JPH0552394B2 - - Google Patents

Info

Publication number
JPH0552394B2
JPH0552394B2 JP60253745A JP25374585A JPH0552394B2 JP H0552394 B2 JPH0552394 B2 JP H0552394B2 JP 60253745 A JP60253745 A JP 60253745A JP 25374585 A JP25374585 A JP 25374585A JP H0552394 B2 JPH0552394 B2 JP H0552394B2
Authority
JP
Japan
Prior art keywords
cement
silicate
repaired
present
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60253745A
Other languages
Japanese (ja)
Other versions
JPS62117957A (en
Inventor
Shunsuke Tazawa
Katsuhiko Kurihara
Kenji Takeuchi
Masayoshi Tamura
Toshio Koike
Iku Oowa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Chemical Industry Co Ltd
Original Assignee
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Chemical Industry Co Ltd filed Critical Nitto Chemical Industry Co Ltd
Priority to JP25374585A priority Critical patent/JPS62117957A/en
Publication of JPS62117957A publication Critical patent/JPS62117957A/en
Publication of JPH0552394B2 publication Critical patent/JPH0552394B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、セメント系構造物の補修方法に関す
る。本発明の目的は、劣化して脆弱化または剥落
欠損したセメント系構造物の補修面の強度向上な
らびに内部の鉄筋の腐食抑制により、セメント系
構造物の劣化の進行を防止し耐久性を向上させる
セメント系構造物の補修方法を提供することにあ
る。 〔従来技術〕 従来、劣化した鉄筋コンクリートまたは無機質
材を補修する方法としては、それらの表面に水溶
性けい酸塩系化合物の溶液を塗布、含浸させた後
に、その表面にセメントペーストを被覆する方法
(特公昭57−11988号公報)が提案されている。 〔発明が解決しようとする問題点〕 劣化した鉄筋コンクリートまたは無機質材の表
面や亀裂個所には水分、油分、土砂、粉塵などの
異物が付着しているため、その表面に水溶性けい
酸塩系化合物溶液を単に塗布しただけでは本体に
浸透し難く、内部の鉄筋の腐食抑制効果が充分で
ない。このように従来の方法では、水溶性けい酸
塩系化合物溶液を用いて得られる効果が充分でな
いという難点がある。 〔問題点を解決するための手段〕 そこで本発明者らはこのような欠点を改良する
ために研究を重ね、補修面に水溶性けい酸塩系化
合物水溶液(以下、単に薬液ということがある)
を塗布する前に予めアルカリ剤含有液を浸透させ
ておくことによつて、薬液の本体への浸透深さが
大きくなり、内部の鉄筋の腐食抑制効果を持続さ
せると共に、補修面の強度を向上させることがで
きることを見出し本発明を完成するに至つた。 すなわち本発明は、水溶性けい酸塩系化合物を
用いてセメント系構造物を補修する方法におい
て、補修面にアルカリ金属の炭酸塩、りん酸塩、
ポリりん酸塩、アルミン塩酸および水酸化物から
なる群から選ばれた少なくとも1種の化合物を含
む液を予め浸透させた後に、水溶性けい酸塩系化
合物の水溶液を塗布または注入して前記構造物の
本体に浸透させることを特徴とするセメント系構
造物の補修方法を要旨とする。 以下、本発明について詳述する。 本発明の方法の特徴は、補修施工面に水溶性け
い酸塩系化合物の水溶液を塗布する前に予めアル
カリ剤含有液を浸透させるところにある。 補修対象物は構築または製作後、一般に長い年
月が経過していることから、水分や粉塵、土砂、
コロイド、油分、塩分などの異物が表面に付着し
たり、亀裂部の内部に詰つたりしている。このた
め、その表面に薬液を単に塗布して本体内部に浸
透させようとしても長時間を要したり浸透しなか
つたりする。 補修面に予めアルカリ剤含有液を浸透させるこ
とにより、補修対象物の本体内部への薬液の浸透
深さが大きくなり、本体内部の鉄筋の防食効果の
持続ならびに補修面の強度向上により補修対象物
の劣化の進行が防止できる。 本発明の補修方法の対象となるセメント系構造
物は、鉄筋コンクリートやコンクリート二次製品
などを含み、また水硬性無機質材である普通ポル
トランドセメント・早強セメント・超早強セメン
ト・中庸熱ポルトランドセメント・耐硫酸塩ポル
トランドセメント・白色ポルトランドセメントな
どのポルトランドセメント類、高炉セメント・シ
リカセメント・フライアツシユセメントなどの混
合セメント類、アルミナセメント・超速硬性セメ
ント(急硬セメント・ジエツトセメント)・コロ
イドセメント・数μmに粉砕したセメント・膨張
セメント・けい酸カルシウム・半水石膏・無水石
膏・石灰・フライアツシユスラグなどの特殊セメ
ント類などの一種または二種以上を主原料とし、
必要により各種の骨材・セメント混和剤などを加
え、水と混練した後硬化させたものを含む。 本発明において、補修対象物の中性化した部分
をアルカリ性化して鉄筋の腐蝕を抑制するために
用いる水溶性けい酸塩系化合物とは; 一般式:M2O・nSiO2で示されるけい酸塩の単
独、またはこれらの混合物をいう。 上記一般式において、MはLi、K、Na、Csな
どのアルカリ金属元素を表し、具体的にはけい酸
リチウム、けい酸カリウム、けい酸ナトリウム、
けい酸セシウムなどのけい酸アルカリ金属塩類を
挙げることができる。モル比(SiO2/M2O):n
の値は1〜100、好ましくは1〜10の範囲である。 また上記一般式において、Mがアンモニウム成
分として表せる化合物を用いることができ、この
ような化合物としては、けい酸メチルアミン、け
い酸エチルアミン、けい酸ジメチルアミン、けい
酸シイソプロピルアミン、けい酸トリメチルアミ
ン、けい酸トリエタノールアミンなどのけい酸ア
ミン類;けい酸アンモニウムのほかけい酸モノメ
チルトリエタノールアンモニウム、けい酸テトラ
エタノールアンモニウムなどの第4級アンモニウ
ムけい酸塩類を挙げることができる。 また本発明で用いる水溶性せい酸塩系化合物と
は、一般式:Si(OR)4、〔R:アルキル基を表す〕
で示されるテトラアルコキシシラン類(けい類エ
ステル類)を含み、具体的には、テトラメトキシ
シラン(けい酸メチル)、テトラエトキシシラン
(けい酸エチル)などを挙げることができる。 水溶性けい酸塩系化合物の乾燥硬化後の耐水性
を向上させるために、有機エステルまたはアルデ
ヒドなどの硬化剤を作業性、浸透性に悪影響を及
ぼさない範囲内で薬液に配合してもよい。 薬液中のけい酸塩系化合物の濃度は特に限定さ
れないが、10〜30重量%の範囲とするのが好まし
い。濃度がこの範囲より低いと硬化が小さく、高
いと浸透性が低下するので好ましくない。 また、鉄筋に対する防食効果を更に向上させる
ため、本発明の方法では薬液に防食剤を添加する
