JPH01238305A - Waveguide slot array antenna - Google Patents

Waveguide slot array antenna

Info

Publication number
JPH01238305A
JPH01238305A JP6516788A JP6516788A JPH01238305A JP H01238305 A JPH01238305 A JP H01238305A JP 6516788 A JP6516788 A JP 6516788A JP 6516788 A JP6516788 A JP 6516788A JP H01238305 A JPH01238305 A JP H01238305A
Authority
JP
Japan
Prior art keywords
waveguide
dielectric
light
radiation beam
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6516788A
Other languages
Japanese (ja)
Inventor
Yoshihiko Konishi
善彦 小西
Shinichi Sato
眞一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6516788A priority Critical patent/JPH01238305A/en
Publication of JPH01238305A publication Critical patent/JPH01238305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To vary the radiation beam direction of a waveguide slot array antenna by loading a dielectric substance whose dielectric constant varies with the intensity of the transmitted light into a square waveguide and varying the intensity of light made incident on the dielectric substance. CONSTITUTION:A signal inputted from an input flange 4 into a square waveguide 1 is propagated in the square waveguide 1. Then the signal is radiated little by little from plural slots 2 into space. Moreover, the light incident from a light source 9 into the optical fiber 8 is made incident on the dielectric substance 7 loaded in the square waveguide 1 through the optical fiber 8 and propagated in the dielectric substance 7. With the intensity of light made incident on the dielectric substance 7 varied continuously from zero to one, the dielectric constant epsilon of the dielectric substance 7 varies continuously from epsilon1 to epsilon2. Furthermore, the guide wavelength lambdag of the signal propagated in the square waveguide 1 is varied continuously from lambdag1 to lambda2. Thus, the direction 5 of the radiation beam is changes as shown in the change 10 of the radiation beam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーダや通信用に用いられるアレーアンテ
ナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an array antenna used for radar or communication.

〔従来の技術〕[Conventional technology]

第9図は例えばRoE、 Coff1n、 F、J、Z
ucker著’ Antenna Theory pa
rt 1 〃、第590頁に示された従来の導波管スロ
ットアレーアンテナの斜視図、第10図は従来の導波管
スロットアレーアンテナの断面図であシ、各図において
(1)は方形導波管、(2)は上記方形導波管の幅広面
の導波管中心軸に沿って切られたスロツ)、+31は上
記方形導波管の一端に設けた無反射終端、(4)は入力
フランジ、(5)はこの導波管スロットアレーアンテナ
から空間に放射する放射ビームの方向を表すベクトル、
(6)は放射ビームである。
Figure 9 shows, for example, RoE, Coff1n, F, J, Z.
Written by Ucker' Antenna Theory pa
rt 1〃, a perspective view of a conventional waveguide slot array antenna shown on page 590, and FIG. 10 is a cross-sectional view of the conventional waveguide slot array antenna. In each figure, (1) is a square. waveguide, (2) is a slot cut along the waveguide central axis of the wide surface of the rectangular waveguide), +31 is a non-reflection termination provided at one end of the rectangular waveguide, (4) is the input flange, (5) is a vector representing the direction of the radiation beam radiated into space from this waveguide slot array antenna,
(6) is the radiation beam.

