JPH0554913B2 - - Google Patents

Info

Publication number
JPH0554913B2
JPH0554913B2 JP60231961A JP23196185A JPH0554913B2 JP H0554913 B2 JPH0554913 B2 JP H0554913B2 JP 60231961 A JP60231961 A JP 60231961A JP 23196185 A JP23196185 A JP 23196185A JP H0554913 B2 JPH0554913 B2 JP H0554913B2
Authority
JP
Japan
Prior art keywords
voltage
electrical equipment
low
variable reactor
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60231961A
Other languages
Japanese (ja)
Other versions
JPS6291868A (en
Inventor
Makoto Shibata
Teruo Yoshimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP23196185A priority Critical patent/JPS6291868A/en
Publication of JPS6291868A publication Critical patent/JPS6291868A/en
Publication of JPH0554913B2 publication Critical patent/JPH0554913B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばゴム・プラスチツク絶縁電力
ケーブル等の電気機器の絶縁劣化の状態を診断す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for diagnosing the state of insulation deterioration of electrical equipment, such as rubber-plastic insulated power cables.

[従来技術並びに発明が解決しようとする問題
点] ゴム・プラスチツク絶縁電力ケーブル等の絶縁
劣化の状態を知る手段としては、当該ケーブルの
絶縁部分に流れる電流を測定し、その内容を解析
することで知る方法があるが、ここで絶縁劣化の
一つである吸湿に起因する劣化については、交流
充電電流中に流れる微少の直流分や低周波分が上
記劣化に関連した信号であることが確認され、こ
の知見をもとに新たな絶縁劣化診断の手法が開発
されている。
[Prior Art and Problems to be Solved by the Invention] As a means of knowing the state of insulation deterioration of rubber/plastic insulated power cables, etc., it is possible to measure the current flowing through the insulated portion of the cable and analyze the contents. There is a way to know, but with regard to deterioration caused by moisture absorption, which is one type of insulation deterioration, it has been confirmed that the minute DC component and low frequency component flowing in the AC charging current are the signals related to the deterioration. Based on this knowledge, a new method for diagnosing insulation deterioration has been developed.

然るに、前記手法の実施に当つては、供試物の
低圧側と大地間に測定器を設置する必要があり、
更に供試物のアースを全て取り外すと同時に供試
物の低圧側と大地間を適切な絶縁状態とすること
が必要であるが、現場に布設された電気機器の場
合、必ずしもこれらの要件が満されるとは限ら
ず、むしろ満されることはまれであり、このた
め、供試物の低圧側を接地したままで前記直流分
等を測定できるようにと、供試物の高電圧電源と
大地間で測定する方法が考えられている。然る
に、この場合、商用回路(供試物の高電圧電源側
回路)の一部を変更しなければならないこと、誤
信号等を発し、商用回路そのものに障害を与える
恐れがあること等から、上記電源とは別に測定用
高圧電源を設置し、これを供試物に接続すると共
に上記測定用高電圧電源と大地間に測定器を設置
して前記直流分等を検出する方法が考えられる。
然るに、この場合、供試物の静電容量の大きさに
合わせて電源を選ぶ必要があり、このため静電容
量の大きな供試物に対しては大容量の電源を装備
せねばならず、装置の大型化、高価格が余儀なく
されるばかりか、試験時の危険性が増大する等の
欠点がある。このため、これら手段は現状では実
用線路には殆ど適用されておらず、供試物の低圧
側が大地に対して完全に絶縁できる場合にのみ、
この供試物の低圧側と大地間に測定器を設置し
て、この測定器により直流分等を検出している。
However, when implementing the above method, it is necessary to install a measuring device between the low pressure side of the specimen and the ground.
Furthermore, it is necessary to remove all grounding from the specimen and at the same time provide appropriate insulation between the low-voltage side of the specimen and the ground, but in the case of electrical equipment installed on site, these requirements are not necessarily met. This is not always the case, and in fact, it is rarely satisfied. Therefore, in order to be able to measure the DC component while the low voltage side of the specimen is grounded, it is necessary to connect the high voltage power supply of the specimen to the A method of measuring between the ground is being considered. However, in this case, it is necessary to change a part of the commercial circuit (the high-voltage power supply side circuit of the DUT), and there is a risk that erroneous signals may be emitted and the commercial circuit itself may be damaged. A possible method is to install a high-voltage power supply for measurement separately from the power supply, connect it to the specimen, and install a measuring device between the high-voltage power supply for measurement and the ground to detect the DC component, etc.
However, in this case, it is necessary to select a power supply according to the capacitance of the specimen, and therefore, a large capacity power supply must be installed for a specimen with a large capacitance. This method not only necessitates larger and more expensive equipment, but also has drawbacks such as increased risk during testing. For this reason, these methods are currently hardly applied to practical lines, and only when the low-voltage side of the specimen can be completely insulated from the ground.
A measuring device is installed between the low-voltage side of this test object and the ground, and the direct current component is detected by this measuring device.