ことができる。 本発明で用いられる防食剤として無機系のもの
としては、クロム酸・亜硝酸・リン酸・ポリリン
酸・モリブデン酸・タングステン酸などの酸のナ
トリウム・カリウムなどのアルカリ金属塩の1種
または2種以上を用いることができる。 また、有機系のものとしては、一般に使用され
るアミン系、チオウレア系、メルカプタン系など
を挙げることができる。 防食剤の使用量は、特に限定されるものではな
いが、薬液有姿に対して10〜1000ppm程度添加す
ればよい。 本発明で用いるアルカリ剤としては、水溶液を
有する炭酸アルカリ類、りん酸アルカリ類、ポリ
りん酸アルカリ類、アルミン酸アルカリ類、水酸
化アルカリ類を挙げることができる。 具体的には、炭酸アルカリ類として炭酸ナトリ
ウム、炭酸カリウム、炭酸リチウムなどを、りん
酸アルカリ類としてはりん酸三ナトリウム、りん
酸三カリウムなどを、またポリりん酸アルカリ類
としてはトリポリりん酸ナトリウム、トリポリり
ん酸カリウム、メタりん酸ナトリウム、メタりん
酸カリウムなどを、水酸化アルカリ類として水酸
化ナトリウム、水酸化カリウム、水酸化リチウム
などを、アルミン酸アルカリ類としてはAl2O3
対するアルカリのモル比(Nn2OまたはK2O/
Al2O3)が1以上で水溶性のアルミン酸ナトリウ
ム、アルミン酸カリウムなどを挙げることができ
る。これらは1種または2種以上を混合して使用
することができる。 本発明で用いるアルカリ剤の作用機構は明らか
ではないが、次のように考えられる。セメント系
構造物中には、Ca(OH)2、CaO、CaSO4
NaCl、MgCl2などのけい酸塩系化合物水溶液を
ゲル化させるような化合物が含有されているた
め、補修面に塗布されたけい酸塩系化合物がこれ
らと接触すると、短時間の内にけい酸ゲルを生成
し、これが補修面の表層部の空隙を閉塞して、本
体内部へ薬液が浸透するのを妨げる。アルカリ剤
の存在によつてセメント系構造物中に含有される
上記の如き化合物とけい酸塩系化合物との反応に
よつて生成するけい酸ゲルの生成が抑制され、薬
液の浸透性が向上するものと考えられる。 これらのアルカリ剤は、水溶液の形で使用する
のが実用的である。濃度は特に限定するものでは
ないが、濃度が高過ぎると浸透性が低下し、希薄
過ぎると効果が小さい通常は0.01〜10重量%、好
ましくは0.1〜3重量%の範囲である。 これらのアルカリ剤含有液を補修面に浸透させ
るには通常の方法によつて塗布、または注入すれ
ばよい。 これらのアルカリ剤含有液には適宜、界面活性
剤や金属防食剤を添加しても良い。 なお、アルカリ剤とけい酸塩系化合物水溶液と
を混合して同時に補修面に塗布、または注入して
も本発明の効果は得られない。 補修面に浸透させた薬剤の溶出を防止してそれ
らの効果を継続させるため、薬剤を浸透させた後
に補修対象物の表面に防水性の被覆材を被覆積層
させることができる。この場合、薬液を本体内部
に浸透させた後、補修部分の表面に付着する薬液
およびその乾燥硬化被膜を除去して、補修対象物
の面を露出させてから被覆材を被覆積層させると
被覆材の壁面への接着強度の低下を防ぐことがで
きる。 防水性の被覆材としては、有機系接着剤、セメ
ントペースト、セメントモルタル、ポリマーセメ
ントペースト、ポリマーセメントモルタル、レジ
ンコンクリートなどの一種または二種以上を用い
ることができる。 本発明の防水性被覆材には、亀裂防止、強度増
強、剥離剥落防止などを目的として繊維状物を添
加することができる。 本発明で用いられる繊維状物としては、セメン
ト添加用として通常使用されている鋼繊維、ガラ
ス繊維、ビニロン、ナイロン、ポリエステルなど
の耐アルカリ性合成繊維、炭素繊維、石綿などを
挙げることができる。 なお、被覆材を積層する前に必要に応じ、被覆
材の支持材として各種のラス、または網などを補
修面にとりつけることができる。 〔発明の効果〕 本発明は、次のような効果を有する。 (1) セメント系構造物の補修面に塗布、または注
入する薬液の本体への浸透深さを大きくし、こ
れにより内部の鉄筋の腐食抑制効果を向上させ
ることができる。 (2) セメント系構造物の補修面に薬液を注入する
場合、薬液の注入圧を低くすることができる。 (3) セメント系構造物の表面の圧縮強度の増大さ
せることができる。 (4) 上記の相乗効果により、セメント系構造物の
耐久性を向上させることができる。 〔実施例〕 以下、実施例、および比較例により本発明を説
明する。なお、%は重量%を示す。 実施例1〜12、比較例1〜15 レデーミツクスコンクリート(呼び強度:300
Kg/cm2、スランプ12cm、粗骨材25mm)に対して、
塩害を想定してNaCl:1%相当量を添加し、適
宜の水で混練して、50×50×20cmのコンクリート
ブロツクを調製し、亀裂が生じないように養生し
て、約2年間室温に放置した供試体を用いた。 表−1に示す各種のアルカリ剤水溶液を刷毛を
用いて供試体の1表面に1m2あたり500c.c.塗布し、
浸透させた。次いで、この面にけい酸塩系化合物
20%水溶液を刷毛を用いて1m2あたり1を塗布
し浸透させた。1週間後にコンクリート供試体を
4mm厚さ毎に切断して、けい酸塩の分析を行い、
浸透深さを求めた。 また、比較のために前記の供試体に本発明のア
ルカリ剤を塗布せずに直接、けい酸塩系化合物水
溶液を塗布した場合と、アルカリ剤とけい酸塩系
化合物水溶液とを混合して同時に塗布した場合の
それぞれの薬液の浸透深さを調べた。 また、それぞれの場合の薬液処理後のコンクリ
ート供試体表面の圧縮強度を測定した。 結果を表−1に示す。 本発明の方法により、けい酸塩系化合物水溶液
の本体への浸透深さは、従来の方法による場合の
2〜3倍とすることができる。 アルカリ剤とけい酸塩系化合物水溶液とを混合
して同時に塗布した場合には、アルカリ剤の効果
は認められなかつた。(比較例:13、14、15) コンクリート供試体表面の圧縮強度は、薬液処
理をしない場合の値を100とする指数で示すと、
本発明の方法によつたとき105〜108となり圧縮強
度の増大が認められる。比較例では、指数は101
〜103でいづれも本発明の方法による場合よりも
強度が小さい。
[Industrial Field of Application] The present invention relates to a method for repairing cement-based structures. The purpose of the present invention is to prevent the progression of deterioration and improve the durability of cement-based structures by improving the strength of the repaired surfaces of cement-based structures that have deteriorated and become brittle or spalled, and by suppressing corrosion of internal reinforcing bars. An object of the present invention is to provide a method for repairing cement-based structures. [Prior Art] Conventionally, the method for repairing deteriorated reinforced concrete or inorganic materials is to apply and impregnate the surface with a solution of a water-soluble