JPH05114767A - Manufacture of photocoupler - Google Patents

Manufacture of photocoupler

Info

Publication number
JPH05114767A
JPH05114767A JP29962491A JP29962491A JPH05114767A JP H05114767 A JPH05114767 A JP H05114767A JP 29962491 A JP29962491 A JP 29962491A JP 29962491 A JP29962491 A JP 29962491A JP H05114767 A JPH05114767 A JP H05114767A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
selective growth
layer
coupling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29962491A
Other languages
Japanese (ja)
Other versions
JP3084416B2 (en
Inventor
Osamu Mitomi
修 三冨
Masahiro Ikeda
正宏 池田
Kazuo Kasatani
和生 笠谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29962491A priority Critical patent/JP3084416B2/en
Publication of JPH05114767A publication Critical patent/JPH05114767A/en
Application granted granted Critical
Publication of JP3084416B2 publication Critical patent/JP3084416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2077Methods of obtaining the confinement using lateral bandgap control during growth, e.g. selective growth, mask induced

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To enable functional elements where devices are integrated to be optically coupled together small in loss. CONSTITUTION:An SiO2 selective growth mask 413 is formed on the (100) plane of an InP semiconductor substrate 401. At this point, a mask gap stripe (light propagating direction of optical waveguide) is set in orientation to a [011] direction. Next, a clad layer 408 is selectively grown as thick as tc through an epitaxial growth method. Furthermore, a core layer 409 is made to grow. After the selective growth mask 413 is removed, a clad layer 410 is formed on all the surface of the semiconductor substrate 401.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光導波路を伝わる光波
のスポット径を低損失で変換する光結合デバイスの製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical coupling device for converting a spot diameter of a light wave propagating through an optical waveguide with low loss.

【0002】[0002]

【従来の技術】半導体レーザダイオード(LD)と単一
モードファイバとの間を光結合させる場合、LD素子端
面とファイバとを直接突合わせ結合(バットジョイン
ト)させると、互いの光導波路光波スポットサイズが異
なっているために直接突合わせ部の結合損失が問題にな
る。通常、LDの光波スポットサイズ(モード半径:
W)は1μm程度であり、ファイバのスポットサイズは
約5μmであるので、この場合の結合損失は、約10d
Bになる。そこで、レンズにより、スポットサイズを変
換することによって結合損失を低減化する方法が一般に
とられている。
2. Description of the Related Art In the case of optically coupling a semiconductor laser diode (LD) and a single mode fiber, if the LD element end face and the fiber are directly butt-coupled (butt joint), the optical waveguide light wave spot size of each other. However, the coupling loss of the direct butting part becomes a problem because of the difference. Usually, LD light wave spot size (mode radius:
W) is about 1 μm, and the spot size of the fiber is about 5 μm, the coupling loss in this case is about 10 d.
Become B. Therefore, a method is generally used to reduce the coupling loss by converting the spot size with a lens.

【0003】複数のレーザダイオード(LD)を形成し
た光機能素子とアレーファイバとの間を1個のレンズで
光結合させる場合について、従来の構成例を図6に示
す。図6において、604は半導体基板、605はLD
の活性領域(光導波路部)、614はレンズ、606は
ファイバ、607はファイバ606を一定間隔で固定す
るためのV−グルーブアレーである。
FIG. 6 shows an example of a conventional configuration in the case of optically coupling an optical fiber having a plurality of laser diodes (LD) and an array fiber with a single lens. In FIG. 6, 604 is a semiconductor substrate and 605 is an LD.
Active region (optical waveguide part), 614 is a lens, 606 is a fiber, and 607 is a V-groove array for fixing the fiber 606 at regular intervals.

【0004】このような構成においては、LDの集積規
模が大きくなるにしたがってレンズの収差などの影響に
より結合損失が大きくなるために1個の半導体基板に集
積できるLDの個数に制限があった。
In such a configuration, as the LD integration scale increases, the coupling loss increases due to the effects of lens aberrations and the like, so that the number of LDs that can be integrated on one semiconductor substrate is limited.