このように、従来のこの種方法はいずれも原理
的には良好な方法であることが分つているにも係
わらず、いずれも汎用性に欠いているため、実用
化されるに至つていない。
In this way, although all conventional methods of this type are known to be good in principle, they lack versatility and have not been put into practical use. .

[問題点を解決するための手段] 本発明の目的は、前記した従来技術の欠点を解
消し、汎用性のある電気機器の絶縁劣化診断法を
提供することにあり、その要旨は、電気機器の絶
縁部分の静電容量との間で商用周波数で共振状態
となることができる可変リアクトル、励磁用トラ
ンス、直流分等測定器を当該電気機器の高圧側に
直列に接続して、電気機器の絶縁部分に流れる電
流のうちから直流分等を検出することにある。
[Means for Solving the Problems] An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a versatile method for diagnosing insulation deterioration of electrical equipment. A variable reactor, an excitation transformer, and a DC component measuring device that can resonate at commercial frequencies with the capacitance of the insulated part of the electrical equipment are connected in series to the high voltage side of the electrical equipment. The purpose is to detect the direct current component of the current flowing through the insulated parts.

[作用] 直流分等測定による絶縁劣化診断の原理は、供
試物が電力ケーブルであるような場合には、第1
図のような電源トランス1、高圧リード用ケーブ
ル2、供試物3、大地4からなる閉ループにおけ
る交流充電電流中の微少直流分等を検出すること
にある。ここでは、三相中の一相のみを示し、ト
ランス1の中性点が直接あるいは任意のインピー
ダンスを介して接地されている状態に相当する。
トランス1の中性点が非接地の場合には、閉ルー
プが形成されないので、そのような場合には、ト
ランス1と並列に大地電圧検出用の変成器
(GPT)5が設置され、さらにその中性点が接地
されることで、当該GPT5と供試物3の間で閉
ループが形成される。従つて、供試物3の外部遮
蔽層と大地4間、即ち図中A点にローパスフイル
ターを含む直流分等測定器を挿入すれば目的は達
せられる。しかし、供試物3が電力ケーブルであ
つて、その外部遮蔽層が全体に亙つて接地状態に
ある場合、或は当初は外部遮蔽層が防食層で対地
絶縁されていても、防食層の損傷、老化等により
対地絶縁が不良となつているような場合には、前
記A点で直流分等を検出することは現実には難し
い。
[Function] The principle of diagnosing insulation deterioration by measuring DC components, etc. is that when the test object is a power cable, the first
The purpose is to detect minute direct current components in alternating current charging current in a closed loop consisting of a power transformer 1, high voltage lead cable 2, specimen 3, and ground 4 as shown in the figure. Here, only one of the three phases is shown, and corresponds to a state in which the neutral point of the transformer 1 is grounded directly or via an arbitrary impedance.
If the neutral point of the transformer 1 is ungrounded, a closed loop will not be formed, so in such a case, a ground voltage detection transformer (GPT) 5 is installed in parallel with the transformer 1, and By grounding the gender point, a closed loop is formed between the GPT 5 and the specimen 3. Therefore, the purpose can be achieved by inserting a DC component measuring device including a low-pass filter between the external shielding layer of the specimen 3 and the ground 4, ie, at point A in the figure. However, if the specimen 3 is a power cable and its outer shielding layer is entirely grounded, or even if the outer shielding layer is initially insulated from the ground with an anticorrosion layer, damage to the anticorrosion layer may occur. If the ground insulation is poor due to aging or the like, it is actually difficult to detect the DC component at the point A.