silicate compound, and then coat the surface with cement paste ( Special Publication No. 57-11988) has been proposed. [Problem to be solved by the invention] Foreign matter such as moisture, oil, sand, dust, etc. is attached to the surface or cracks of deteriorated reinforced concrete or inorganic materials, so water-soluble silicate compounds are attached to the surface of the deteriorated reinforced concrete or inorganic material. If the solution is simply applied, it will not easily penetrate into the main body, and the effect of inhibiting corrosion of the internal reinforcing bars will not be sufficient. As described above, the conventional method has the disadvantage that the effects obtained using the water-soluble silicate compound solution are not sufficient. [Means for Solving the Problems] Therefore, the present inventors have conducted repeated research in order to improve these drawbacks, and have applied an aqueous solution of a water-soluble silicate compound (hereinafter sometimes simply referred to as a chemical solution) to the repaired surface.
By pre-penetrating the area with an alkaline solution before applying it, the depth of penetration of the chemical solution into the main body becomes greater, sustaining the effect of inhibiting corrosion of internal reinforcing bars, and improving the strength of the repaired surface. The present invention was completed based on the discovery that this can be done. That is, the present invention provides a method for repairing a cement structure using a water-soluble silicate compound, in which an alkali metal carbonate, phosphate,
After infiltrating in advance a liquid containing at least one compound selected from the group consisting of polyphosphate, aluminium-hydrochloric acid, and hydroxide, an aqueous solution of a water-soluble silicate compound is applied or injected to form the structure. The gist of this article is a method for repairing cement-based structures, which is characterized by infiltration into the body of the object. The present invention will be explained in detail below. A feature of the method of the present invention is that before applying an aqueous solution of a water-soluble silicate compound to the surface to be repaired, an alkaline agent-containing solution is infiltrated in advance. Generally, many years have passed since the object to be repaired was constructed or manufactured, so it may be exposed to moisture, dust, dirt, etc.
Foreign matter such as colloids, oil, and salt adheres to the surface or gets stuck inside the cracks. For this reason, even if a chemical solution is simply applied to the surface and attempts to penetrate the inside of the main body, it may take a long time or may not penetrate at all. By infiltrating the repaired surface with a solution containing an alkaline agent in advance, the depth of penetration of the chemical solution into the interior of the object to be repaired is increased, and the anticorrosion effect of the reinforcing bars inside the main body is maintained, and the strength of the repaired surface is improved, which improves the strength of the object to be repaired. The progress of deterioration can be prevented. Cement structures targeted by the repair method of the present invention include reinforced concrete, secondary concrete products, etc., and hydraulic inorganic materials such as ordinary Portland cement, early strength