【0005】図7に示すようなテーパ状の光導波路によ
り光のスポットサイズを変換する光結合デバイスを、レ
ンズの代わりとして用いることにより、LDとファイバ
との間を低損失に光結合させる方法がある。図7(a)
は従来の光結合デバイスの上から見た平面図,図7
(b)は断面図,図7(c)は動作原理を説明するため
の図である。すなわち図7(c)から分かるように光導
波路のコアー層709の屈折率差Δn[=(n2 −n
1 )/n1、n1 :クラッド層701,710の屈折
率、n2 :コアー層709の屈折率である]を一定の大
きさに固定した場合、コアー層709の大きさ、つまり
厚さt,幅wを0から次第に大きくしていくと、導波光
(基本モード光)のスポットサイズWは、無限の大きさ
から次第に小さくなり、極小値をとった後、再び大きく
なる関係がある。ここで厚さt,幅wが大きくなる過ぎ
ると、多モード導波路になり、高次モード変換による損
失が大きくなるために通常この領域の寸法は用いられな
い。この関係を利用して光結合デバイスのコアー層70
9のを大きさ、つまり厚さt,幅wの設計においては、
光入射端側(LDとの結合側)では、LD光のスポット
サイズ(約1μm)と同程度のスポットサイズWi を与
える寸法wi ,厚さti (=数100nm〜数μm)
に、光出射端側では、ファイバのスポットサイズ(約5
μm)と同程度の大きさWo を与える寸法to ,wo
(=数10〜数100nm)に設定される。また、コア
ー層709の大きさがテーパ状になる領域の長さlは、
放射による損失を低減するために数100μmから数m
m以上の長さにする必要がある。
An optical coupling device for converting the spot size of light by means of a tapered optical waveguide as shown in FIG. 7 is used as a substitute for a lens to optically couple the LD and the fiber with low loss. is there. Figure 7 (a)
Is a plan view of the conventional optical coupling device seen from above, and FIG.
7B is a sectional view, and FIG. 7C is a diagram for explaining the operation principle. That is, as can be seen from FIG. 7C, the refractive index difference Δn [= (n 2 −n of the core layer 709 of the optical waveguide.
1 ) / n 1 , n 1 is the refractive index of the cladding layers 701 and 710, and n 2 is the refractive index of the core layer 709, the size of the core layer 709, that is, the thickness When t and the width w are gradually increased from 0, the spot size W of the guided light (fundamental mode light) is gradually decreased from the infinite size, and after reaching the minimum value, there is a relation that it is increased again. Here, if the thickness t and the width w become too large, a multimode waveguide is formed, and the loss due to the higher-order mode conversion becomes large, so that the size of this region is not usually used. Utilizing this relationship, the core layer 70 of the optical coupling device
9 is the size, that is, in the design of thickness t and width w,
On the light incident end side (the side coupled to the LD), a dimension w i and a thickness t i (= several hundred nm to several μm) that give a spot size W i approximately the same as the LD light spot size (about 1 μm).
At the light emitting end side, the fiber spot size (about 5
size μm) to give the same degree of size W o t o, w o
(= Several tens to several hundreds nm). The length l of the region where the size of the core layer 709 is tapered is
Several hundred μm to several m to reduce loss due to radiation
It is necessary to make the length m or more.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
た従来のフォトリソグラフィ・エッチング技術を用いた
場合、製作上の分解能の制約から、特に出射端側の寸法
つまり厚さto ,幅woを設計値どうりに充分小さくす
ることが困難なために低損失の光結合デバイスを実現で
きなかった。
However, when the above-mentioned conventional photolithography / etching technique is used, the dimension of the emitting end side, that is, the thickness t o and the width w o are designed especially because of the limitation of the resolution in manufacturing. It was difficult to realize a low-loss optical coupling device because it was difficult to make the value sufficiently small.

【0007】したがって本発明は、前述した従来の課題
を解決するためになされたものであり、その目的は、前
述した異なる2つの光機能素子、特に複数のデバイスを
集積化した光機能素子間を低損失で光結合させることが
できる光結合デバイスの製造方法を提供することにあ
る。
Therefore, the present invention has been made in order to solve the above-mentioned conventional problems, and an object thereof is to provide the above-mentioned two different optical functional elements, especially between the optical functional elements in which a plurality of devices are integrated. An object of the present invention is to provide a method of manufacturing an optical coupling device capable of optical coupling with low loss.

【0008】[0008]

【課題を解決するための手段】このような目的を達成す
るために本発明は、光導波路のコアー部になる半導体層
をエピタキシャル成長させる際、テーパ状の間隔幅を有
する選択成長マスクを用いるものである。
In order to achieve such an object, the present invention uses a selective growth mask having a tapered interval width when epitaxially growing a semiconductor layer which becomes a core portion of an optical waveguide. is there.

