions
JPS62180021A (en
Inventor
Kenichi Shinoda
Koji Omosako
Hiroto Tatemichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2024686A priority Critical patent/JPS62180021A/en
Publication of JPS62180021A publication Critical patent/JPS62180021A/en
Publication of JPH0555572B2 publication Critical patent/JPH0555572B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、自動車の強度部品等に好適な加工性
及び焼付け硬化性に優れた高張力熱延鋼板を極め
て低コストで製造する方法に関するものである。 〔発明の技術的背景とその問題点〕 高張力熱延鋼板の製造方法としては、Mn、Si
等の添加による固溶強化法や、Nb、Ti、V等を
添加して炭化物又は窒化物を析出せしめる析出強
化法が古くから実用化されてきた。しかし前者で
は原理上或る程度以上の効果は望めないし、後者
では合金元素の固溶限の温度による変化の程度に
よつては効果が得られないという問題点があつ
た。その後特公昭58−27328号や特公昭58−48616
号などにおいて、熱間圧延後の極低温巻取によつ
てフエライト母相中にマルテンサイト相を分散せ
しめた熱延2相組織鋼が、強度−延性バランス
〔引張強さ(TS)と伸び(El)の積TS×El値で
示す〕が良好で且つ降伏比(降伏応力÷引張強
さ)がちいさくて加工性に優れた高張力熱延鋼板
として注目された。しかしこのような熱延2相組
織鋼の製造においては、巻取温度を超低温(350
℃以下)として非常に速い冷却速度で冷却するた
めに巻取温度むらが大きく、この結果として製品
の材質変動が大きいと言う問題点があつた。又、
このような熱延2相組織鋼を製造するにはマルテ
ンサイト相を生成させるために比較的多くの合金
元素を必要とするので、合金元素の増加による資
源消耗及びコストアツプの問題点もあつた。 近年、基本的には固溶強化型の成分系の鋼を急
速冷却し、硬質第2相をパーライトでもマルテン
サイトでもないベイナイト或は擬似パーライトと
いつた低温変態生成相となして強度向上を図つた
高張力熱延鋼板の製造方法が例えば特開昭59−
126719号で提案された。この製造方法は、硬質第
2相をベイナイトとすることによつてマルテンサ
イト相を基本とする上記熱延2相組織鋼の製造方
法に比べて合金元素の一部を節減できる省資源効
果があること、コスト面で有利なこと、巻取温度
が350℃以上であるので冷却制御が容易なこと等
の利点がある。しかしながらこの従来技術には加
工性や焼付け硬化性(塗装時等における焼付けに
より硬度が上昇する性質)については不充分なも
のしか得られないという問題点があつた。 〔問題点を解決するための手段〕 本発明は、上記従来技術の問題点を解決して加
工性と焼付け硬化性に優れた高張力熱延鋼板を低
コストで製造する方法を提供することを目的に鋭
意研究した結果完成されたものである。 すなわち本発明は、C:0.06〜0.16%、Si:
0.30〜1.00%、Mn:0.50〜2.00%、S:0.005%以
下、Al:0.001〜0.1%、N:0.005〜0.015%を含
有し残部がFe及び不可避的な不純物元素により
成る鋼を、Ar3変態点以上で熱間圧延を終了し、
次いで20℃/秒以上の冷却速度で冷却し、350℃
を超え600℃以下の温度で巻き取ることを特徴と
する加工性及び焼付け硬化性に優れた高張力熱延
鋼板の製造方法に関するものである。 〔構成及び作用の詳細な説明〕 本発明方法においては後に説明する特定化学成
分の鋼の連続鋳造スラブ或は分塊スラブを使用す
る。この鋼としてはAlキルド鋼が好ましい。こ
のスラブをホツトストリツプミルで熱間圧延する
に際し、Ar3変態点以上の温度で熱間圧延を終了
させる通常の熱間圧延を行なう。次いで熱間圧延
後のランアウトテーブル上での冷却は、ラミナー
及びスプレー水によつて20℃/秒以上の平均冷却
速度で冷却し、続いて350℃を超え600℃以下の温
度で巻き取るのである。本発明方法は上記工程に
よつて硬質第2相として低温変態相であるベイナ
イト相を生成せしめ、フエライト−ベイナイト組
織によつて強度−延性バランスの良い鋼板を得よ
うとするものである。 本発明方法において使用する特定化学成分組成
の鋼とは、C:0.06〜0.16%(本発明において%
はすべて重量%を指す)、Si:0.03〜1.00%、
Mn:0.50〜2.00%、S:0.005%以下、Al:0.001
〜0.1%、N:0.005〜0.015%を含有し残部がFe及
び不可避的な不純物元素より成る鋼である。 このような化学成分組成に限定した理由を以下
に示す。 Cはベイナイト変態を促進する元素であり、硬
質第2相にベイナイト相を活用しようとする本発
明において重要な元素である。しかし0.16%を超
えるとベイナイト相が過大となつて加工性を害
し、また0.06%未満ではベイナイト相の生成が少
なく、高張力熱延鋼板としての強度が得られな
い。 Siは固溶強化元素でもあると共に、フエライト
中のCを低減させて延性の良い高張力鋼板を得る
ための元素である。しかしSiが1.00%を超えると
熱延鋼板の表面性状が劣化するばかりでなく、ス
ラブの連続鋳造が困難となつて経済的な製造方法
が採用出来なくなる。またSiが0.30%未満では強
度−延性バランスの良いフエライト−ベイナイト
組織が得難い。 Mnは固溶強化元素であると共に、Cと同様に
ベイナイト変態を促進する元素であり、低温変態
相の活用によつて高張力熱延鋼板を得るための基
本的構成元素である。しかし2.00%を超えると熱
延鋼板の溶接割れ感受性が著しく高くなるばかり
でなく、縞状組織が形成されて延性の低下が大き
くなり、0.05%未満ではベイナイト相の生成が困
難となる。 Sは硫化物系介在物による冷間加工性の劣化特
に打抜き穴拡げ加工性の劣化を考慮して0.005%
以下とした。 Alは脱酸材として使用される元素であり、
0.001%未満では製鋼工程で脱酸不足となり、0.1
%を超えると鋼板の表面性状の劣化を招く。な
お、AlはNと結合し易い元素であり、次に示す
Nの効果を持たせるために遊離Nを残すためには
含量が低い方が良いので0.05%以下が特に好まし
い。 Nは焼付け硬化性を持たせるための元素であ
り、0.015%を超えると冷間加工性が損われ、
0.005%未満では充分な焼付け硬化性が得られな
い。 上記の化学成分組織の鋼を熱間圧延終了後の冷
却速度を20℃/秒以上に速めるのは、オーステナ
イト結晶粒の成長を抑制して微細フエライトの生
成を促進せしめ、これによつて強度−延性バラン
スの向上を図るためである。又巻取り温度を600
℃以下の低温とするのは、フエライト結晶の粗大
化を防止すること、硬質第2相を確保すること、
フエライト中にAlNが析出して焼付け硬化性が
低下するのを防ぐこと、更には速い冷却速度と相
俟つて硬質第2相の強度と体積率との向上によつ
て高強度を得ること、のためである。又巻取り温
度を350℃を超えるようにするのは、巻取り温度
が低過ぎると自己焼なまし効果がなく、製品の材
質変動が大きくなるからである。 このようにして得られる熱延鋼板は、成形加工
時において冷延鋼板のようにはストレツチヤー・
ストレインが問題となり難いと同時に焼付け硬化
性に優れるという特長を有する。 本発明方法においてN成分を固定することなく
遊離Nとして上記の範囲に確保することは、巻取
り温度の制御のみで容易に出来る。遊離Nは焼付
け硬化性を持たせ、従つて焼付けによつて硬度は
著しく上昇するが、それと共に衝撃遷移温度が若
干高温側に推移する。しかしながらその程度は僅
かで工業的に問題とならない。 〔実施例、比較例〕 以下に実施例、比較例により本発明を更に具体