cement, ultra early strength cement, moderate heat Portland cement, Portland cements such as sulfate-resistant Portland cement and white Portland cement, mixed cements such as blast furnace cement, silica cement, fly ash cement, alumina cement, ultra-fast hardening cement (rapid hardening cement, jet cement), colloid cement, etc. The main raw material is one or more types of special cements such as cement, expanded cement, calcium silicate, hemihydrate gypsum, anhydrite, lime, fly ash slag, etc., which have been ground into micrometers.
Includes materials made by adding various aggregates, cement admixtures, etc. as necessary, kneading with water, and then hardening. In the present invention, the water-soluble silicate compound used to alkalize the neutralized part of the repair target and suppress corrosion of the reinforcing steel is: Silicic acid represented by the general formula: M 2 O・nSiO 2 Refers to a single salt or a mixture thereof. In the above general formula, M represents an alkali metal element such as Li, K, Na, or Cs, specifically lithium silicate, potassium silicate, sodium silicate,
Alkali metal silicate salts such as cesium silicate can be mentioned. Molar ratio (SiO 2 /M 2 O): n
The value of is in the range 1-100, preferably 1-10. In the above general formula, compounds in which M can be represented as an ammonium component can be used, and examples of such compounds include methylamine silicate, ethylamine silicate, dimethylamine silicate, cyisopropylamine silicate, trimethylamine silicate, Silicate amines such as triethanolamine silicate; in addition to ammonium silicate, quaternary ammonium silicates such as monomethyltriethanolammonium silicate and tetraethanolammonium silicate can be mentioned. In addition, the water-soluble salt salt compound used in the present invention has the general formula: Si(OR) 4 , [R: represents an alkyl group]
It includes tetraalkoxysilanes (siliceous esters) represented by the following, and specific examples thereof include tetramethoxysilane (methyl silicate), tetraethoxysilane (ethyl silicate), and the like. In order to improve the water resistance of the water-soluble silicate compound after drying and curing, a curing agent such as an organic ester or an aldehyde may be added to the chemical solution within a range that does not adversely affect workability and permeability. Although the concentration of the silicate compound in the chemical solution is not particularly limited, it is preferably in the range of 10 to 30% by weight. If the concentration is lower than this range, curing will be small, and if it is higher than this range, the permeability will decrease, which is not preferable. Moreover, in order to further improve the anticorrosive effect on reinforcing bars, an anticorrosive agent can be added to the chemical solution in the method of the present invention. Inorganic anticorrosive agents used in the present invention include one or two alkali metal salts such as sodium and potassium of acids such as chromic acid, nitrous acid, phosphoric acid, polyphosphoric acid, molybdic acid, and tungstic acid. The above can be used. Further, examples of the organic type include commonly used amine type, thiourea type, mercaptan type and the like. The amount of the anticorrosive agent to be used is not particularly limited, but it may be added in an amount of about 10 to 1000 ppm based on the chemical