JPH0553023A - Optical element having circular waveguide - Google Patents

Optical element having circular waveguide

Info

Publication number
JPH0553023A
JPH0553023A JP21113391A JP21113391A JPH0553023A JP H0553023 A JPH0553023 A JP H0553023A JP 21113391 A JP21113391 A JP 21113391A JP 21113391 A JP21113391 A JP 21113391A JP H0553023 A JPH0553023 A JP H0553023A
Authority
JP
Japan
Prior art keywords
light
waveguide
circular waveguide
grating
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21113391A
Other languages
Japanese (ja)
Other versions
JP3045575B2 (en
Inventor
Toshio Yamamoto
敏雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP21113391A priority Critical patent/JP3045575B2/en
Priority to US07/932,971 priority patent/US5274720A/en
Publication of JPH0553023A publication Critical patent/JPH0553023A/en
Application granted granted Critical
Publication of JP3045575B2 publication Critical patent/JP3045575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To fetch more light quantity from light propagated through the inside of a waveguide, as a luminous flux of a circularly polarized light having a center symmetrical intensity distribution. CONSTITUTION:An optical coupler is provided with a circular waveguide 12, and a straight waveguide 14 for leading light therein. When light is made incident on the straight waveguide 14 in the direction as indicated with an arrow, as for a part of light propagated through the inside of the straight waveguide 14, in the vicinity of the part in which the straight waveguide 14 and the circular waveguide 12 are adjacent to each other, light spread out of the straight waveguide 14 goes into the inside of the circular waveguide 12. When a radius of the circular waveguide 12 is denoted as (r), light of whose wavelength is 2pir/n turns continuously in the direction as indicated with an arrow in the circular waveguide 12. In this case, (n) is a certain natural number. On the surface of the circular waveguide 12, a grating 12a is formed at a pitch of 2pir/(n+1).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導波路を有する光学素
子に関する。より詳しくは、導波路を用いた光結合素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element having a waveguide. More specifically, it relates to an optical coupling element using a waveguide.

【0002】[0002]

【従来の技術】導波路を用いた光結合素子としては直線
状の導波路の表面にグレーティングを設けたものがよく
知られている。
2. Description of the Related Art As an optical coupling element using a waveguide, one having a grating on the surface of a linear waveguide is well known.

【0003】[0003]

【発明が解決しようとする課題】このような光結合器に
おいては、導波路の一端から入射した導波光は、指数関
数的に減衰しながら他端から射出される。このとき、よ
り多くの光を取り出すために結合効率を高くすると、入
力端と射出端での光強度の差が大きくなり、グレーティ
ング領域から放射される光は入力端に近い部分で強く射
出端に近づくほど弱くなる強度分布を持ったものとな
る。このような強度分布をもった光束は好ましいもので
はない。逆に、グレーティング領域から射出される光の
強度がほぼ一定になるようにすると、結合効率が著しく
低下する。
In such an optical coupler, the guided light entering from one end of the waveguide is emitted from the other end while being attenuated exponentially. At this time, if the coupling efficiency is increased to extract more light, the difference in the light intensity between the input end and the emission end becomes large, and the light emitted from the grating region is strongly emitted to the emission end near the input end. The intensity distribution becomes weaker as it gets closer. A light flux having such an intensity distribution is not preferable. On the contrary, if the intensity of the light emitted from the grating region is set to be substantially constant, the coupling efficiency will be significantly reduced.

【0004】また、このような光結合器で取り出される
光は直線偏光に限られている。これは光学設計の上で制
約となる。光学系においては円偏光を利用する場面が少
なくなく、このため導波路内を伝搬する光を円偏光で取
り出せる光学素子の提供が望まれている。
The light extracted by such an optical coupler is limited to linearly polarized light. This is a constraint on the optical design. Circularly polarized light is often used in an optical system, and therefore it is desired to provide an optical element capable of extracting light propagating in a waveguide as circularly polarized light.

【0005】本発明は、より多くの光量を中心対称な光
強度を有する光束として取り出すことのできる光結合器
の提供を目的とする。また、導波路内を伝搬する光を円
偏光で取り出すことのできる光学素子の提供を目的とす
る。
An object of the present invention is to provide an optical coupler capable of extracting a larger amount of light as a light flux having a centrally symmetric light intensity. Another object of the present invention is to provide an optical element capable of extracting light propagating in the waveguide as circularly polarized light.

【0006】[0006]

【課題を解決するための手段】本発明は円形の導波路を
有する光学素子であって、その導波路の表面には、使用
する光が円形の導波路を半周したときに光とグレーティ
ングの位相差が実質的にπずれる周期のグレーティング
が設けられている。
SUMMARY OF THE INVENTION The present invention is an optical element having a circular waveguide, on the surface of which the position of the light and the grating when the light used is half-circulated around the circular waveguide. A grating having a period in which the phase difference is substantially deviated by π is provided.