【0009】[0009]

【作用】本発明においては、選択成長マスクを用いるこ
とにより、コアー部の厚さ,幅がテーパ状に形成され
る。
In the present invention, the thickness and width of the core portion are tapered by using the selective growth mask.

【0010】[0010]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明係わる光結合デバイスの一適
用例であり、アレーLD素子とファイバとの間に本発明
に係わる光結合デバイスを挿入し、低損失に光結合をと
る場合の構成を示す図である。図2は図1に示した本発
明に係わる光結合デバイスの構成を説明する図である。
図1(a)は上から見た平面図,図1(b)は断面図で
ある。同図において、101は本発明に係わる光結合デ
バイスの半導体基板、102はスポットサイズ変換導波
路、103は反射防止膜、104は半導体レーザ基板、
105はLD活性層(光導波路部)、106は単一モー
ド光ファイバ、107はV−グルーブアレーである。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is an application example of the optical coupling device according to the present invention, and is a diagram showing a configuration in which the optical coupling device according to the present invention is inserted between an array LD element and a fiber to achieve optical coupling with low loss. is there. FIG. 2 is a diagram for explaining the configuration of the optical coupling device according to the present invention shown in FIG.
1A is a plan view seen from above, and FIG. 1B is a sectional view. In the figure, 101 is a semiconductor substrate of an optical coupling device according to the present invention, 102 is a spot size conversion waveguide, 103 is an antireflection film, 104 is a semiconductor laser substrate,
Reference numeral 105 is an LD active layer (optical waveguide portion), 106 is a single mode optical fiber, and 107 is a V-groove array.

【0011】このような構成において、光結合デバイス
の光導波路によってLDの光波スポットサイズから、フ
ァイバのスポットサイズに変換されるので、LDと単一
モード光ファイバ106とを低損失に光結合させること
ができる。
In such a structure, since the light wave spot size of the LD is converted to the spot size of the fiber by the optical waveguide of the optical coupling device, the LD and the single mode optical fiber 106 are optically coupled with low loss. You can

【0012】図2(a)は本発明に係わる光結合デバイ
スの上から見た平面図、図2(b)は図2(a)のA−
A′線部(光入射端部)の断面図,図2(c)は図2
(a)のB−B′線部(光出射端部)の断面図である。
同図において、201はInPよりなる半導体基板であ
り、光導波路のクラッド部になる。208はInPやI
nGaAsPなどからなるクラッド層、209はInG
aAsP,InAlAsなどからなるコアー層、210
はInPなどからなるクラッド層である。211は入射
光、212は出射光である。コアー層209の幅w,厚
さtは、光入射部ではそれぞれwi ,ti であり、光出
射部ではそれぞれwo ,to である。また、クラッド層
208の幅w,厚さtは、光入出射部ではそれぞれ
mi,tc ,wmo,tc である。クラッド層208,コ
アー層209の屈折率の大きさは、それぞれn1 ,n2
である。クラッド層208にInPを用いる場合、波長
λ=1.55μm帯の光に対してはn1=3.166で
ある。また、InGaAsPの屈折率は、その組成によ
って約3.2から3.5程度まで任意の大きさに設定で
きる。
FIG. 2 (a) is a plan view of the optical coupling device according to the present invention as seen from above, and FIG. 2 (b) is A- of FIG. 2 (a).
FIG. 2C is a cross-sectional view of the line A '(light incident end).
It is sectional drawing of the BB 'line part (light emission edge part) of (a).
In the figure, 201 is a semiconductor substrate made of InP, which serves as a clad portion of the optical waveguide. 208 is InP or I
A clad layer made of nGaAsP or the like, 209 is InG
a core layer made of aAsP, InAlAs, or the like, 210
Is a clad layer made of InP or the like. Reference numeral 211 is incident light, and 212 is outgoing light. The width w and the thickness t of the core layer 209 are w i and t i at the light incident portion and w o and t o at the light emitting portion, respectively. The width w and the thickness t of the cladding layer 208 are w mi , t c , w mo , and t c in the light incident / exiting portion, respectively. The clad layer 208 and the core layer 209 have refractive indices of n 1 and n 2 respectively.
Is. When InP is used for the cladding layer 208, n 1 = 3.166 for light in the wavelength λ = 1.55 μm band. Further, the refractive index of InGaAsP can be set to an arbitrary value from about 3.2 to 3.5 depending on its composition.