solution. Examples of the alkali agents used in the present invention include alkali carbonates, alkali phosphates, alkali polyphosphates, alkali aluminates, and alkali hydroxides having aqueous solutions. Specifically, the alkali carbonates include sodium carbonate, potassium carbonate, lithium carbonate, etc., the alkali phosphates include trisodium phosphate, tripotassium phosphate, etc., and the alkali polyphosphates include sodium tripolyphosphate. , potassium tripolyphosphate, sodium metaphosphate, potassium metaphosphate, etc., alkali hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, etc., and alkali aluminates such as alkali against Al 2 O 3 . Molar ratio (Nn 2 O or K 2 O/
Examples include water-soluble sodium aluminate and potassium aluminate with Al 2 O 3 ) of 1 or more. These can be used alone or in combination of two or more. Although the mechanism of action of the alkaline agent used in the present invention is not clear, it is thought to be as follows. Cement structures contain Ca(OH) 2 , CaO, CaSO 4 ,
Contains compounds such as NaCl and MgCl2 that can gel an aqueous solution of silicate compounds, so if the silicate compound applied to the repaired surface comes into contact with these compounds, silicate will form within a short period of time. A gel is generated, which closes the voids in the surface layer of the repaired surface and prevents the chemical solution from penetrating into the interior of the main body. The presence of an alkaline agent suppresses the formation of silicic acid gel produced by the reaction between the above-mentioned compounds contained in the cement structure and the silicate-based compound, thereby improving the permeability of the chemical solution. it is conceivable that. It is practical to use these alkaline agents in the form of an aqueous solution. The concentration is not particularly limited, but if the concentration is too high, the permeability will decrease, and if it is too dilute, the effect will be small.It is usually in the range of 0.01 to 10% by weight, preferably 0.1 to 3% by weight. These alkaline agent-containing liquids may be applied or injected by a conventional method to penetrate into the repaired surface. A surfactant or a metal anticorrosive agent may be added to these alkaline agent-containing liquids as appropriate. Note that even if the alkaline agent and the silicate compound aqueous solution are mixed and applied or injected onto the repaired surface at the same time, the effects of the present invention cannot be obtained. In order to prevent the elution of the chemicals that have penetrated into the repaired surface and to maintain their effects, a waterproof coating material can be laminated on the surface of the object to be repaired after the chemicals have penetrated into the repaired surface. In this case, after the chemical solution has penetrated into the main body, the chemical solution adhering to the surface of the repaired area and its dried and cured film are removed to expose the surface of the repaired object, and then the coating material is laminated. This can prevent a decrease in adhesive strength to the wall surface. As the waterproof covering material, one or more of organic adhesives, cement paste, cement mortar, polymer cement paste, polymer cement mortar, resin concrete, etc. can be used. A fibrous material can be added to the waterproof coating material of the present