一方、このことに鑑み、B点或はC点で検出す
ることも考えられるが、この場合には商用の電源
回路の回路変更を伴うため危険が増す。また、
GPT5の中性点と大地4間のD点で検出するこ
とも考えられるが、GPT5は系統制御用の重要
な素子となつており、その回路変更を行うと誤信
号により系統制御に重大な障害を与える危険があ
る。また、電源トランス1の中性点接地、GPT
5設置の場合には、両者に並列に直流分等が流れ
るので両者で測定するか、或は一方の接地を外す
かの手段を講ずる必要があり、このため検出の簡
便さが失なわれるばかりか、前述の危険増加にも
つながる。
On the other hand, in view of this, it is conceivable to detect at point B or point C, but in this case, the risk increases because it involves changing the commercial power supply circuit. Also,
It is possible to detect it at point D between the neutral point of GPT5 and the ground 4, but GPT5 is an important element for system control, and if its circuit is changed, an erroneous signal will cause a serious problem in system control. There is a risk of giving. In addition, the neutral point of the power transformer 1, GPT
In the case of 5 installation, since DC components etc. flow in parallel to both, it is necessary to measure both or remove the grounding of one, which only makes detection less convenient. Otherwise, it may lead to the increased risk mentioned above.

このような諸点から、従来、商用の電源側で直
流分等を検出することは、実用上難しいとされて
いた。
Due to these points, it has conventionally been considered practically difficult to detect DC components on the commercial power source side.

この問題を解決するためには、測定用トランス
を用いれば良いが、これには充電容量分のトラン
ス容量を要し、実際にはこのようなものを現場へ
運搬することは困難であるばかりか、大きい電源
を必要とするため限定された箇所にしか適用でき
ない。
To solve this problem, a measuring transformer can be used, but this requires a transformer capacity equal to the charging capacity, and in reality, it is not only difficult to transport such a device to the site. , which requires a large power supply and can only be applied to limited locations.

従つて、直流分等検出によるこの種絶縁劣化診
断手法を広く活用できるようにするためには、電
源装置部分の開発を含めた新たな手法の開発が必
要であつた。
Therefore, in order to make this type of insulation deterioration diagnosis method by detecting DC components widely available, it was necessary to develop a new method including the development of the power supply unit.

本発明は、電源として新たに直列共振型高電圧
電源を用いることにより、前述の要望に答えるも
のである。
The present invention satisfies the above-mentioned need by newly using a series resonant high voltage power supply as a power supply.

本発明によれば、次のような新たな利点か生じ
る。
According to the present invention, the following new advantages arise.

(1) 即ち、通常の一次、二次の巻線を用いたトラ
ンスの場合、一次側の電圧はそのまま二次側に
変換される(変換倍数は周波数によつて多少異
なる。)ため、単に商用周波数の電圧のみでな
く、低周波から高周波まであらゆる電圧が二次
側に発生する。
(1) In other words, in the case of a transformer that uses normal primary and secondary windings, the voltage on the primary side is directly converted to the secondary side (the conversion multiple differs somewhat depending on the frequency), so it is simply a commercial Not only frequency voltages but also all voltages from low frequencies to high frequencies are generated on the secondary side.

今回の発明の目的のように設置現場で高電圧
を得ようと、その電力源を求める場合、一般の
配電線を利用することになるが、最近では配電
線の負荷が複雑な制御運転をされているため、
例えばサイリスタ使用による電圧制御等、配電
系統には低周波から高周波に至る電圧変化を生
じている。
When seeking a power source to obtain high voltage at the installation site, as is the purpose of this invention, general distribution lines are used, but recently the loads on distribution lines are subject to complicated control operations. Because
For example, voltage control using thyristors causes voltage changes in power distribution systems from low frequencies to high frequencies.

従つて、これを用いていわゆる高電圧トラン
スを運転すると高電圧側に低周波から高周波の
電圧が発生し、供試物の絶縁部分や直流分の測
定回路にもこれに相当する低周波分を含んだ電
流が流れるため、測定結果に未知の誤差を含む
ことになり、適切な劣化診断ができなくなる。
このため、本発明では、第2図に示す如く供試
物3の高電圧側に可変リアクトル7を介して励
磁用トランス8を直列接続すると共に、該励磁
用トランス8の低圧側と大地4間にローパスフ
イルターを介して測定器6を設置することで回
路を構成している。こうすれば、電力源からの
擾乱電圧のうち、共振条件から外れる周波数分
についてはインピーダンス[j(ωL−1/ωC)] が高くなるため電流としては小さくなり、従つ
て直流分や低周波分を測定する回路の受ける誤
差は小さくなる。
Therefore, when this is used to operate a so-called high-voltage transformer, low-frequency to high-frequency voltages are generated on the high voltage side, and the corresponding low-frequency components are also generated in the insulated parts of the specimen and the DC component measurement circuit. Since the contained current flows, the measurement results will include unknown errors, making it impossible to properly diagnose deterioration.
Therefore, in the present invention, an excitation transformer 8 is connected in series to the high voltage side of the specimen 3 via a variable reactor 7, as shown in FIG. A circuit is constructed by installing a measuring device 6 through a low-pass filter. In this way, the impedance [j(ωL-1/ωC)] of the disturbance voltage from the power source that falls outside of the resonance condition increases, so the current becomes small, and therefore the DC and low frequency components become smaller. The error experienced by the circuit that measures this will be reduced.