【0007】[0007]

【作用】円形の導波路に進入した光(導波光)はその中
を回り続け、そのあいだグレーティングからは常に光が
放射される。中心に対して対称な円形導波路上の二点で
は導波光と導波路の位相差がπずれているので、導波路
のある一点で振幅最大の光が放射されると、この点に対
して中心対称の位置にある点からも振幅最大の光が放射
される。このような二点は、光の波長とグレーティング
のピッチとの相互関係に応じて時間と共に移動してい
く。また、一般にグレーティングから放射される光はそ
の歯に対して決まった方向の偏光面を持ち、円形導波路
上のグレーティングの各歯はそれぞれ異なった方向を向
いているため、各歯からの放射光はそれぞれ異なる偏光
方向を有する。このため、円形の導波路から放射される
光は、その偏光面が時間の経過と共に回転する。従っ
て、グレーティングの結合効率が一定の場合には、放射
光は円偏光となる。
The light (guided light) that has entered the circular waveguide continues to circulate in it, during which the light is always emitted from the grating. Since the phase difference between the guided light and the waveguide is deviated by π at two points on the circular waveguide that is symmetric with respect to the center, when the light with the maximum amplitude is radiated at one point on the waveguide, Light with the maximum amplitude is also emitted from the points located at the central symmetry positions. These two points move with time according to the mutual relationship between the wavelength of light and the pitch of the grating. In addition, the light emitted from the grating generally has a plane of polarization in a fixed direction with respect to the tooth, and each tooth of the grating on the circular waveguide is directed in a different direction, so the light emitted from each tooth Have different polarization directions. Therefore, the polarization plane of the light emitted from the circular waveguide rotates with the passage of time. Therefore, when the coupling efficiency of the grating is constant, the emitted light is circularly polarized light.

【0008】[0008]

【実施例】本発明の一実施例である光結合器を図1に示
す。図中、(A)が上面図、(B)が側面図である。な
お、同図は光結合器の構成を模式的に示したもので、説
明の都合により円形導波路やグレーティングの周期など
の相対的な大きさは実際とは変えて示してある。
FIG. 1 shows an optical coupler according to an embodiment of the present invention. In the figure, (A) is a top view and (B) is a side view. The figure schematically shows the structure of the optical coupler, and the relative sizes of the circular waveguide and the period of the grating are shown differently from the actual size for convenience of explanation.

【0009】本実施例の光結合器は円形導波路12と、
この中に光を導入するための直線導波路14とを備えて
いる。円形導波路12と直線導波路14は共に使用する
光の波長程度の幅を有し、これらの導波路は最も接近し
た部分の隙間がその波長以下になるように支持基板16
の上に設けられている。直線導波路14に光を矢印の方
向に入射させると、直線導波路14内を伝搬する光の一
部が、直線導波路14と円形導波路12とが接近してい
る部分つまり図中の符号Aの近傍において円形導波路1
2の内部に進入する。この円形導波路12は、その内部
を波長2πr/n(rは円形導波路の半径、nはある自
然数)の光が矢印の方向に回り続けるように、半径・幅
・厚み・屈折率分布が設定されている。
The optical coupler of this embodiment includes a circular waveguide 12 and
The linear waveguide 14 for introducing light into this is provided. The circular waveguide 12 and the linear waveguide 14 have a width of about the wavelength of the light to be used, and these waveguides have a support substrate 16 such that the gap between the closest portions is equal to or less than the wavelength.
Is provided above. When light is incident on the linear waveguide 14 in the direction of the arrow, a part of the light propagating in the linear waveguide 14 is a portion where the linear waveguide 14 and the circular waveguide 12 are close to each other, that is, the reference numeral in the drawing. Circular waveguide 1 near A
Enter the inside of 2. The circular waveguide 12 has a radius / width / thickness / refractive index distribution so that light having a wavelength of 2πr / n (r is a radius of the circular waveguide, n is a natural number) continues to rotate in the direction of the arrow inside the circular waveguide 12. It is set.