invention for the purpose of preventing cracking, increasing strength, preventing peeling, etc. Examples of the fibrous material used in the present invention include steel fibers, glass fibers, alkali-resistant synthetic fibers such as vinylon, nylon, and polyester, carbon fibers, and asbestos, which are commonly used for cement addition. In addition, before laminating the covering material, various laths, nets, etc. can be attached to the repaired surface as a supporting material for the covering material, if necessary. [Effects of the Invention] The present invention has the following effects. (1) It is possible to increase the penetration depth of the chemical solution applied or injected to the repaired surface of a cement structure into the main body, thereby improving the effect of inhibiting corrosion of internal reinforcing bars. (2) When injecting a chemical into the repaired surface of a cement structure, the injection pressure of the chemical can be lowered. (3) The compressive strength of the surface of cement-based structures can be increased. (4) Due to the above synergistic effect, the durability of cement-based structures can be improved. [Example] The present invention will be described below with reference to Examples and Comparative Examples. Note that % indicates weight %. Examples 1 to 12, Comparative Examples 1 to 15 Redemix concrete (nominal strength: 300
Kg/ cm2 , slump 12cm, coarse aggregate 25mm),
Assuming salt damage, an amount equivalent to 1% NaCl was added and mixed with appropriate water to prepare a 50 x 50 x 20 cm concrete block, cured to prevent cracks, and left at room temperature for about 2 years. A specimen that had been left alone was used. Using a brush, apply 500 c.c. of the various alkaline aqueous solutions shown in Table 1 to one surface of the specimen per 1 m2.
Infiltrated. Next, a silicate-based compound is applied to this surface.
A 20% aqueous solution was applied using a brush at a rate of 1/m 2 and allowed to penetrate. One week later, the concrete specimens were cut into 4mm thick pieces and analyzed for silicate.
Determine the penetration depth. In addition, for comparison, a case where the silicate compound aqueous solution was directly applied to the above specimen without applying the alkaline agent of the present invention, and a case where the alkali agent and the silicate compound aqueous solution were mixed and applied simultaneously. The penetration depth of each chemical solution was investigated. In addition, the compressive strength of the concrete specimen surface after chemical treatment in each case was measured. The results are shown in Table-1. By the method of the present invention, the depth of penetration of the aqueous silicate compound solution into the body can be increased to 2 to 3 times that by conventional methods. When an alkaline agent and an aqueous silicate compound solution were mixed and applied simultaneously, no effect of the alkaline agent was observed. (Comparative examples: 13, 14, 15) The compressive strength of the concrete specimen surface is expressed as an index with the value when no chemical treatment is taken as 100.
When the method of the present invention was used, the result was 105 to 108, indicating an increase in compressive strength. In the comparative example, the exponent is 101
~103, the strength is lower than that obtained by the method of the present invention.