(2) 供試物の絶縁部分が極端に劣化しており、診
断時の電圧で絶縁破壊を引き起こした場合、こ
れまでの回路では大電流が流入し、絶縁破壊点
での集中的なエネルギー発生のため発火等を生
じ、他の機器に被害を及ぼす危険があるのに対
し、直列共振回路を用いると、絶縁破壊と同時
に供試物3のキヤパシタンスCは短絡され、自
動的に回路はリアクトル7によるωLという高
インピーダンスとなり、また電流の源となる電
圧は励磁用トランス8の低い出力電圧(一般に
供試物に加わつていた電圧の1/10〜1/50)とな
るので、破壊点に生じるエネルギーは極めて小
さくなり発火等の危険はなくなる。
(2) If the insulation part of the specimen is extremely deteriorated and the voltage used during diagnosis causes dielectric breakdown, in conventional circuits, a large current will flow in and concentrated energy will be generated at the point of dielectric breakdown. However, when a series resonant circuit is used, the capacitance C of the specimen 3 is short-circuited at the same time as the insulation breaks down, and the circuit is automatically closed to the reactor 7. The current source voltage is the low output voltage of the excitation transformer 8 (generally 1/10 to 1/50 of the voltage applied to the specimen), so The energy generated is extremely small and there is no danger of fire or the like.

上述の(1)及び(2)の各点は、過密化され事故によ
る停電の許されない最近の電力施設の正確な絶縁
診断を実施する上で極めて重要な要素である。
Points (1) and (2) above are extremely important elements in carrying out accurate insulation diagnosis in modern power facilities, which are overcrowded and cannot tolerate power outages due to accidents.

次に、これら装置を用いて絶縁診断を実施する
とき、通常は供試物を商用電圧系統から完全に切
り離すことになるが、多数の作業を伴うことを理
由に、万一、この切り離しをせずに診断を行なお
うとすると、供試物には商用系統の高電圧と測定
系統からの電圧が重畳印加され、位相タイミング
によつては過大の電圧となり、供試物の絶縁部分
あるいは直流分等の測定回路を損傷することにな
る。診断行為により供試物に損傷を与えることは
最も避けるべきことであり、これを防止するため
には、供試物に何等他の電圧が加わつていないこ
とを予め確認する必要があり、また他の電圧が加
わつている場合には、測定系統からの電圧発生を
行なわないこと及び測定回路の保護を行なうこと
等の対策が必要となる。
Next, when performing insulation diagnosis using these devices, the test object is normally completely disconnected from the commercial voltage system, but because it involves a lot of work, it is difficult to do so. If you try to diagnose the specimen without using it, the high voltage of the commercial system and the voltage from the measurement system will be superimposed on the specimen, and depending on the phase timing, the voltage will be too high, causing damage to the insulated parts of the specimen or the DC component. etc. will damage the measurement circuit. Damage to the DUT due to diagnostic activities is the best thing to avoid, and in order to prevent this, it is necessary to confirm in advance that no other voltage is applied to the DUT, and If other voltages are applied, measures must be taken such as not generating voltage from the measurement system and protecting the measurement circuit.

このための基本的な回路が第3図である。 A basic circuit for this purpose is shown in FIG.

ここでは、可変リアクトル7、励磁用トランス
8、ローパスフイルター6と並列に、供試物3の
高電圧側と大地4間に静電容量型分圧器9を設
け、更に励磁用トランス8、ローパスフイルター
6を短絡するスイツチ10を設け、そして、その
出力電圧を基づいてリレーを介してスイツチ10
を操作する回路を付加し、供試物3に他の電圧1
1が加わつているか否かによつてスイツチ10を
閉、開する機構としてある。
Here, a capacitance type voltage divider 9 is provided between the high voltage side of the specimen 3 and the ground 4 in parallel with the variable reactor 7, the excitation transformer 8, and the low-pass filter 6, and the excitation transformer 8 and the low-pass filter A switch 10 is provided to short-circuit the switch 6, and the switch 10 is connected via a relay based on the output voltage.
Add a circuit to operate the voltage 1 to the specimen 3.
1 is applied or not, the switch 10 is closed or opened.