的に説明する。 実施例1〜12、比較例1〜19 第1表に示す化学成分組成を有するNo.1〜No.16
の鋼を90トン転炉で溶製し、分魂圧延又は連続鋳
造で厚さ250mmのスラブとし、1230℃で加熱して
粗圧延した後に、第2表に示す製造条件でダンデ
ムミルによる熱間仕上圧延と圧延後の巻取りとを
行なつて、第2表に示す各板厚の熱間圧延鋼板を
製造した。 得られた各鋼板について機械的性質を測定し
た。すなわち、引張試験によつて降伏点、引張強
度(TS)及び伸び(El)を測定し、更に焼付け
硬化性の指標として、試験片に3%の予歪を与え
た後に170℃、30分間加熱したものについて引張
強度の上昇量(これをBHと呼ぶ)を測定した。
なお、鋼板の強度−圧延バランスを示すTS−El
値を併記した。 結果を第2表に示す。
[Industrial Field of Application] The present invention relates to a method for producing high-strength hot-rolled steel sheets with excellent workability and bake hardenability suitable for strong automobile parts and the like at extremely low cost. [Technical background of the invention and its problems] As a method for producing high-tensile hot-rolled steel sheets, Mn, Si
A solid solution strengthening method by adding Nb, Ti, V, etc., and a precipitation strengthening method in which carbides or nitrides are precipitated by adding Nb, Ti, V, etc. have been put into practical use for a long time. However, with the former, in principle, no effect beyond a certain level can be expected, and with the latter, there is a problem that the effect cannot be obtained depending on the degree of change in the solid solubility limit of the alloying element due to temperature. Later, Special Publication No. 58-27328 and Special Publication No. 58-48616
No. 2, etc., a hot-rolled dual-phase steel in which a martensitic phase is dispersed in a ferrite matrix by cryogenic coiling after hot rolling has been evaluated for strength-ductility balance [tensile strength (TS) and elongation]. It attracted attention as a high-strength hot-rolled steel sheet with a good yield ratio (yield stress ÷ tensile strength) and a small yield ratio (yield stress ÷ tensile strength) and excellent workability. However, in the production of such hot-rolled dual-phase steel, the coiling temperature is kept at an ultra-low temperature (350°C).
℃ or less) and at a very high cooling rate, there was a problem that there was large variation in the winding temperature, and as a result, there was a large variation in the material properties of the product. or,
In order to manufacture such hot-rolled dual-phase steel, a relatively large number of alloying elements are required to generate the martensitic phase, and therefore there are problems of resource consumption and cost increase due to the increase in the number of alloying elements. In recent years, efforts have been made to improve strength by rapidly cooling steels that are basically solid solution strengthened and converting the hard second phase into a low-temperature transformation phase such as bainite or pseudo-pearlite, which is neither pearlite nor martensite. For example, a method for producing high-tensile hot-rolled steel sheets is disclosed in Japanese Patent Application Laid-Open No.
Proposed in No. 126719. By using bainite as the hard second phase, this manufacturing method has the effect of saving resources by saving some alloying elements compared to the above-mentioned manufacturing method of hot-rolled dual-phase steel based on martensitic phase. It has advantages such as being advantageous in terms of cost, and because the winding temperature is 350°C or higher, cooling control is easy. However, this conventional technique has the problem that only insufficient workability and baking hardenability (the property of increasing hardness due to baking during painting, etc.) can be obtained. [Means for Solving the Problems] The present invention aims to solve the problems of the above-mentioned prior art and provide a method for producing high-strength hot-rolled steel sheets with excellent workability and bake hardenability at a low cost. It was completed as a result of intensive research into this purpose. That is, in the present invention, C: 0.06 to 0.16%, Si:
Ar 3 Hot rolling is finished above the transformation point,
Then cooled at a cooling rate of 20℃/second or higher to 350℃
The present invention relates to a method for producing a high-strength hot-rolled steel sheet with excellent workability and bake hardenability, which is characterized by winding at a temperature exceeding 600°C and below 600°C. [Detailed explanation of structure and operation] In the method of the present invention, a continuously cast slab or a blooming slab of steel having a specific chemical composition, which will be explained later, is used. As this steel, Al-killed steel is preferable. When this slab is hot rolled in a hot strip mill, normal hot rolling is carried out in which the hot rolling is finished at a temperature equal to or higher than the Ar 3 transformation point. After hot rolling, the product is cooled on a run-out table using a laminar and spray water at an average cooling rate of 20°C/second or more, followed by winding at a temperature exceeding 350°C and below 600°C. . The method of the present invention aims to produce a bainite phase, which is a low-temperature transformation phase, as a hard second phase through the above steps, and to obtain a steel plate with a good balance of strength and ductility due to the ferrite-bainite structure. Steel with a specific chemical composition used in the method of the present invention refers to C: 0.06 to 0.16% (% in the present invention).
all refer to weight%), Si: 0.03 to 1.00%,
Mn: 0.50-2.00%, S: 0.005% or less, Al: 0.001
~0.1%, N: 0.005~0.015%, and the balance is Fe and unavoidable impurity elements. The reason for limiting to such a chemical component composition is shown below. C is an element that promotes bainite transformation, and is an important element in the present invention, which aims to utilize the bainite phase as the hard second phase. However, if it exceeds 0.16%, the bainite phase becomes too large, impairing workability, and if it is less than 0.06%, the formation of bainite phase is small, making it impossible to obtain the strength of a high-tensile hot-rolled steel sheet. Si is also a solid solution strengthening element and is an element for reducing C in ferrite to obtain a high tensile strength steel sheet with good ductility. However, if Si exceeds 1.00%, not only will the surface quality of the hot rolled steel sheet deteriorate, but it will also become difficult to continuously cast slabs, making it impossible to use economical manufacturing methods. Furthermore, if Si is less than 0.30%, it is difficult to obtain a ferrite-bainite structure with a good strength-ductility balance. Mn is a solid solution strengthening element, and like C, it is an element that promotes bainite transformation, and is a basic constituent element for obtaining high-tensile hot-rolled steel sheets by utilizing the low-temperature transformation phase. However, when it exceeds 2.00%, not only does the susceptibility to weld cracking of the hot rolled steel sheet significantly increase, but also a striped structure is formed, resulting in a large decrease in ductility, while when it is less than 0.05%, it becomes difficult to form a bainite phase. S is 0.005% in consideration of deterioration of cold workability due to sulfide inclusions, especially deterioration of punching hole expandability.