次に動作について説明する。入力フランジ(4)から方
形導波管(1)に入力した信号は、この方形導波管(1
)内を伝搬する。そして上記信号は複数個のスロット(
2)よシ少しずつ空間に放射され、上記スロット(2)
で空間に放射されなかった信号は無反射終端(3)に吸
収される。上記方形導波管+11内を伝搬する上記信号
の管内波長は上記方形導波管内で一定なので、上記スロ
ット(2)から空間に放射される信号の導波管中心軸方
向の位相分布はスロット(2)の配列間隔により定まシ
、この位相分布に対応した放射ビームの方向(5)に放
射ビーム(6)を形成する。
Next, the operation will be explained. The signal input from the input flange (4) to the rectangular waveguide (1) is transmitted through the rectangular waveguide (1).
) propagates within. And the above signal has multiple slots (
2) It is radiated into space little by little, and the above slot (2)
The signal that is not radiated into space is absorbed by the non-reflection termination (3). Since the internal wavelength of the signal propagating in the rectangular waveguide +11 is constant within the rectangular waveguide, the phase distribution of the signal radiated into space from the slot (2) in the waveguide central axis direction is A radiation beam (6) is formed in a radiation beam direction (5) that corresponds to this phase distribution determined by the arrangement interval of (2).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の導波管スロットアレーアンテナは以上のように構
成されておシ、方形導波管(1)内を伝搬する信号の管
内波長は一定なので、複数のスロット(2)から空間に
放射される信号の導波管中心軸方向の位相分布はスロッ
ト(2)の配列間隔で決まってしまう。そのため放射ビ
ームの方向(5)は固定され。
The conventional waveguide slot array antenna is constructed as described above.Since the wavelength of the signal propagating in the rectangular waveguide (1) is constant, it is radiated into space from the plurality of slots (2). The phase distribution of the signal in the direction of the central axis of the waveguide is determined by the arrangement interval of the slots (2). The direction (5) of the radiation beam is therefore fixed.

この放射ビームの方向(5)を可変することができない
という問題点があった。
There was a problem in that the direction (5) of this radiation beam could not be varied.

この発明は上記のような問題点を解消するためになされ
たもので、放射ビームの方向(5)を可変できる導波管
スロットアレーアンテナを得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a waveguide slot array antenna that can change the direction (5) of a radiation beam.

〔課題を解決するための手段〕 この発明に係る導波管スロットアレーアンテナは、透過
する光の強度により誘電率の変化する誘電体を方形導波
管内の全部、または一部に装荷し。
[Means for Solving the Problems] In the waveguide slot array antenna according to the present invention, a rectangular waveguide is entirely or partially loaded with a dielectric whose permittivity changes depending on the intensity of transmitted light.

この誘電体に光を入射させる機構を上記方形導波管に設
けたものである。
A mechanism for making light enter the dielectric is provided in the rectangular waveguide.

〔作用〕[Effect]

この発明における導波管スロットアレーアンテナは、透
過する光の強度により誘電率の変化する誘電体を方形導
波管内の全部、または一部に装荷し、この誘電体に入射
する光の強度を変えることにより上記誘電体の誘電率が
変化し、この誘電率の変化により上記誘電体が装荷され
た場所での信号の管内波長が変化し、この管内波長の変
化により、スロットから空間に放射する信号の位相分布
が変化し、この位相分布の変化により、形成される放射
ビームの方向が変化する。
In the waveguide slot array antenna of this invention, a dielectric material whose permittivity changes depending on the intensity of transmitted light is loaded in all or part of a rectangular waveguide, and the intensity of light incident on this dielectric material is changed. This causes the dielectric constant of the dielectric to change, and this change in dielectric constant changes the channel wavelength of the signal at the location where the dielectric is loaded, and due to this change in the channel wavelength, the signal radiated from the slot into space changes. The phase distribution of the radiation beam changes, and this change in phase distribution changes the direction of the radiation beam that is formed.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図は実施例の斜視図、第2図は実施例の断面図であシ、
各図においてillは方形導波管、(2)は上記方形導
波管(1)の幅広面の導波管中心軸に沿って切られた複
数個のスロッ) 、 +3+は上記方形導波管(1)の
一端に設けた無反射終端、(4)は入力フランジ、(5
)はこの実施例から空間に放射する放射ビームの方向を
表すベクトル、(6)は放射ビーム、(7)は上記方形
導波管(11内に装荷された透過光の強度により誘電率
の変化する誘電体、(8)は上記方形導波ft1) e
通して、上記誘電体(7)に光を入射させる光ファイバ
、(9)はこの光ファイバ(8)に接続されこの光ファ
イバ(8)に光を供給する光源、αG#″11.放射と
−ムの変化を表すベクトルである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a perspective view of the embodiment, and FIG. 2 is a sectional view of the embodiment.
In each figure, ill is a rectangular waveguide, (2) is a plurality of slots cut along the waveguide central axis of the wide surface of the rectangular waveguide (1)), and +3+ is the rectangular waveguide. (1) is the non-reflective termination provided at one end, (4) is the input flange, (5 is
) is a vector representing the direction of the radiation beam radiated into space from this example, (6) is the radiation beam, and (7) is the change in dielectric constant depending on the intensity of the transmitted light loaded in the rectangular waveguide (11). (8) is the rectangular waveguide ft1) e
an optical fiber (9) is connected to this optical fiber (8) and supplies light to this optical fiber (8), αG#''11. - is a vector representing the change in the value.