【0013】このような構成において、光導波路におけ
る光波スポットサイズは、図7(c)に示したようにク
ラッド層208およびコアー層208の各寸法w,tと
屈折率nとの大きさに依存するので、例えばLDと光フ
ァイバとの光結合をとる場合、例えば図2の構成におい
て、光入射側のスポットサイズが、LDのスポットサイ
ズ(通常、モード半径Wは約1μm)と同程度の大きさ
になるようにwi ,t i の大きさを設定しており、光出
射側では、ファイバのスポットサイズ(W〜5μm)と
同程度のスポットサイズを与えるwo ,to を設定して
いる。例えばコアー層の屈折率差Δnが5〜10%程度
の場合、wi ,ti は数100nmから数μm程度にな
り、wo ,to は数10から数100nm程度の大きさ
になる。また、導波層がテーパ状になる領域の長さl
は、モードサイズ変換に伴う放射損失が充分小さくなる
ような大きさにしている。例えばl=数100μm〜数
mm程度になる。また、この領域において、導波路層の
大きさw,tは、階段状にwi ,ti からwo ,to
変えても良い。
In such a structure, the optical waveguide
The size of the light wave spot is as shown in Fig. 7 (c).
The respective dimensions w and t of the rud layer 208 and the core layer 208
Since it depends on the size of the refractive index n, for example, LD and optical flux
When the optical coupling with the fiber is taken, for example, in the configuration of FIG.
And the spot size on the light incident side is the LD spot size.
Size (usually the mode radius W is about 1 μm)
To become wi , T i The size of the
On the shooting side, the fiber spot size (W ~ 5 μm)
W that gives the same spot sizeo , To Set
There is. For example, the refractive index difference Δn of the core layer is about 5 to 10%.
If, wi , Ti From several 100 nm to several μm
Wo , To Is several tens to several hundreds of nm
become. Also, the length l of the region where the waveguide layer is tapered is
Reduces the radiation loss due to mode size conversion
It is sized like this. For example, l = several 100 μm to several
It becomes about mm. In this region, the waveguide layer
The sizes w and t are stepwise wi , Ti From wo , To To
You can change it.

【0014】次に前述したt,wを設計値の大きさに製
作するための原理を、図3に示す半導体基板の断面図に
より説明する。図3に示すように半導体基板301の結
晶(100)面上に形成したSiO2やSiNなどの絶
縁体よりなる選択成長マスク313のストライプ状の間
隙部に半導体層308,309をエピタキシャル成長さ
せる場合、例えばストライプ方向を[011]方向にと
ったとき、半導体層308,309は基板面に対して角
度θが約55度になるような形状で成長が進み、その厚
さが図中に示すhmax に到達した後は、成長速度が極め
て遅くなるので、実質的には成長が停止した状態になる
ことが知られている。したがって成長時間を充分長くと
った場合、半導体層308,309の厚さhmax は、 hmax =wm ・tanθ/2 程度の大きさになり、マスクの間隙幅wm により決ま
る。
Next, the principle for manufacturing the above-mentioned t and w to the design values will be described with reference to the sectional view of the semiconductor substrate shown in FIG. As shown in FIG. 3, when the semiconductor layers 308 and 309 are epitaxially grown in the stripe-shaped gaps of the selective growth mask 313 made of an insulator such as SiO 2 or SiN formed on the crystal (100) surface of the semiconductor substrate 301, For example, when the stripe direction is the [011] direction, the semiconductor layers 308 and 309 grow in a shape such that the angle θ is about 55 degrees with respect to the substrate surface, and the thickness thereof is h max shown in the figure. It is known that the growth rate is extremely slow after reaching, and the growth is substantially stopped. Therefore, when the growth time is set to be sufficiently long, the thickness h max of the semiconductor layers 308 and 309 becomes about h max = w m tan θ / 2 and is determined by the gap width w m of the mask.