また、本発明を実施するとき、過密な各種機器
配置の中を通して、供試物3まで高電圧を導く必
要がある。このとき、高電圧発生装置部から供試
物3までの間は、高電圧絶縁されたリード用ケー
ブル2を使用することになる。この場合、高電圧
発生装置の可変リアクトルを予め、このリード用
ケーブルや分圧器9等の静電容量との間で共振条
件を満たすように調整しておくことにより、以下
の利点が生じる。
Furthermore, when carrying out the present invention, it is necessary to lead a high voltage to the specimen 3 through a crowded arrangement of various equipment. At this time, a high voltage insulated lead cable 2 is used between the high voltage generator section and the specimen 3. In this case, by adjusting the variable reactor of the high voltage generator in advance so as to satisfy the resonance condition with the capacitance of the lead cable, voltage divider 9, etc., the following advantages occur.

即ち、万一、供試物3に他の電圧が加わつてい
たとき、高圧リード用ケーブル2を供試物3の端
子に接触させたならば、その瞬間に他の電圧側か
ら測定系統側へ突入電流が流れ、他の電圧側に擾
乱を与えたり、測定系統に異常電圧が進入して、
そこに用いられている装置を損傷する危険があ
る。しかし、予めリード用ケーブル2を含めて測
定系統を商用周波に対し共振するリアクトル7が
調整されていれば、他の電圧側からみたインピー
ダンスはL,Cの並列共振状態となるため非常に
高いインピーダンス(理論上は無限大)となり、
この状態でリード用ケーブル2を接続しても、突
入電流は極くわずかで済み、他の電圧側への擾乱
や装置の損傷を生ずることが防止できる。
In other words, if by some chance the high voltage lead cable 2 comes into contact with the terminal of the DUT 3 while another voltage is being applied to the DUT 3, at that moment the connection will be made from the other voltage side to the measurement system side. An inrush current may flow into the system, causing disturbance to other voltages, or abnormal voltage may enter the measurement system.
There is a risk of damaging the equipment used there. However, if the reactor 7 that resonates the measurement system with the commercial frequency including the lead cable 2 is adjusted in advance, the impedance seen from the other voltage side will be in a parallel resonance state of L and C, resulting in a very high impedance. (theoretically infinite),
Even if the lead cable 2 is connected in this state, the inrush current is extremely small, and disturbance to other voltage sides and damage to the device can be prevented.

なお、リード用ケーブルの外部遮蔽回路の接
地、供試物の接地及び測定系統の各種装置の接地
は、夫々単独で共通接続でも良い。また、共通接
続後1点又は2点で接地しても測定上の問題はな
い。但し、リード用ケーブルや測定系統の各種装
置自体が劣化し、当該劣化箇所にて直流分等を発
生する場合には、その電流分等を予めチエツクす
るか、その直流分が測定系統に流入しない結線を
とる必要があることは言うまでもない。
It should be noted that the grounding of the external shielding circuit of the lead cable, the grounding of the specimen, and the grounding of various devices in the measurement system may be individually or commonly connected. Moreover, there is no problem in measurement even if the common connection is grounded at one or two points. However, if the lead cable or various equipment in the measurement system itself deteriorates and a DC component is generated at the deteriorated point, check the current component in advance or make sure that the DC component does not flow into the measurement system. Needless to say, it is necessary to connect the wires.

また、絶縁劣化診断の方法としては、商用周波
交流電圧による充電電流分に含まれる直流分ある
いは低周波分を検出する方法と共に、交流電圧に
微少直流電圧を重畳印加することにより、直流分
或は低周波部を増加させて、これを検出する方法
もあるが、この場合には、微少直流電圧を重畳す
る回路を測定系統の低圧側、即ち、直流分等を測
定する回路の一部に付加する必要がある。
In addition, as a method for diagnosing insulation deterioration, there is a method of detecting the DC component or low frequency component included in the charging current component by commercial frequency AC voltage, and a method of detecting the DC component or low frequency component by superimposing a minute DC voltage on the AC voltage. There is also a method of detecting this by increasing the low frequency part, but in this case, a circuit that superimposes a minute DC voltage is added to the low voltage side of the measurement system, that is, to a part of the circuit that measures the DC component, etc. There is a need to.

[実施例] 以下、第4図を参照しながら本発明の一実施例
を供試物が電力ケーブルである場合を例にとつて
説明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIG. 4, taking as an example a case where the specimen is a power cable.

まず、本発明の測定系統12を供試物3の近傍
に設置する。可変リアクトル7は、予め高圧リー
ド用ケーブル2や静電容量型分圧器9等のキヤパ
シタンス分との間で商用周波数に於いて共振状態
となるよう調整して置く。
First, the measurement system 12 of the present invention is installed near the specimen 3. The variable reactor 7 is adjusted in advance so that it resonates with the capacitance of the high-voltage lead cable 2, capacitive voltage divider 9, etc. at the commercial frequency.