The following was made. Al is an element used as a deoxidizer,
If it is less than 0.001%, there will be insufficient deoxidation in the steelmaking process, and 0.1%
If it exceeds %, the surface quality of the steel sheet will deteriorate. Note that Al is an element that easily bonds with N, and in order to leave free N in order to have the effects of N described below, it is better to have a low content, so 0.05% or less is particularly preferable. N is an element that imparts bake hardenability, and if it exceeds 0.015%, cold workability will be impaired.
If it is less than 0.005%, sufficient bake hardenability cannot be obtained. Increasing the cooling rate of steel with the above chemical structure to 20°C/sec or more after hot rolling suppresses the growth of austenite grains and promotes the formation of fine ferrite, thereby increasing the strength. This is to improve the ductility balance. Also, the winding temperature is 600
The reason why the temperature is lower than ℃ is to prevent coarsening of ferrite crystals, ensure a hard second phase,
To prevent AlN from precipitating in ferrite and reducing bake hardenability, and to obtain high strength by increasing the strength and volume fraction of the hard second phase in combination with a fast cooling rate. It's for a reason. The reason why the winding temperature is set to exceed 350°C is that if the winding temperature is too low, there will be no self-annealing effect and the material quality of the product will vary greatly. The hot-rolled steel sheet obtained in this way cannot be stretched during forming process, unlike cold-rolled steel sheet.
It has the advantage of being less likely to cause problems with strain and has excellent bake hardenability. In the method of the present invention, it is easy to maintain the above range as free N without fixing the N component by simply controlling the winding temperature. Free N imparts baking hardenability, and therefore, the hardness increases significantly by baking, but at the same time, the impact transition temperature shifts to a slightly higher temperature side. However, the extent of this is small and does not pose an industrial problem. [Examples and Comparative Examples] The present invention will be explained in more detail below using Examples and Comparative Examples. Examples 1 to 12, Comparative Examples 1 to 19 No. 1 to No. 16 having the chemical composition shown in Table 1
of steel was melted in a 90-ton converter, made into a 250 mm thick slab by soul rolling or continuous casting, heated at 1230°C and roughly rolled, then hot finished in a dandem mill under the manufacturing conditions shown in Table 2. Hot rolled steel plates having various thicknesses shown in Table 2 were manufactured by rolling and winding after rolling. The mechanical properties of each of the obtained steel plates were measured. That is, the yield point, tensile strength (TS) and elongation (El) were measured by a tensile test, and as an indicator of bake hardenability, the test piece was pre-strained at 3% and then heated at 170°C for 30 minutes. The amount of increase in tensile strength (this is called BH) was measured.
In addition, TS-El, which indicates the strength-rolling balance of the steel plate,
Values are also listed. The results are shown in Table 2.