【0015】一方、マスク間隙幅wm の製作可能な最小
幅は、使用するフォトリソグラフィ技術の空間分解能に
より制限され、例えば通常の紫外線露光技術を利用した
場合、その大きさは1μm前後となり、電子ビーム露光
描画技術の場合、100nm前後になる。しかし、製作
したマスクの間隙幅wmに対して図2に示すようにクラ
ッド層208を適当な厚さtc (<hmax )だけエピタ
キシャル成長させた後、コアー層209を形成すること
によってコアーの厚さtは、 t=wm ・tanθ/2−tc になる。したがって製作可能な幅wm に対して厚さtc
を適当な厚さにすることにより、t,wの大きさを原理
的にいくらでも小さくすることが可能になる。
On the other hand, the minimum manufacturable width of the mask gap width w m is limited by the spatial resolution of the photolithography technique used. For example, when the ordinary ultraviolet exposure technique is used, the size is about 1 μm, and In the case of the beam exposure drawing technique, it is around 100 nm. However, as shown in FIG. 2, the cladding layer 208 is epitaxially grown to an appropriate thickness t c (<h max ) with respect to the gap width w m of the manufactured mask, and then the core layer 209 is formed to form the core layer 209. The thickness t is t = w m tan θ / 2−t c . Therefore, the thickness t c with respect to the manufacturable width w m
In principle, the size of t and w can be made as small as possible by setting the thickness to an appropriate value.

【0016】図4は本発明による光結合デバイスの製造
方法の一実施例による工程を説明する図であり、図4
(a)は光結合デバイスの上方から見た平面図,図4
(b)〜図4(d)は断面図である。同図において、ま
ず、図4(a),(b)に示すようにInP半導体基板
401の(100)面上にSiO2 選択成長マスク41
3を形成する。このとき、マスク間隙のストライプ方向
(光導波路の光伝搬方向)を[011]方向に設定す
る。次に図4(c)に示すようにクラッド層408を厚
さtc だけエピタキシャル成長法により選択成長させ
る。さらにコアー層409を成長させる。次に図4
(d)に示すように選択成長マスク413を除去した
後、半導体基板401の全面にクラッド層410を形成
する。
FIG. 4 is a diagram for explaining a process according to an embodiment of a method for manufacturing an optical coupling device according to the present invention.
FIG. 4A is a plan view seen from above the optical coupling device, FIG.
4B to 4D are cross-sectional views. In the figure, first, as shown in FIGS. 4A and 4B, the SiO 2 selective growth mask 41 is formed on the (100) plane of the InP semiconductor substrate 401.
3 is formed. At this time, the stripe direction of the mask gap (light propagation direction of the optical waveguide) is set to the [011] direction. Next, as shown in FIG. 4C, the cladding layer 408 is selectively grown by the epitaxial growth method to the thickness t c . Further, the core layer 409 is grown. Next in FIG.
After removing the selective growth mask 413 as shown in (d), a cladding layer 410 is formed on the entire surface of the semiconductor substrate 401.

【0017】図5は本発明による光結合デバイスの製造
方法の他の実施例による工程を説明する図であり、図5
(a)は光結合デバイスの上方から見た平面図,図5
(b)は図5(a)のA−A′線部(光入射端部)の断
面図,図5(c)は図5(a)のB−B′線部(光出射
端部)の断面図である。同図において、この光結合デバ
イスは、図5(b)に示すように光入射端部のコアー層
509の厚さをti′ をhmax より小さい時点でエピタ
キシャル成長を止めることで製作できる。このコアー層
509は台形状になるので、導波光のフィールドパター
ンは楕円状になる。なお、図2の実施例では、導波光の
フィールドパターンは円状になる。通常、LDからの出
力光のフィールドパターンは楕円状になっているので、
本構造にすることにより、フィールドパターン偏差によ
る結合損失を低減できる効果が得られる。
FIG. 5 is a diagram for explaining a process according to another embodiment of the method of manufacturing an optical coupling device according to the present invention.
FIG. 5A is a plan view seen from above the optical coupling device, FIG.
5B is a cross-sectional view of the line AA '(light incident end) of FIG. 5A, and FIG. 5C is the line BB' of FIG. 5A (light emitting end). FIG. In this figure, this optical coupling device can be manufactured by stopping the epitaxial growth when the thickness t i ′ of the core layer 509 at the light incident end is smaller than h max as shown in FIG. 5B. Since the core layer 509 has a trapezoidal shape, the field pattern of the guided light has an elliptical shape. In the embodiment of FIG. 2, the field pattern of the guided light has a circular shape. Normally, the field pattern of the output light from the LD is elliptical,
With this structure, the effect of reducing the coupling loss due to the field pattern deviation can be obtained.

【0018】また、本発明において、例えばコアー層5
09を選択成長した後に通常のエッチング技術によって
コアー幅wi を任意の大きさに製作することも可能であ
る。
In the present invention, for example, the core layer 5
It is also possible to fabricate the core width w i to an arbitrary size by a usual etching technique after selectively growing 09.