【0010】円形導波路12の表面には2πr/(n+
1)のピッチでグレーティング12aが形成されてい
る。円形導波路上に点Aを選び、点Aを始点にπ/2づ
つ回転して得られる点をそれぞれB,C,Dとする。そ
して点A,点B,点C,点Dの各点における導波光とグ
レーティングの位相差をそれぞれΔφ(A),Δφ
(B),Δφ(C),Δφ(D)とする。時刻t=0で
Δφ(A)=0としたとき、Δφ(A),Δφ(B),
Δφ(C),Δφ(D)の時間変化を図2に示す。
On the surface of the circular waveguide 12, 2πr / (n +
The grating 12a is formed at the pitch of 1). Points A are selected on the circular waveguide, and points obtained by rotating the points A by π / 2 are referred to as B, C, and D, respectively. Then, the phase differences between the guided light and the grating at points A, B, C, and D are Δφ (A) and Δφ, respectively.
(B), Δφ (C), and Δφ (D). When Δφ (A) = 0 at time t = 0, Δφ (A), Δφ (B),
FIG. 2 shows changes in Δφ (C) and Δφ (D) with time.

【0011】ここで、円形導波路12の中心Oを通る支
持基板16に垂直な軸上において、点A,点B,点C,
点Dの各点の近傍からの放射光を観察した場合を考え
る。t=0で点A近傍からの放射光が振幅最大であると
すると、点C近傍からの放射光も振幅最大となる。これ
は、点Aと点Cでは導波光の進行方向が逆方向で、しか
もΔφ(A)とΔφ(C)が常にπ異なっていることに
よる。この時、点B近傍と点D近傍からの放射光は振幅
最小となる。これは、Δφ(B)とΔφ(D)がΔφ
(A)とそれぞれπ/2,−π/2異なるためである。
グレーティングから放射される光は、その偏光方向がグ
レーティングの延在する方向に対して一定しているた
め、t=0の瞬間には特定の偏光方向を持った直線偏光
が放射される。
Here, on the axis perpendicular to the support substrate 16 passing through the center O of the circular waveguide 12, points A, B, C,
Consider a case where radiation light from the vicinity of each point D is observed. When the emitted light from the vicinity of the point A has the maximum amplitude at t = 0, the emitted light from the vicinity of the point C also has the maximum amplitude. This is because the traveling directions of the guided light at the points A and C are opposite to each other, and Δφ (A) and Δφ (C) always differ by π. At this time, the radiated light from the vicinity of the point B and the vicinity of the point D has the minimum amplitude. This is because Δφ (B) and Δφ (D) are Δφ
This is because they are different from (A) by π / 2 and −π / 2, respectively.
Since the polarization direction of the light emitted from the grating is constant with respect to the extending direction of the grating, linearly polarized light having a specific polarization direction is emitted at the moment t = 0.

【0012】放射光が振幅最大となる点は時間の経過と
共に移動する。つまり、t=0では放射光の振幅が最大
となる点は点Aであるが、このような点は時間の経過に
ともなって矢印方向に移動して点B,点C,点Dと順に
移動したのち再び点Aに戻ってくる。これにともなって
放射光の偏光面も回転する。この結果、グレーティング
の結合効率が中心Oに対する角度方向に依らず一定の場
合には放射光は円偏光となる。また、中心Oに対する角
度方向に応じてグレーティングの結合効率を変えること
により容易に楕円偏光を得ることもできる。
The point where the emitted light has the maximum amplitude moves with the passage of time. That is, the point at which the amplitude of the radiated light becomes maximum at t = 0 is point A, but such a point moves in the direction of the arrow with the passage of time, and moves sequentially to point B, point C, and point D. After that, it returns to point A again. Along with this, the plane of polarization of the emitted light also rotates. As a result, when the coupling efficiency of the grating is constant regardless of the angle direction with respect to the center O, the emitted light becomes circularly polarized light. Further, elliptically polarized light can be easily obtained by changing the coupling efficiency of the grating according to the angle direction with respect to the center O.

【0013】このように本発明による光結合器では、円
形導波路に進入した光はその中を回りながらグレーティ
ングにより放射され続けるので結合効率が高くなり多量
の光を取り出せるようになる。しかも、放射光は円環状
のグレーティングから射出されるので、中心対称の強度
分布を有する好適なものとなる。また、使用目的に応じ
てグレーティングの結合効率を調整することにより所望
の円偏光や楕円偏光を得ることができる。
As described above, in the optical coupler according to the present invention, the light that has entered the circular waveguide continues to be radiated by the grating while rotating around the waveguide, so that the coupling efficiency is increased and a large amount of light can be extracted. Moreover, since the emitted light is emitted from the annular grating, it becomes a preferable one having a centrally symmetric intensity distribution. Further, desired circularly polarized light or elliptically polarized light can be obtained by adjusting the coupling efficiency of the grating according to the purpose of use.