次に動作について説明する。入力フランジ(4)から方
形導波管(1)に入力した信号は、この方形導波管(1
)内を伝搬する。そして上記信号は複数個のスロット(
2)よシ少しずつ空間に放射され、上記スロット(2)
で空間に放射されなかった信号は無反射終端(3)に吸
収される。また光源(9)よシ光ファイバ(8)に入射
した光は、この光ファイバ(8)を通して上記方形導波
管(1)内に装荷された誘電体(7)に入射し。
Next, the operation will be explained. The signal input from the input flange (4) to the rectangular waveguide (1) is transmitted through the rectangular waveguide (1).
) propagates within. And the above signal has multiple slots (
2) It is radiated into space little by little, and the above slot (2)
The signal that is not radiated into space is absorbed by the non-reflection termination (3). Further, the light incident on the optical fiber (8) from the light source (9) is incident on the dielectric material (7) loaded in the rectangular waveguide (1) through this optical fiber (8).

この誘電体(7)内を伝搬する。上記方形導波管tit
内を伝搬する上記信号の管内波長λgは、上記誘電体(
7)の誘電率をCとすれば次式により与えられる。
It propagates within this dielectric (7). The above rectangular waveguide tit
The pipe wavelength λg of the signal propagating inside the dielectric (
If the dielectric constant of 7) is C, it is given by the following equation.

ま ただし、λは上記信号の自由空間波長、  g□は自由
空間の誘電率、aは上記方形導波管(1)の幅広面の寸
法である。上記誘電体(7)に入射する光の強度の最大
値を1とし、上記光源(9)が上記光ファイバ(8)に
出力する光の強度を変化させることにより上記誘電体(
7)に入射する光の強度を0から1まで連続的に変化す
ると、上記誘電体+71の誘電率δは第3図に示すよう
に81から62まで連続的に変化するっまた式(1)よ
り、上記方形導波管+11内を伝搬する上記信号の管内
波長λg も、上記誘電体(7)に入射する光の強度を
0から1まで連続的に変化させると第4図に示すように
λg1から2g2まで連続的に変化する。上記スロット
(2)から空間に放射される信号の導波管中心軸方向の
位相分布は、上記スロット(2)の配列間隔と、上記方
形導波管(1)内を伝搬する信号の管内波長λgにより
定まシ、この位相分布に対応した放射ビームの方向(5
)に放射ビーム(6)を形成する。このとき、上記管内
波長λgは、上記誘電体(7)に入射する光の強度の変
化により第4図に示すように変化し、そのため上記位相
分布が変化し、放射ビームの方向(5)が放射ビームの
変化al]に示すように変化するっすなわち上記誘電体
(7)に入射する光の強度を変化させることにより、放
射ビームの方向(5)を放射ビームの変化値1に示すよ
うに変えることができる。なお、上記方形導波管(11
を通して上記光ファイバ(8)から上記誘電体(7)に
光を入射させる位置は、この実施例に示すような方形導
波管tllの端面ではなく、方形導波管(1)の任意の
位置でも同様の効果が期待できる。
Further, λ is the free space wavelength of the signal, g□ is the dielectric constant of the free space, and a is the dimension of the wide surface of the rectangular waveguide (1). The maximum value of the intensity of light incident on the dielectric (7) is set to 1, and by changing the intensity of the light output from the light source (9) to the optical fiber (8), the dielectric (
7) When the intensity of light incident on the dielectric material +71 is continuously changed from 0 to 1, the dielectric constant δ of the dielectric +71 changes continuously from 81 to 62 as shown in Figure 3. Therefore, when the intensity of the light incident on the dielectric (7) is continuously changed from 0 to 1, the internal wavelength λg of the signal propagating in the rectangular waveguide +11 becomes as shown in FIG. It changes continuously from λg1 to 2g2. The phase distribution of the signal radiated into space from the slot (2) in the direction of the center axis of the waveguide is determined by the arrangement interval of the slot (2) and the internal wavelength of the signal propagating in the rectangular waveguide (1). The direction of the radiation beam corresponding to this phase distribution (5
) to form a radiation beam (6). At this time, the tube wavelength λg changes as shown in FIG. 4 due to a change in the intensity of the light incident on the dielectric (7), so the phase distribution changes and the direction (5) of the radiation beam changes. By changing the intensity of the light incident on the dielectric (7), the direction (5) of the radiation beam is changed as shown in change value 1 of the radiation beam. It can be changed. In addition, the above rectangular waveguide (11
The position at which light is made to enter the dielectric (7) from the optical fiber (8) through the optical fiber (8) is not the end face of the rectangular waveguide tll as shown in this embodiment, but any arbitrary position of the rectangular waveguide (1). However, similar effects can be expected.