【表】【table】

【表】 (注) *印:本発明で規定する範囲内の鋼の
化学成分
**印:本発明で規定する範囲外の鋼の化
学成分
[Table] (Note) *: Chemical composition of steel within the range specified by the present invention
**mark: Chemical composition of steel outside the range specified by the present invention

【表】【table】

【表】 第2表の実施例1〜12から、本発明で規定する
化学成分組成の鋼No.1〜No.5を、熱間圧延温度、
冷却速度及び巻取り温度を本発明で規定する範囲
内に制御して得た高張力熱間圧延鋼板は何れも強
度−延性バランスに優れており、更に優れた焼付
け硬化性も付与されていることが判る。 一方、比較例1〜4から、鋼の化学成分組成が
本発明で規定するものであつても、製造条件のう
ちの1以上が本発明の規定範囲外であれば上記実
施例の如き優れた高張力熱間圧延鋼板は得られな
いことが判る。例えば、巻取り温度については、
600℃を超える比較例1では焼付け硬化性を示す
引張強度の上昇量BHが極めて小さくなつてお
り、350℃以下の比較例2では焼付け硬化性は優
れているが、強度−延性バランスが不良となるば
かりでなく、表には表われていないが機械的性質
の変動が増大して商品価値が低下してしまうので
ある。又、冷却速度が20℃/秒未満である比較例
3及び仕上圧延温度がAr3変態点未満の温度であ
る比較例4では、延性は比較的良好であるが、そ
れに相応した強度が得られないために強度−圧延
バランスが劣つている。 又、これらの製造条件がすべて本発明の規定に
適合している場合であつても、熱間圧延の対象と
する鋼の化学成分組成が本発明で規定する範囲外
であるときは、各実施例の如き優れた強度−圧延
バランスと高い焼付け硬化性とを備えた高張力熱
間圧延鋼板の得られないことが他の比較例から判
る。 実施例13、比較例20 第3表に示す化学成分組成の鋼No.17(実施例13
用)及び鋼No.18(比較例20用)を連続鋳造にて厚
さ250mmのスラブとし、1230℃に加熱して粗圧延
を行なつた後に880℃で熱間仕上圧延を行ない、
冷却速度30℃/秒で冷却し、次いで巻取り温度
560℃で巻き取つて、それぞれ板厚4.5mmの熱間圧
延鋼板を製造した。
[Table] From Examples 1 to 12 in Table 2, steels No. 1 to No. 5 having the chemical composition specified in the present invention were
High tensile strength hot rolled steel sheets obtained by controlling the cooling rate and coiling temperature within the range specified by the present invention have an excellent strength-ductility balance and are also endowed with excellent bake hardenability. I understand. On the other hand, from Comparative Examples 1 to 4, even if the chemical composition of the steel is as specified by the present invention, if one or more of the manufacturing conditions is outside the specified range of the present invention, the excellent It can be seen that high tensile strength hot rolled steel sheets cannot be obtained. For example, regarding the winding temperature,
In Comparative Example 1, which is heated to over 600℃, the amount of increase BH in tensile strength, which indicates bake hardenability, is extremely small, and in Comparative Example 2, which is heated to 350℃ or lower, bake hardenability is excellent, but the strength-ductility balance is poor. Not only that, but it is not shown in the table, fluctuations in mechanical properties increase and the product value decreases. In addition, in Comparative Example 3 where the cooling rate was less than 20°C/sec and Comparative Example 4 where the finish rolling temperature was less than the Ar 3 transformation point, the ductility was relatively good, but the corresponding strength was not obtained. Because of this, the strength-rolling balance is poor. In addition, even if all of these manufacturing conditions comply with the provisions of the present invention, if the chemical composition of the steel to be hot rolled is outside the range specified by the present invention, each implementation It is clear from other comparative examples that a high tensile strength hot rolled steel sheet with such excellent strength-rolling balance and high bake hardenability as in the example cannot be obtained. Example 13, Comparative Example 20 Steel No. 17 with the chemical composition shown in Table 3 (Example 13
) and Steel No. 18 (for Comparative Example 20) were made into a 250 mm thick slab by continuous casting, heated to 1230°C and rough rolled, then hot finish rolled at 880°C,
Cooling at a cooling rate of 30℃/sec, then winding temperature
Each hot-rolled steel plate with a thickness of 4.5 mm was manufactured by winding at 560°C.