このとき、スイツチ10を閉の状態にして置
く。高圧リード用ケーブル2を供試物3に接続す
る。このとき、万一スイツチ14が閉となつてい
て供試物3に電圧が加わっていたとしても、その
電圧側から見た測定系統12はほぼ無限大とみな
せるインピーダンスとなつているので、突入電流
は殆ど流れない。また、分圧器9はその電圧を検
知し、スイツチ10を閉とするので励磁用トラン
ス8や直流分、低周波分の測定器6は、全く障害
を受けない。供試物3に電圧が加わつていなけれ
ば、スイツチ10を開とする。そこで励磁用トラ
ンス8を電圧調整器13を介して配電用電力源
(図示しない。)に接続する。その後、可変リアク
トル7及び電圧調整器13を調整して、新たな共
振状態にした後、供試物3に所定の高電圧を印加
する。この状態でローパスフイルターを含む直流
成分或は低周波部測定器6により信号電流を検出
し、その特性によつて供試物3の絶縁劣化状況を
診断する。
At this time, the switch 10 is kept in the closed state. Connect the high voltage lead cable 2 to the specimen 3. At this time, even if the switch 14 is closed and voltage is applied to the DUT 3, the impedance of the measurement system 12 seen from the voltage side is almost infinite, so the inrush current There is almost no flow. Further, since the voltage divider 9 detects the voltage and closes the switch 10, the excitation transformer 8 and the measuring device 6 for direct current and low frequency components are not disturbed at all. If no voltage is applied to the specimen 3, the switch 10 is opened. Therefore, the excitation transformer 8 is connected to a distribution power source (not shown) via a voltage regulator 13. Thereafter, the variable reactor 7 and the voltage regulator 13 are adjusted to create a new resonance state, and then a predetermined high voltage is applied to the specimen 3. In this state, a signal current is detected by a DC component or low frequency part measuring device 6 including a low-pass filter, and the insulation deterioration state of the specimen 3 is diagnosed based on its characteristics.

データ採取後、配電系統電力源への接続を断
ち、リード用ケーブル2と供試物3との接続を断
つ。なお、このとき手動或は自動によりリード用
ケーブル2や分圧器9等の静電容量との間で共振
状態となるようリアクトル7を設定して置けば、
次回の測定が便利且つ安全となる。
After collecting the data, the connection to the power distribution system power source is cut off, and the connection between the lead cable 2 and the specimen 3 is cut off. At this time, if the reactor 7 is set manually or automatically so that it resonates with the capacitance of the lead cable 2, voltage divider 9, etc.,
The next measurement will be convenient and safe.

[発明の効果] 最近の社会情勢から、電力機器の信頼性向上が
強く望まれ、また、電極機器故障による火災等の
波及事故の防止も厳重に実施することが要請され
ている。
[Effects of the Invention] Due to recent social conditions, there is a strong desire to improve the reliability of power equipment, and it is also required to strictly prevent spillover accidents such as fires due to failure of electrode equipment.

このためには、電力用高電圧機器の絶縁体の健
全性を保つ工夫と共に、万一これが劣化した場合
には逸速くこれを検知し、改修等の対策を施さね
ばならない。
To this end, it is necessary to take measures to maintain the integrity of the insulators of high-voltage power equipment, and in the event that the insulators deteriorate, it must be detected quickly and measures such as repairs must be taken.

しかし、対象となる機器類は膨大な数量であ
り、簡便且つより確かな診断方法の開発が待たれ
ていた。絶縁物の経年劣化とくに相対的に頻度の
覆い吸湿劣化を検出するのに、直流分或は低周波
分を検知することが極めて有効なことが見出され
一部実用化されているが各種の電力機器、とくに
接地状態の異なる機器用として汎用の診断方法が
切望されていた。本発明は、電気機器の絶縁部分
の静電容量との間で商用周波数で共振状態となる
ことができる可変リアクトル、励磁用トランス、
直流分測定器を当該電気機器の高圧側に直列に接
続して電気機器に流れる電流のうちから直流分等
を検出するようにすることで、前述の従来技術の
欠点を解消して、汎用性のある電気機器の絶縁劣
化診断法を提供するものである。
However, the number of target devices is enormous, and the development of a simpler and more reliable diagnostic method has been awaited. It has been found that detecting the direct current component or low frequency component is extremely effective for detecting aging deterioration of insulators, especially the relatively frequent deterioration due to moisture absorption. There has been a strong need for a general-purpose diagnostic method for power equipment, especially equipment with different grounding conditions. The present invention provides a variable reactor, an excitation transformer, and
By connecting a DC component measuring device in series to the high-voltage side of the electrical equipment and detecting the DC component, etc. from the current flowing through the electrical equipment, the drawbacks of the conventional technology described above can be overcome and versatility achieved. The present invention provides a method for diagnosing insulation deterioration of certain electrical equipment.