第5図はこの発明の他の実施例の断面図であυ。FIG. 5 is a sectional view of another embodiment of the invention.

図において+11〜+51. +81〜αGは上記実施
例と同様である。(7)は上記方形導波管+11内の上
記スロット(2)と反対側の面に置かれた透過光の強度
により誘電率の変化する平板状の誘電体である。第5図
の実施例も上記実施例と同様の効果を奏する。第6図は
この発明の第3の実施例の断面図であシ、ビームスプリ
ッタ(Lυにより光源(9)からの光を複数個の光ファ
イバ(8)に分配し、複数の位置から誘電体(7)に光
を入射させるようにしたものである。また第1図及び第
8図は各々この発明の第4.第5の実施例の断面図であ
り、上記方形導波管(1)内のスロット(2)が切られ
ていない位置に、複数個の透過光の強度により誘電率が
変化する誘電体(7)を装荷し。
+11 to +51 in the figure. +81 to αG are the same as in the above embodiment. (7) is a flat dielectric whose dielectric constant changes depending on the intensity of transmitted light, which is placed on the opposite side of the slot (2) in the rectangular waveguide +11. The embodiment shown in FIG. 5 also has the same effects as the above embodiment. FIG. 6 is a sectional view of a third embodiment of the present invention, in which a beam splitter (Lυ) distributes light from a light source (9) to a plurality of optical fibers (8), (7).Furthermore, FIGS. 1 and 8 are cross-sectional views of the fourth and fifth embodiments of the present invention, respectively, in which the rectangular waveguide (1) A dielectric material (7) whose dielectric constant changes depending on the intensity of a plurality of transmitted lights is loaded in the position where the slot (2) is not cut.

各々の上記誘電体(7)に光ファイバ(8]から光を入
射するようにしたものである。これらの構成においても
上記実施例と同様の効果が期待できる。
Light is made to enter each of the dielectrics (7) from an optical fiber (8).The same effects as in the above embodiment can be expected with these configurations as well.

また、これらの実施例において光源(9)は、出力する
光の強度を可変できるものならばよく、レーザダイオー
ド、LED、白熱電球等その種類、構成は特に問わない
。また上記実施例においては光ファイバ(8)により誘
電体(7)に光を入射させているが、レーザダイオード
、LEDなどの小形の光源を上記方形導波管(1)に埋
め込んで、光源からの光を直接上記誘電体(7)に入射
させるようにしてもよい。また上記実施例におけるスロ
ット(2)は、方形導波管+11の幅広面の導波管中心
軸に沿って切られたスロットであるが、上記方形導波管
(1)の幅広面の導波管中心軸に直角に切られたスロッ
トや、導波管中心軸に対して斜めに切られたスロット、
及び方形導波管の狭い面に切られたスロットラスロット
(2)として用いても同様の効果が期待できる。
Further, in these embodiments, the light source (9) may be of any type as long as it can vary the intensity of the light it outputs, and its type and configuration are not particularly limited, such as a laser diode, LED, or incandescent light bulb. Furthermore, in the above embodiment, light is incident on the dielectric (7) through the optical fiber (8), but a small light source such as a laser diode or LED is embedded in the rectangular waveguide (1) to direct light from the light source. The light may be made to directly enter the dielectric (7). Furthermore, the slot (2) in the above embodiment is a slot cut along the waveguide center axis of the wide surface of the rectangular waveguide +11, but the slot (2) is a slot cut along the waveguide central axis of the wide surface of the rectangular waveguide (1). Slots cut perpendicular to the center axis of the tube, slots cut diagonally to the center axis of the waveguide,
Similar effects can also be expected by using it as a throttle slot (2) cut into the narrow side of a rectangular waveguide.