【0019】以上では、InP基板上にスポットサイズ
変換用導波層を形成する場合について説明したが、他の
半導体材料、例えばGaAs系に対しても同様に製作で
きることは自明である。
Although the case where the spot size conversion waveguide layer is formed on the InP substrate has been described above, it is obvious that other semiconductor materials such as GaAs can be similarly manufactured.

【0020】また、この光結合デバイスは、半導体材料
より構成されるので、例えば半導体材料を用いたLD素
子や光スイッチなどの光機能素子の光入出射端部に本結
合デバイスを同一基板上にモノリシック集積化した光デ
バイスを、本発明により製作することも可能である。例
えば半導体基板上に光機能素子導波路を形成するとき、
本結合用導波路を同時に形成するあるいは光機能素子部
を形成した後、互いの導波路を直接突き合わせるように
光結合導波路を形成しても良い。
Since this optical coupling device is made of a semiconductor material, the present coupling device is formed on the same substrate at the light input / output end of an optical functional element such as an LD element or an optical switch using the semiconductor material. It is also possible to produce monolithically integrated optical devices according to the invention. For example, when forming an optical functional device waveguide on a semiconductor substrate,
The optical coupling waveguides may be formed so that the main coupling waveguides are formed at the same time or the optical functional element portion is formed, and then the mutual waveguides are directly abutted to each other.

【0021】[0021]

【発明の効果】以上、説明したように本発明によれば、
光導波路のコアー部になる半導体層をエピタキシャル成
長させるときにテーパ状の間隙幅を有する選択成長マス
クを用いることにより、コアー部の幅,厚さをテーパ状
に形成できる。また、マスク形成に用いるフォトリソグ
ラフィ技術の空間分解能の制限を受けることなく、極め
て微小の導波路を形成できる。このことから、異なる2
つの光機能素子、特に複数のデバイスを集積化した光機
能素子間を低損失で光結合をとる光結合デバイスを製作
することが可能となるなどの極めて優れた効果が得られ
る。
As described above, according to the present invention,
The width and thickness of the core portion can be tapered by using a selective growth mask having a tapered gap width when epitaxially growing a semiconductor layer to be the core portion of the optical waveguide. In addition, an extremely small waveguide can be formed without being limited by the spatial resolution of the photolithography technique used for mask formation. 2 from this
It is possible to produce one optical functional element, in particular, an optical coupling device in which a plurality of devices are integrated and optical coupling is performed with low loss between the optical functional elements.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる光結合デバイスをアレーLD素
子とファイバとの間に挿入した構成例を示す図である。
FIG. 1 is a diagram showing a configuration example in which an optical coupling device according to the present invention is inserted between an array LD element and a fiber.

【図2】本発明に係わる光結合デバイスの構成を説明す
る図である。
FIG. 2 is a diagram illustrating a configuration of an optical coupling device according to the present invention.

【図3】図2に示す光結合デバイスの製作方法の原理を
説明する図である。
FIG. 3 is a diagram illustrating the principle of a method of manufacturing the optical coupling device shown in FIG.

【図4】本発明による光結合デバイスの製造方法の一実
施例を説明する工程の図である。
FIG. 4 is a process diagram for explaining an example of a method for manufacturing an optical coupling device according to the present invention.

【図5】本発明による光結合デバイスの製造方法の他の
実施例を説明する工程の図である。
FIG. 5 is a process drawing for explaining another embodiment of the method of manufacturing the optical coupling device according to the present invention.

【図6】従来の光機能素子とアレーファイバとの光結合
方法を示す図である。
FIG. 6 is a diagram showing a conventional optical coupling method between an optical functional element and an array fiber.

【図7】従来の光結合デバイスの構成を示す図である。FIG. 7 is a diagram showing a configuration of a conventional optical coupling device.

【符号の説明】[Explanation of symbols]