〔効果〕〔effect〕

本発明方法によれば、加工性及び焼付け硬化性
に優れた高張力熱延鋼板を容易且つ低コストで製
造することが出来る。板厚が比較的厚くて成形加
工に多大のエネルギーを必要とする高張力熱延鋼
板にとつて、成形加工時に軟らかくそして焼付け
後の使用の段階で高強度を示す性質は非常に重要
な特性であり、本発明が高張力熱延鋼板を必要と
する広い産業分野で省資源、省エネルギーに貢献
するところ大なるものがある。
According to the method of the present invention, a high tensile strength hot rolled steel sheet with excellent workability and bake hardenability can be manufactured easily and at low cost. For high-strength hot-rolled steel sheets, which are relatively thick and require a large amount of energy to form, the properties of being soft during forming and exhibiting high strength during use after baking are extremely important properties. The present invention greatly contributes to resource and energy conservation in a wide range of industrial fields that require high-strength hot-rolled steel sheets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ実施例13、比較例
20の衝撃靱性の指標となる衝撃値及び脆性破面率
の温度による変化を示すグラフである。
Figures 1 and 2 are Example 13 and Comparative Example, respectively.
20 is a graph showing changes in impact value and brittle fracture ratio, which are indicators of impact toughness, with temperature.

Claims (1)

【特許請求の範囲】 1 C:0.06〜0.16%、Si:0.30〜1.00%、Mn:
0.50〜2.00%、S:0.005%以下、Al:0.001〜0.1
%、N:0.005〜0.015%を含有し残部がFe及び不
可避的な不純物元素より成る鋼を、Ar3変態点以
上で熱間圧延を終了し、 次いで20℃/秒以上の冷却速度で冷却し、 350℃を超え600℃以下の温度で巻き取ることを
特徴とする加工性及び焼付け硬化性に優れた高張
力熱延鋼板の製造方法。
[Claims] 1 C: 0.06-0.16%, Si: 0.30-1.00%, Mn:
0.50~2.00%, S: 0.005% or less, Al: 0.001~0.1
%, N: 0.005 to 0.015%, with the balance consisting of Fe and unavoidable impurity elements. Hot rolling is completed above the Ar3 transformation point, and then the steel is cooled at a cooling rate of 20°C/second or above. , A method for producing a high-tensile hot-rolled steel sheet with excellent workability and bake hardenability, characterized by rolling at a temperature of more than 350°C and less than 600°C.
JP2024686A 1986-02-03 1986-02-03 Manufacture of high tension hot rolled steel plate superior in workability and baking hardenability Granted JPS62180021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024686A JPS62180021A (en) 1986-02-03 1986-02-03 Manufacture of high tension hot rolled steel plate superior in workability and baking hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024686A JPS62180021A (en) 1986-02-03 1986-02-03 Manufacture of high tension hot rolled steel plate superior in workability and baking hardenability