(発明の効果〕 以上のように、この発明によれば透過する光の強度によ
り誘電率の変化する誘電体を方形導波管内に装荷し、こ
の誘電体に光を入射させる機構を上記導波管に設け、こ
の誘電体に入射する光の強度を変えることにより、導波
管スロットアレーアンテナの放射ビームの方向を可変で
きるという効果がある。
(Effects of the Invention) As described above, according to the present invention, a dielectric whose permittivity changes depending on the intensity of transmitted light is loaded into a rectangular waveguide, and the mechanism for making light incident on this dielectric is used in the waveguide. By changing the intensity of light incident on the dielectric material provided in the tube, there is an effect that the direction of the radiation beam of the waveguide slot array antenna can be varied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による導波管スロットアレ
ーアンテナを示す斜視図、第2図はこの発明の一実施例
による導波管スロットアレーアンテナの断面図、第3図
は光の強度と誘電率の関係を表す図、第4図は光の強度
と管内波長の関係を表す図、第5図はこの発明の他の実
施例の断面図。 第6図はこの発明の第3の実施例の断面図、第7図はこ
の発明の第4の実施例の断面図、第8図はこの発明の第
5の実権例の断面図、第9図は従来の導波管スロットア
レーアンテナの斜視図、第1゜図は従来の導波管スロッ
トスレーアンテナの断面図である。(1〉は方形導波管
、(2)はスロワ)、+3)は無反射終端、(4)は入
力7ランジ、(5)は放射ビームの方向を表すベクトル
、(6)は放射ビーム、(7)は誘電体、(8)は光フ
ァイバ、(9)は光源、α〔は放射ビームの変化を表す
ベクトル、αυはビームスプリッタである。なお1図中
、同一符号は同一、又は相当部分を示す。
FIG. 1 is a perspective view showing a waveguide slot array antenna according to an embodiment of the present invention, FIG. 2 is a sectional view of a waveguide slot array antenna according to an embodiment of the invention, and FIG. 3 is a diagram showing the intensity of light. FIG. 4 is a diagram showing the relationship between the intensity of light and the wavelength within the tube, and FIG. 5 is a cross-sectional view of another embodiment of the present invention. 6 is a sectional view of a third embodiment of the invention, FIG. 7 is a sectional view of a fourth embodiment of the invention, FIG. 8 is a sectional view of a fifth embodiment of the invention, and FIG. 9 is a sectional view of a fifth embodiment of the invention. 1 is a perspective view of a conventional waveguide slot array antenna, and FIG. 1 is a sectional view of the conventional waveguide slot array antenna. (1> is the rectangular waveguide, (2) is the thrower), +3) is the non-reflective termination, (4) is the input 7 range, (5) is the vector representing the direction of the radiation beam, (6) is the radiation beam, (7) is a dielectric, (8) is an optical fiber, (9) is a light source, α is a vector representing a change in the radiation beam, and αυ is a beam splitter. In addition, in FIG. 1, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 方形導波管のひとつの壁面に複数個のスロットを切つた
導波管と、この導波管の一端に設けた無反射終端により
構成された導波管スロットアレーアンテナにおいて、光
の強度により誘電率が変化する誘電体を上記導波管内に
装荷し、この誘電体に光を入射させる機構を上記導波管
に設け、上記誘電体に入射する光の強度を変えることに
より導波管スロットアレーアンテナから空間に放射する
放射ビームの方向を可変できるようにしたことを特徴と
する導波管スロットアレーアンテナ。
A waveguide slot array antenna consists of a waveguide with multiple slots cut into one wall of the rectangular waveguide, and a non-reflection termination provided at one end of the waveguide. A waveguide slot array is created by loading a dielectric whose index changes into the waveguide, providing a mechanism in the waveguide to make light incident on the dielectric, and changing the intensity of the light incident on the dielectric. A waveguide slot array antenna characterized in that the direction of a radiation beam radiated into space from the antenna can be varied.
JP6516788A 1988-03-18 1988-03-18 Waveguide slot array antenna Pending JPH01238305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6516788A JPH01238305A (en) 1988-03-18 1988-03-18 Waveguide slot array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6516788A JPH01238305A (en) 1988-03-18 1988-03-18 Waveguide slot array antenna