このように、本発明は前記の切望に応えるもの
で、今後の電力供給のより一層の安定化を図る上
で寄与するところは多大である。
In this way, the present invention meets the above-mentioned desire, and will greatly contribute to further stabilizing the power supply in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電気機器の絶縁劣化診断法の説
明図、第2図及び第3図はそれぞれ本発明の電気
機器の絶縁劣化診断法の原理説明図、第4図は本
発明の電気機器の絶縁劣化診断法の一実施例説明
図である。 1……電源トランス、2……リード用ケーブ
ル、3……供試物(電力ケーブル)、4……大地、
5……電圧変成器、6……直流分測定器、7……
可変リアクトル、8……励磁用トランス、9……
静電容量型分圧器、10……スイツチ、11……
他の電源、12……測定系統、13……電圧調整
器、14……スイツチ。
FIG. 1 is an explanatory diagram of the conventional method for diagnosing insulation deterioration of electrical equipment, FIGS. 2 and 3 are diagrams each illustrating the principle of the method of diagnosing insulation deterioration of electrical equipment of the present invention, and FIG. 4 is an explanatory diagram of the method of diagnosing insulation deterioration of electrical equipment of the present invention. FIG. 2 is an explanatory diagram of an embodiment of the insulation deterioration diagnosis method. 1... Power transformer, 2... Lead cable, 3... Test object (power cable), 4... Earth,
5... Voltage transformer, 6... DC component measuring device, 7...
Variable reactor, 8...Excitation transformer, 9...
Capacitance type voltage divider, 10... switch, 11...
Other power supplies, 12...Measurement system, 13...Voltage regulator, 14...Switch.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁劣化の診断をしようとする電気機器3の
低圧側を接地し、高圧側にリード用ケーブル2及
び可変リアクトル7を介して励磁用トランス8を
直列接続すると共に、該励磁用トランス8の低圧
側と大地4間にローパスフイルター6を挿入し、
さらに前記可変リアクトル7、励磁用トランス
8、ローパスフイルター6と並列に電気機器3の
高圧側と大地間4に電圧測定装置9及び励磁用ト
ランス8、ローパスフイルター6を短絡するスイ
ツチ10を設けて、これら励磁用トランス8、ロ
ーパスフイルター6を適宜短絡、解放するように
した回路を用いて上記電気機器3の絶縁劣化を診
断するに当り、まず電気機器3と可変リアクトル
7間にリード用ケーブル2を接続するに先立つ
て、上記スイツチ10を閉じた状態で可変リアク
トル7のリアクタンスとリード用ケーブル2のキ
ヤパシタンスが電気機器3を運転する商用周波数
に対して共振状態となるように可変リアクトル7
を調整し、その後上記リード用ケーブル2を電気
機器3に接続し、次いで上記電気機器3に電圧が
加わつていないのを確認し、上記スイツチ10を
開いた後で、再度上記可変リアクトル7を調整し
て新たな共振状態とし、次いで上記励磁用トラン
ス8を通して上記電気機器3に対して所定の電圧
を加え、この時上記ローパスフイルター6を介し
て電気機器3の絶縁部分に流れる電流のうちから
直流分等を検出し、その内容を見ることにより当
該電気機器3の絶縁劣化診断を行うことを特徴と
する電気機器の絶縁劣化診断法。
1. The low voltage side of the electrical equipment 3 whose insulation deterioration is to be diagnosed is grounded, and the excitation transformer 8 is connected in series to the high voltage side via the lead cable 2 and the variable reactor 7, and the low voltage of the excitation transformer 8 is Insert a low pass filter 6 between the side and the ground 4,
Furthermore, a switch 10 for short-circuiting the voltage measuring device 9, the excitation transformer 8, and the low-pass filter 6 is provided between the high voltage side of the electrical equipment 3 and the ground 4 in parallel with the variable reactor 7, the excitation transformer 8, and the low-pass filter 6. When diagnosing insulation deterioration of the electrical equipment 3 using a circuit that short-circuits and releases the excitation transformer 8 and the low-pass filter 6 as appropriate, first connect the lead cable 2 between the electrical equipment 3 and the variable reactor 7. Prior to connection, the variable reactor 7 is set so that, with the switch 10 closed, the reactance of the variable reactor 7 and the capacitance of the lead cable 2 are in a resonant state with respect to the commercial frequency at which the electrical equipment 3 is operated.
After that, connect the lead cable 2 to the electric device 3, make sure that no voltage is applied to the electric device 3, open the switch 10, and then turn on the variable reactor 7 again. Adjustment is made to create a new resonance state, and then a predetermined voltage is applied to the electrical equipment 3 through the excitation transformer 8, and at this time, out of the current flowing through the low-pass filter 6 to the insulated part of the electrical equipment 3, A method for diagnosing insulation deterioration of electrical equipment, characterized by diagnosing insulation deterioration of the electrical equipment 3 by detecting DC components and checking the contents thereof.
JP23196185A 1985-10-17 1985-10-17 Diagnostic method for insulating deterioration of electric equipment Granted JPS6291868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23196185A JPS6291868A (en) 1985-10-17 1985-10-17 Diagnostic method for insulating deterioration of electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23196185A JPS6291868A (en) 1985-10-17 1985-10-17 Diagnostic method for insulating deterioration of electric equipment