【表】【table】

【表】 実施例 13 建築後25年経過した3階建RC造建造物の劣化
した外壁面に、アルカリ剤として水酸化リチウム
1%水溶液を0.5/m2塗布浸透させた後、けい
酸カリウム(n=3.3):18%水溶液を1/m2
入した。 この時の注入圧力は、0.05〜0.1Kg/cm2−Gで
あつた。けい酸カリウム水溶液の浸透深さは、亀
裂の入つていない個所を削孔して、これを表面か
ら3mm厚さ毎に切断し分析を行つた結果、平均12
mmであつた。 一方、比較のため、アルカリ剤を塗布せずに外
壁面に直接に上記と同様のけい酸カリウム水溶液
を1/m2注入した。薬液の注入圧力を、0.05〜
0.1Kg/cm2−Gとした個所の薬液の浸透深さは、
平均4mmであつた。注入圧力を、前記の本発明の
方法によつた場合に比較して高い0.2〜0.25Kg/
cm2−Gとすることで薬液の浸透深さを本発明と同
様の平均12mmとすることができた。 注入の施工が終了した後、外壁面を乾燥し、表
面に付着しているけい酸カリウム硬化被膜を削り
取り、露出されたコンクリートの面に防水性被覆
材としてSBRラテツクス水溶液(固形分:20%)
を500c.c./cm2塗つた後、剥落部分には合成樹脂製
ネツトを張つて、急硬セメントに対して固形分で
10%相当量のSBRラテツクスおよびセメントに
対して2倍量の砂を混合したセメントモルタルで
被覆した。次に、アクリルゴム系防水外装材で被
覆して仕上げた。 施工1年後に鉄筋を露出させて検査したところ
鉄筋周辺部のコンクリートは強アルカリ性を維持
しており、鉄筋の発錆は認められなかつた。 また、3年経過した時点で調査したが、何ら異
常は認められなかつた。 比較のため、アルカリ剤を塗布せずにけい酸カ
リウム水溶液を注入した個所は、鉄筋周辺部のコ
ンクリートは中性化の傾向が認められ、また鉄筋
の表面に発錆が認められた。
[Table] Example 13 A 1% aqueous solution of lithium hydroxide was applied as an alkaline agent at 0.5/m 2 to the deteriorated exterior wall surface of a three-story RC building that had been constructed for 25 years. After that, potassium silicate ( n=3.3): A 18% aqueous solution was injected at 1/m 2 . The injection pressure at this time was 0.05 to 0.1 Kg/cm 2 -G. The penetration depth of the potassium silicate aqueous solution was determined by drilling holes in areas with no cracks, cutting them every 3 mm from the surface, and analyzing them. The average depth was 12.
It was warm in mm. On the other hand, for comparison, the same potassium silicate aqueous solution as above was injected at 1/m 2 directly onto the outer wall surface without applying an alkaline agent. Adjust the injection pressure of the chemical solution to 0.05~
The penetration depth of the chemical solution at the location set to 0.1Kg/cm 2 -G is:
The average diameter was 4 mm. The injection pressure is 0.2 to 0.25 kg/high compared to the method of the present invention described above.
By setting cm 2 -G, the penetration depth of the chemical liquid could be set to an average of 12 mm, which is the same as in the present invention. After the injection work is completed, the exterior wall surface is dried, the hardened potassium silicate film adhering to the surface is scraped off, and an aqueous SBR latex solution (solid content: 20%) is applied to the exposed concrete surface as a waterproof coating.
After applying 500 c.c./cm 2 of 500 c.c./cm 2 , a synthetic resin net was placed over the peeled off part, and the solid content was applied to the rapidly hardening cement.
It was covered with a cement mortar made by mixing 10% equivalent SBR latex and twice the amount of sand to the cement. Next, it was finished by covering it with an acrylic rubber waterproof exterior material. When the reinforcing bars were exposed and inspected one year after construction, the concrete around the reinforcing bars remained highly alkaline, and no rusting was observed on the reinforcing bars. In addition, an investigation was conducted after 3 years had passed, but no abnormalities were found. For comparison, in areas where an aqueous potassium silicate solution was injected without applying an alkaline agent, the concrete around the reinforcing bars tended to become neutralized, and rust was observed on the surfaces of the reinforcing bars.

Claims (1)

【特許請求の範囲】[Claims] 1 水溶性けい酸塩系化合物を用いてセメント系
構造物を補修する方法において、補修面にアルカ
リ金属の炭酸塩、りん酸塩、ポリりん酸塩、アル
ミン酸塩および水酸化物からなる群から選ばれた
少なくとも1種の化合物を含む液を予め浸透させ
た後に、水溶性けい酸塩系化合物の水溶液を塗布
または注入して前記構造物の本体に浸透させるこ
とを特徴とするセメント系構造物の補修方法。
1. In a method of repairing a cement structure using a water-soluble silicate compound, the repaired surface is coated with an alkali metal selected from the group consisting of carbonates, phosphates, polyphosphates, aluminates, and hydroxides. A cement structure characterized in that a liquid containing at least one selected compound is infiltrated in advance, and then an aqueous solution of a water-soluble silicate compound is applied or injected to infiltrate the main body of the structure. How to repair.
JP25374585A 1985-11-14 1985-11-14 Reparing of cementitious structure Granted JPS62117957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25374585A JPS62117957A (en) 1985-11-14 1985-11-14 Reparing of cementitious structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25374585A JPS62117957A (en) 1985-11-14 1985-11-14 Reparing of cementitious structure