Publications (2)

Publication Number Publication Date
JPS62180021A JPS62180021A (en) 1987-08-07
JPH0555572B2 true JPH0555572B2 (en) 1993-08-17

Family

ID=12021835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024686A Granted JPS62180021A (en) 1986-02-03 1986-02-03 Manufacture of high tension hot rolled steel plate superior in workability and baking hardenability

Country Status (1)

Country Link
JP (1) JPS62180021A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730408B2 (en) * 1987-04-02 1995-04-05 川崎製鉄株式会社 Method for producing hot-rolled thin steel sheet having bake hardenability by normal temperature aging
JP2784207B2 (en) * 1989-04-21 1998-08-06 住友金属工業株式会社 Method of manufacturing hot rolled steel sheet for processing and thermomechanical processing method of hot rolled steel sheet
JPH0747798B2 (en) * 1989-11-30 1995-05-24 新日本製鐵株式会社 Hot-rolled steel sheet excellent in burring property and ductility and method of manufacturing the same
FI114484B (en) * 2002-06-19 2004-10-29 Rautaruukki Oyj Hot rolled strip steel and its manufacturing process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586936A (en) * 1981-07-06 1983-01-14 Sumitomo Metal Ind Ltd Production of hot-rolled high-tensile steel plate for working
JPS59222528A (en) * 1983-05-31 1984-12-14 Sumitomo Metal Ind Ltd Production of hot rolled high tension steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586936A (en) * 1981-07-06 1983-01-14 Sumitomo Metal Ind Ltd Production of hot-rolled high-tensile steel plate for working
JPS59222528A (en) * 1983-05-31 1984-12-14 Sumitomo Metal Ind Ltd Production of hot rolled high tension steel plate

Also Published As

Publication number Publication date
JPS62180021A (en) 1987-08-07

Similar Documents

Publication Publication Date Title
US9732404B2 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
EP2647730B1 (en) A method for manufacturing a high strength formable continuously annealed steel strip
JPH0524205B2 (en)
CN109680129A (en) A kind of 500MPa grades of cold rolling micro-alloy high-strength steel and preparation method thereof
CN110079735A (en) 460MPa grades of yield strength of cold rolling Hi-Stren steel and production method
JP2021523301A (en) High-strength double-sided stainless steel clad plate and its manufacturing method
US20040118489A1 (en) Dual phase hot rolled steel sheet having excellent formability and stretch flangeability
JPH0711382A (en) High strength hot rolled steel plate excellent in stretch flanging property and its production
CN112739834A (en) Hot-rolled steel sheet and method for producing same
JPS5818410B2 (en) Method for manufacturing high ductility low yield ratio hot rolled high tensile strength thin steel sheet
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
CN113316649A (en) High-strength high-ductility complex-phase cold-rolled steel strip or plate
JPH04325657A (en) High strength hot rolled steel sheet excellent in stretch-flanging property and its manufacture
JPH0987798A (en) High tensile strength hot rolled steel plate, having superfine grain and excellent in ductility, toughness, fatigue characteristic, and strength-ductility balance, and its production
JPH0555572B2 (en)
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
CN111363978B (en) Welding softening resistant ferrite martensite hot-rolled dual-phase steel and manufacturing method thereof
JP2001303187A (en) Dual-phase steel sheet excellent in burring property, and its manufacturing method
JP2003193186A (en) High strength steel sheet and high strength electroplated steel sheet having excellent ductility, stretch-flanging property and impact absorbing property and production method therefor
CN110117756A (en) A kind of Cu alloying deep-draw dual phase sheet steel and preparation method thereof
JP2002105594A (en) High burring property hot rolled steel sheet having excellent low cycle fatigue strength and its production method
JPH101748A (en) High strength hot rolled steel plate excellent in chemical conversion treating property and workability
JPH11310852A (en) High strength hot rolled steel plate extremely excellent in fatigue characteristic, and its manufacture