101 半導体基板 102 スポットサイズ変換導波路 103 反射防止膜 104 半導体レーザ基板 105 LD活性層 106 光ファイバ 107 V−グルーブアレー 201 半導体基板 208 クラッド層 209 コアー層 210 クラッド層 211 入射光 212 出射光 301 半導体基板 308 半導体層 309 半導体層 313 選択成長マスク 401 半導体基板 408 クラッド層 409 コアー層 410 クラッド層 413 選択成長マスク 501 半導体基板 508 クラッド層 509 コアー層 510 クラッド層 101 semiconductor substrate 102 spot size conversion waveguide 103 antireflection film 104 semiconductor laser substrate 105 LD active layer 106 optical fiber 107 V-groove array 201 semiconductor substrate 208 clad layer 209 core layer 210 clad layer 211 incident light 212 emitted light 301 semiconductor substrate 308 semiconductor layer 309 semiconductor layer 313 selective growth mask 401 semiconductor substrate 408 clad layer 409 core layer 410 clad layer 413 selective growth mask 501 semiconductor substrate 508 clad layer 509 core layer 510 clad layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体よりなる選択成長マスクが形成さ
れた半導体基板上に行う少なくとも1つの光導波層のエ
ピタキシャル選択成長において、前記選択成長マスクの
間隙幅と前記光導波層の選択成長方位面の角度とにより
前記光導波層の厚さを制御し、かつ光導波方向に沿って
前記光導波層をテーパ状の厚さになるように形成するこ
とを特徴とする光結合デバイスの製造方法。
1. In the epitaxial selective growth of at least one optical waveguide layer performed on a semiconductor substrate on which a selective growth mask made of an insulator is formed, a gap width of the selective growth mask and a selective growth orientation plane of the optical waveguide layer. The method of manufacturing an optical coupling device, characterized in that the thickness of the optical waveguide layer is controlled by the angle of and the optical waveguide layer is formed so as to have a tapered thickness along the optical waveguide direction.
【請求項2】 絶縁体よりなる選択成長マスクが形成さ
れた半導体基板上に行う少なくとも1つのクラッド層お
よび光導波層のエピタキシャル選択成長において、前記
選択成長マスクの間隙幅と前記光導波層の選択成長方位
面の角度と前記クラッド層の厚さとにより、前記光導波
層の厚さを制御し、かつ光導波方向に沿って前記光導波
層をテーパ状の厚さになるように形成することを特徴と
する光結合デバイスの製造方法。
2. In the epitaxial selective growth of at least one cladding layer and an optical waveguide layer performed on a semiconductor substrate on which a selective growth mask made of an insulator is formed, a gap width of the selective growth mask and selection of the optical waveguide layer. The thickness of the optical waveguide layer is controlled by the angle of the growth azimuth plane and the thickness of the cladding layer, and the optical waveguide layer is formed to have a tapered thickness along the optical waveguide direction. A method for manufacturing a featured optical coupling device.
JP29962491A 1991-10-21 1991-10-21 Method for manufacturing optical coupling device Expired - Lifetime JP3084416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29962491A JP3084416B2 (en) 1991-10-21 1991-10-21 Method for manufacturing optical coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29962491A JP3084416B2 (en) 1991-10-21 1991-10-21 Method for manufacturing optical coupling device

Publications (2)

Publication Number Publication Date
JPH05114767A true JPH05114767A (en) 1993-05-07
JP3084416B2 JP3084416B2 (en) 2000-09-04

Family

ID=17875017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29962491A Expired - Lifetime JP3084416B2 (en) 1991-10-21 1991-10-21 Method for manufacturing optical coupling device

Country Status (1)

Country Link
JP (1) JP3084416B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302952A (en) * 1994-04-28 1995-11-14 Nec Corp Manufacture of semiconductor device
JPH08125279A (en) * 1994-10-27 1996-05-17 Nec Corp Tapered waveguide integrated semiconductor laser and manufacture thereof
JPH08211427A (en) * 1995-02-08 1996-08-20 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer and demultiplexer
WO1997024787A1 (en) * 1995-12-28 1997-07-10 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and process for producing the same
JPH11317563A (en) * 1998-05-06 1999-11-16 Nec Corp Semiconductor laser and manufacture thereof
US5991322A (en) * 1993-07-20 1999-11-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor optical device
KR100329681B1 (en) * 1993-08-04 2002-08-14 가부시끼가이샤 히다치 세이사꾸쇼 Semiconductor integrated circuit and manufacturing method
US6950588B2 (en) 2002-02-19 2005-09-27 Omron Corporation Optical wave guide, an optical component and an optical switch
JP2008509450A (en) * 2004-08-23 2008-03-27 モレックス インコーポレーテッド System and taper waveguide for improving optical coupling efficiency between optical fiber and integrated planar waveguide, and method for manufacturing the same
JP2011197453A (en) * 2010-03-19 2011-10-06 Furukawa Electric Co Ltd:The Semiconductor optical waveguide element, semiconductor optical waveguide array element, and method of manufacturing the same
US9335475B2 (en) 2013-09-20 2016-05-10 Oki Electric Industry Co., Ltd. Method of manufacturing an optical device having a stepwise or tapered light input/output part
WO2020196489A1 (en) * 2019-03-28 2020-10-01 Tdk株式会社 Integrated optical device
WO2021130807A1 (en) * 2019-12-23 2021-07-01 日本電信電話株式会社 Method for producing monolithic mirror