Publications (2)

Publication Number Publication Date
JPS6291868A JPS6291868A (en) 1987-04-27
JPH0554913B2 true JPH0554913B2 (en) 1993-08-13

Family

ID=16931766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23196185A Granted JPS6291868A (en) 1985-10-17 1985-10-17 Diagnostic method for insulating deterioration of electric equipment

Country Status (1)

Country Link
JP (1) JPS6291868A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435281A (en) * 1987-07-29 1989-02-06 Hitachi Cable Method for diagnosing dielectric breakdown of power cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147357A (en) * 1979-05-04 1980-11-17 Touyoko Sharyo Densetsu Kk Method of testing insulation using asymmetrical ac voltage
JPS5642317A (en) * 1979-09-13 1981-04-20 Hitachi Cable Ltd Series resonance type testing transformer circuit
JPS59202073A (en) * 1983-04-30 1984-11-15 Hitachi Cable Ltd Diagnosis of insulation deterioration of power cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726212Y2 (en) * 1976-03-13 1982-06-07

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147357A (en) * 1979-05-04 1980-11-17 Touyoko Sharyo Densetsu Kk Method of testing insulation using asymmetrical ac voltage
JPS5642317A (en) * 1979-09-13 1981-04-20 Hitachi Cable Ltd Series resonance type testing transformer circuit
JPS59202073A (en) * 1983-04-30 1984-11-15 Hitachi Cable Ltd Diagnosis of insulation deterioration of power cable

Also Published As

Publication number Publication date
JPS6291868A (en) 1987-04-27

Similar Documents

Publication Publication Date Title
US8310242B2 (en) Circuit arrangement and method for insulation monitoring for inverter applications
FI115488B (en) Method and apparatus for detecting a breaking earth fault in a power distribution network
US7969696B2 (en) Ground fault detection and localization in an ungrounded or floating DC electrical system
US7772857B2 (en) System and method to determine the impedance of a disconnected electrical facility
JP5349036B2 (en) Insulation diagnostic system
JP6296689B2 (en) Uninterruptible insulation deterioration diagnosis method for power cables
CN103782509A (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
CN108614180B (en) Single-phase earth fault line searching method
CN111624444B (en) Distribution line ground fault positioning method and device
CN103869168A (en) Detecting and diagnosing method for secondary circuit of current transformer for electric power
CN110346679A (en) A kind of high-voltage cable joint metallic earthing failure Fast Fixed-point method
JP4871511B2 (en) Interrupt insulation measuring device
KR100823724B1 (en) Apparatus and method for detecting stator winding groundwall insulation condition of inverter-fed AC motor
JP2006200898A5 (en)
Leal et al. Comparison of online techniques for the detection of inter-turn short-circuits in transformers
JP2912990B2 (en) Insulation diagnostic equipment
US10778135B2 (en) Motor parallel winding differential current protection
JPH0554913B2 (en)
JPH03128471A (en) Monitoring device for insulation deterioration of electric equipment
CN103954889A (en) Capacitive type device insulation parameter electrification testing method based on pincerlike current sensors
Selkirk et al. Why neutral-grounding resistors need continuous monitoring
Abu-Siada et al. Image processing-based on-line technique to detect power transformer winding faults
CN108333438B (en) Method, device and system for testing capacitance current
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JP2021004855A (en) Ground fault detection method and device