Publications (2)

Publication Number Publication Date
JPS62117957A JPS62117957A (en) 1987-05-29
JPH0552394B2 true JPH0552394B2 (en) 1993-08-05

Family

ID=17255548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25374585A Granted JPS62117957A (en) 1985-11-14 1985-11-14 Reparing of cementitious structure

Country Status (1)

Country Link
JP (1) JPS62117957A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147065A (en) * 1986-12-10 1988-06-20 小野田エー・エル・シー株式会社 Method of repairing light-weight aerated concrete building
FR2765572B1 (en) * 1997-07-04 1999-09-10 Chanin Sa PROCESS FOR TREATING CONCRETE STRUCTURES AFFECTED BY ALKALI-REACTION
JP4532138B2 (en) * 2004-02-27 2010-08-25 相馬 尚文 Concrete modifier and method for producing the same
JP4616930B1 (en) * 2010-06-08 2011-01-19 有限会社シモダ技術研究所 Protecting concrete structures
JP5385213B2 (en) * 2010-06-08 2014-01-08 有限会社シモダ技術研究所 Method for preventing deterioration of concrete structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711988A (en) * 1980-06-23 1982-01-21 Shionogi & Co Ltd Esterification of epipenicilin oxide
JPS6073967A (en) * 1983-09-12 1985-04-26 戸田建設株式会社 Regeneration treatment and composition of concrete layer of concrete construction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711988A (en) * 1980-06-23 1982-01-21 Shionogi & Co Ltd Esterification of epipenicilin oxide
JPS6073967A (en) * 1983-09-12 1985-04-26 戸田建設株式会社 Regeneration treatment and composition of concrete layer of concrete construction

Also Published As

Publication number Publication date
JPS62117957A (en) 1987-05-29

Similar Documents

Publication Publication Date Title
CA2974729C (en) Corrosion resistant spray applied fire resistive materials
KR101637987B1 (en) Patching repair material and repairing method of deteriorated reinforced concrete structures
JP4787187B2 (en) Rapid hardened mortar and repair method using the same
US5531824A (en) Method of increasing density and strength of highly siliceous cement-based materials
KR102195453B1 (en) Crack repairing material for concrete structure with improved water proof performance and durability and method of repairing concrete structure using the same
KR101166792B1 (en) Restroative mortar compositions for cross section restorations and repairing method of reinforced concrete using that
JP7234001B2 (en) Repair method for polymer cement mortar and reinforced concrete
JPH0761852A (en) Cement composition
DK158301B (en) CEMENT MIXTURE AND ITS APPLICATION
CN111333403A (en) Preparation method and application of phosphorus-magnesium-based cement concrete coating protective material
JP2006306647A (en) Alumina cement composition and repairing method using the same
JPH0468272B2 (en)
JPH0552394B2 (en)
JP2017210407A (en) Polymer cement mortar and method using polymer cement mortar
Shah et al. Chemical admixtures: a major role in modern concrete materials and technologies
JP2534932B2 (en) Concrete cement admixture for repair, concrete cement composition for repair, and repair method using the same
KR101102249B1 (en) Method for repairing reinforced concrete structure using mortar having anticorrosive
US4802923A (en) Benefaction of concrete and aggregate using calcium phosphate
RU2235083C2 (en) Material for waterproofing of porous building surface
KR101977275B1 (en) Earthquake-resistant mortar composition using silicon nitride and construction method thereof
KR101931721B1 (en) Method for repairing concrete structure using eco-friendly inorganic polymer
Al-Jabari 9-Hydrophilic crystallization waterproofing
JP7014616B2 (en) Cement-based surface treatment materials, surface treatment materials, concrete structures, and concrete surface protection methods
JP2018016510A (en) Surface modifier of concrete and method for improving surface quality of concrete using the same
KR20210041869A (en) Bondability improving agent for rapid hardening repair and reinforcement mortar, Rapid hardening repair and reinforcement mortar using the same and Method of repair and reinforcement of concrete structure using the same