【0014】本発明は、発明の要旨を逸脱しない範囲で
種々多くの変形が可能である。円形導波路に光を導入す
る手段やグレーティングの形状や導波光とグレーティン
グの周期の差などは、上述の実施例によって何ら限定さ
れるものではない。
The present invention can be modified in various ways without departing from the spirit of the invention. The means for introducing light into the circular waveguide, the shape of the grating, the difference in the period of the guided light and the grating, etc. are not limited to the above-described embodiments.

【0015】[0015]

【発明の効果】本発明によれば、光は円形の導波路の中
を回りながらグレーティングにより放射され続ける。従
って光結合器として用いた場合には結合効率が高くな
る。しかも、グレーティングの結合効率を適当に調整す
ることにより、円偏光や楕円偏光を容易に得ることがで
きる。また放射光は、円環状のグレーティングから射出
されるので中心対称の強度分布を有するものとなり、直
線状グレーティングからの放射光のような不均一さがな
くなる。
According to the present invention, light continues to be emitted by the grating as it travels through the circular waveguide. Therefore, when used as an optical coupler, the coupling efficiency becomes high. Moreover, circularly polarized light or elliptically polarized light can be easily obtained by appropriately adjusting the coupling efficiency of the grating. Further, since the emitted light is emitted from the annular grating, it has a centrally symmetric intensity distribution, and the non-uniformity like the emitted light from the linear grating is eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である光結合器を示し、
(A)が上面図、(B)が側面図である。
FIG. 1 shows an optical coupler according to an embodiment of the present invention,
(A) is a top view and (B) is a side view.

【図2】図1の導波路の各点A,B,C,Dでの導波光
とグレーティングの位相差を示す。
2 shows the phase difference between the guided light and the grating at each point A, B, C, D of the waveguide of FIG.

【符号の説明】[Explanation of symbols]

12…円形導波路、12a…グレーティング。 12 ... Circular waveguide, 12a ... Grating.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円形の導波路を有し、使用する光が円形
の導波路を半周したときに光とグレーティングの位相差
が実質的にπずれる周期のグレーティングがその表面に
設けられている、円形の導波路を有する光学素子。
1. A grating having a circular waveguide, the surface of which is provided with a grating whose period is such that the phase difference between the light and the grating is substantially π when the light used half-circulates the circular waveguide, An optical element having a circular waveguide.
JP21113391A 1991-08-22 1991-08-22 Optical element having a circular waveguide Expired - Lifetime JP3045575B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21113391A JP3045575B2 (en) 1991-08-22 1991-08-22 Optical element having a circular waveguide
US07/932,971 US5274720A (en) 1991-08-22 1992-08-20 Optical system having a ring-shaped waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21113391A JP3045575B2 (en) 1991-08-22 1991-08-22 Optical element having a circular waveguide

Publications (2)

Publication Number Publication Date
JPH0553023A true JPH0553023A (en) 1993-03-05
JP3045575B2 JP3045575B2 (en) 2000-05-29

Family

ID=16600936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21113391A Expired - Lifetime JP3045575B2 (en) 1991-08-22 1991-08-22 Optical element having a circular waveguide

Country Status (1)

Country Link
JP (1) JP3045575B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675999B (en) * 2013-11-25 2015-11-18 中国计量学院 Central circular micro-ring structure terahertz polarization transducer

Also Published As

Publication number Publication date
JP3045575B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
US4991926A (en) Integrated optics decorrelator
US4938594A (en) Asymmetric
JP2004511820A (en) Waveguide spatial filter
EP3770551A1 (en) Four port atomic gyroscope
EP2321680A1 (en) Method and system for coupling radiation
US4148556A (en) Multimode optic device
JPH05114767A (en) Manufacture of photocoupler
JPH0553023A (en) Optical element having circular waveguide
US20120050449A1 (en) Optical device, surface-emitting laser having such an optical device, electrophotographic apparatus having the surface-emitting laser as exposure light source
US6016375A (en) Wavelength selective fiber to fiber optical tap
US10908355B2 (en) Wave plate and divided prism member
JP3555888B2 (en) Self-guided optical circuit
JP5338796B2 (en) Light gyro
JPS62299913A (en) Waveguide type polarizer
JPH01238305A (en) Waveguide slot array antenna
JPH03263005A (en) Optical circuit element
JPH05224052A (en) Integrated type polarization splitter
JPH02168206A (en) Refractive index distribution coupler
JPS60111220A (en) Light signal processor
US20020097955A1 (en) Device for exciting modes an optical waveguide
Cichelero et al. Optical isolation in magnetoplasmonic diffraction gratings
JPS58203412A (en) Branching device of polarization plane preserving optical fiber type
JPH0561000A (en) Optical isolator
JPS635320A (en) Faraday rotator and optical isolator
JPH076403A (en) Optical branching device and optical disk device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000208