Publications (1)

Publication Number Publication Date
JPH01238305A true JPH01238305A (en) 1989-09-22

Family

ID=13279056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6516788A Pending JPH01238305A (en) 1988-03-18 1988-03-18 Waveguide slot array antenna

Country Status (1)

Country Link
JP (1) JPH01238305A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010108546A (en) * 2000-05-29 2001-12-08 송재인 Array antenna
WO2005050785A1 (en) * 2003-11-21 2005-06-02 Samsung Electronics Co., Ltd. Planar antenna
FR2914112A1 (en) * 2007-03-20 2008-09-26 Thales Sa Rectangular-section waveguide for e.g. Doppler navigation radar aerial, has selective surface reflective or transparent to electro-magnetic waves at operating frequency of waveguide such that waveguide radiated in two distinct directions
CN103056608A (en) * 2012-12-11 2013-04-24 龙口丛林中德车体系统工程有限公司 Production method of microwave leaky waveguide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010108546A (en) * 2000-05-29 2001-12-08 송재인 Array antenna
WO2005050785A1 (en) * 2003-11-21 2005-06-02 Samsung Electronics Co., Ltd. Planar antenna
US8482472B2 (en) 2003-11-21 2013-07-09 Samsung Electronics Co., Ltd Planar antenna
FR2914112A1 (en) * 2007-03-20 2008-09-26 Thales Sa Rectangular-section waveguide for e.g. Doppler navigation radar aerial, has selective surface reflective or transparent to electro-magnetic waves at operating frequency of waveguide such that waveguide radiated in two distinct directions
CN103056608A (en) * 2012-12-11 2013-04-24 龙口丛林中德车体系统工程有限公司 Production method of microwave leaky waveguide

Similar Documents

Publication Publication Date Title
US5475776A (en) Optical mixing device
US4991926A (en) Integrated optics decorrelator
US3704996A (en) Optical coupling arrangement
US4674827A (en) Slab-type optical device
US6310991B1 (en) Integrated optical circuit
US4938594A (en) Asymmetric
US4773720A (en) Optical waveguide
US3289101A (en) Laser system with optical coherence coupling means
KR840006704A (en) Fiber Optic Switch and Discontinuous Variable Delay Lines
US6766078B1 (en) Grating structure and optical devices
CN109725385B (en) Light polarization state adjusting chip based on waveguide grating coupler
US5111466A (en) Optical multilayer structures for harmonic laser emission
US3969014A (en) Photoresist layer waveguide coupling device
US5796881A (en) Lightweight antenna and method for the utilization thereof
JPH0974245A (en) Semiconductor optical amplifier
JPH01238305A (en) Waveguide slot array antenna
US4794617A (en) External optical resonator for a semiconductor laser
Zhao et al. Low sidelobe silicon optical phased array with Chebyshev amplitude distribution
US3432223A (en) Modulator for a light beam
US4403152A (en) Optical fiber position sensor
JPH0758392A (en) Variable-wavelength optical device
JPH01291480A (en) Semiconductor laser with external resonator
CN108333681A (en) On piece integration section reflector based on fractional transmission formula corner reflection microscope group
US5493624A (en) Polarization state converter
CN111740786A (en) Integrated optical waveguide beam forming device