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991322A (en) * 1993-07-20 1999-11-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor optical device
KR100329681B1 (en) * 1993-08-04 2002-08-14 가부시끼가이샤 히다치 세이사꾸쇼 Semiconductor integrated circuit and manufacturing method
JPH07302952A (en) * 1994-04-28 1995-11-14 Nec Corp Manufacture of semiconductor device
JPH08125279A (en) * 1994-10-27 1996-05-17 Nec Corp Tapered waveguide integrated semiconductor laser and manufacture thereof
JPH08211427A (en) * 1995-02-08 1996-08-20 Nippon Telegr & Teleph Corp <Ntt> Optical multiplexer and demultiplexer
WO1997024787A1 (en) * 1995-12-28 1997-07-10 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and process for producing the same
US6104738A (en) * 1995-12-28 2000-08-15 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and process for producing the same
JPH11317563A (en) * 1998-05-06 1999-11-16 Nec Corp Semiconductor laser and manufacture thereof
US6950588B2 (en) 2002-02-19 2005-09-27 Omron Corporation Optical wave guide, an optical component and an optical switch
JP2008509450A (en) * 2004-08-23 2008-03-27 モレックス インコーポレーテッド System and taper waveguide for improving optical coupling efficiency between optical fiber and integrated planar waveguide, and method for manufacturing the same
JP2011197453A (en) * 2010-03-19 2011-10-06 Furukawa Electric Co Ltd:The Semiconductor optical waveguide element, semiconductor optical waveguide array element, and method of manufacturing the same
US9335475B2 (en) 2013-09-20 2016-05-10 Oki Electric Industry Co., Ltd. Method of manufacturing an optical device having a stepwise or tapered light input/output part
US20160223748A1 (en) * 2013-09-20 2016-08-04 Oki Electric Industry Co., Ltd. Optical device having a stepwise or tapered light input/output part and manufacturing method therefor
US9869815B2 (en) 2013-09-20 2018-01-16 Oki Electric Industry Co., Ltd. Optical device having a stepwise or tapered light input/output part and manufacturing method therefor
WO2020196489A1 (en) * 2019-03-28 2020-10-01 Tdk株式会社 Integrated optical device
WO2021130807A1 (en) * 2019-12-23 2021-07-01 日本電信電話株式会社 Method for producing monolithic mirror
JPWO2021130807A1 (en) * 2019-12-23 2021-07-01

Also Published As

Publication number Publication date
JP3084416B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
US5710847A (en) Semiconductor optical functional device
US5078516A (en) Tapered rib waveguides
JP2929481B2 (en) Optical function element
US8116602B2 (en) High efficiency optical mode transformer for matching a single mode fiber to a high index contrast planar waveguide
Smith et al. Reduced coupling loss using a tapered-rib adiabatic-following fiber coupler
JP2008147209A (en) Optical semiconductor device and optical waveguide device
JPH04243216A (en) Production of optical waveguide and optical integrated element and production thereof
JP2004133446A (en) Optical module and its manufacturing method
JPH05114767A (en) Manufacture of photocoupler
JPH05249331A (en) Waveguide type beam spot conversion element and production thereof
JPH06174982A (en) Optical coupling device
JP3941334B2 (en) Optical transmission module and optical communication system using the same
JPH02195309A (en) Optical coupling element
JP3178565B2 (en) Semiconductor optical device
US6553164B1 (en) Y-branch waveguide
JP2850996B2 (en) Optical coupling device
JPH0915435A (en) Optical coupling device and optical function device
JPH0961652A (en) Semiconductor optical waveguide and its production
JP6339965B2 (en) Optical waveguide fabrication method
JPH06194536A (en) Optical coupling device
JP3104798B2 (en) Integrated optical coupler and method of manufacturing the same
JP2965011B2 (en) Semiconductor optical device and method of manufacturing the same
JPH0667043A (en) Spot conversion element and its production
JPH05142435A (en) Waveguide type beam conversion element and production thereof
JPS61296785A (en) Semiconductor laser array device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070707

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 12