JPH0551903B2 - - Google Patents

Info

Publication number
JPH0551903B2
JPH0551903B2 JP23918587A JP23918587A JPH0551903B2 JP H0551903 B2 JPH0551903 B2 JP H0551903B2 JP 23918587 A JP23918587 A JP 23918587A JP 23918587 A JP23918587 A JP 23918587A JP H0551903 B2 JPH0551903 B2 JP H0551903B2
Authority
JP
Japan
Prior art keywords
molecular weight
average molecular
photoreceptor
charge
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23918587A
Other languages
Japanese (ja)
Other versions
JPS6480963A (en
Inventor
Osamu Nabeta
Yoshinobu Sugata
Noboru Kosho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23918587A priority Critical patent/JPS6480963A/en
Publication of JPS6480963A publication Critical patent/JPS6480963A/en
Publication of JPH0551903B2 publication Critical patent/JPH0551903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0592Macromolecular compounds characterised by their structure or by their chemical properties, e.g. block polymers, reticulated polymers, molecular weight, acidity

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は積層型電子写真用感光体に関し、詳し
くは有機材料を含む電荷輸送層、電荷発生層から
なり、電子写真方式の複写機、プリンターなどに
用いられる正帯電方式の積層型電子写真用感光体
に関する。 〔従来の技術〕 従来より電子写真用感光体(以下感光体とも称
する。)の感光材料としてはセレンまたはセレン
合金などの無機光導電性物質、酸化亜鉛あるいは
硫化カドミウムなどの無機光導電性物質を樹脂バ
インダー中に分散させたもの、ポリ−N−ビニル
カルバゾールまたはポリビニルアントラセンなど
の有機光導電性物質、フタロシアニン化合物ある
いはビスアゾ化合物などの有機光導電性物質、ま
たはこれら有機光導電性物質を樹脂バインダー中
に分散させたものなどが利用されている。また感
光体には暗所で表面電荷を保持する機能と光を受
容して電荷を輸送する機能とが必要であるが、一
つの層でこれらの機能を合わせ持つたいわゆる単
層型感光体と、主として電荷発生に寄与する層と
暗所での表面電荷の保持と光受容時の電荷輸送に
寄与する層とに機能分離した層を積層したいわゆ
る積層型感光体がある。これらの感光体を用いた
電子写真法による画像形成には、例えばカールソ
ン方式が適用される。この方式での画像形成は暗
所での感光体へのコロナ放電による帯電、帯電さ
れた感光体表面上への露光による原稿の文字や絵
などの静電潜像の形成、形成された静電潜像のト
ナーによる現像、現像されたトナー像の紙などの
支持体への転写、定着により行われ、トナー像転
写後の感光体は除電、残留トナーの除去、光除電
などを行つた後、再使用に供される。 近年、可とう性、熱安定性、膜形成性などの利
点により、有機材料を用いた積層型感光体が実用
化されてきている。この種の積層型感光体は第2
図の模式的断面図に示すように通常導電性基体2
1上に有機電荷発生物質を含む電荷発生層23、
有機電荷輸送性物質を含む電荷輸送層22が順次
積層されてなり、前述の画像形成に際して負コロ
ナ帯電方式がとられる。ところが負コロナ放電で
は多量のオゾンが発生するため帯電時感光体表面
はオゾンにより強く酸化される状態となり、好ま
しくない。一方、正コロナ帯電方式は負コロナ帯
電方式に比べてコロナ放電が安定している、オゾ
ンの発生が少ない、さらに適合する現像剤の製造
が容易であるといつた点で優れている。しかしな
がら、第2図に示した層構成で正コロナ帯電方式
を適用できる感光体を形成するに好適な有機電荷
発生物質、有機電荷輸送物質はまだ見出されてお
らず、従つて、現状では正コロナ帯電方式を適用
するためには感光体の層構成を変えざるを得な
い。 第3図に正コロナ帯電方式で用い得る積層型感
光体の代表的な層構成の例を示す。第3図に示し
た感光体を作製するには、アルミニウム、銅、ス
テンレスなどの導電性基体31上にまず電荷輸送
層32を形成する。電荷輸送層32は、ピラゾリ
ン化合物、ヒドラゾン化合物、スチリル化合物な
どの有機電荷輸送性物質とポリメタクリル酸メチ
ルポリマー、ポリカーボネート、ポリウレタンな
どの樹脂バインダーとを有機溶媒中に均一に溶解
させた材料を、デイツプ法、しごき法、スプレー
法などにより塗布し形成される。次に、電荷発生
層33を、プリンター用としては赤外光領域に吸
収ピークを有するフタロシアニン系化合物と、複
写機用としては可視光領域に吸収ピークを有する
アゾ系化合物などと、ポリエステル、ポリメタク
リル酸メチルなどの樹脂バインダーとを、有機溶
媒中に溶解した材料を同様に塗布することにより
形成する。そして最後に、電荷発生層33の保護
を目的として被覆層34を、ポリエステル、ポリ
アミドなどの有機絶縁材料を使つて形成すること
により、製造することができる。 第2図に示した負コロナ帯電方式の場合の電荷
発生層構成材料および電荷輸送層構成材料も、上
記正コロナ帯電方式の場合とほぼ同様なものが用
いられる。 〔発明が解決しようとする問題点〕 ところが、前述のような有機材料を用いた積層
型感光体においては、電荷輸送層を形成する樹脂
バインダーの平均分子量により感光体の電子写真
特性は大きく変化する。第1表はアルミニウム基
板上に、X型フタロシアニンをポリエステル(東
洋紡製バイロン200)に結着させてなる電荷発生
層を塗布し、さらにヒドラゾン化合物としてp−
ジエチルアミノベンズアルデヒド−ジフエニルヒ
ドラゾン(ABPH)を適用して電荷輸送層を形
成したプリンター用の負コロナ帯電方式感光体に
おいて電荷輸送層用樹脂バインダーを分子量5万
のポリメタクリル酸メチル(PMMA)とした場
合と、分子量70万のポリメタクリル酸メチル
(PMMA)とした場合の半減露光量E1/2(μJ/cm2
の比較である。半減露光量の測定は暗所で−6kV
のコロナ放電を10秒間行つて感光体表面を帯電さ
せ、波長780nmで1μWの単色光を照射することに
よつて行つたものである。
[Industrial Application Field] The present invention relates to a laminated electrophotographic photoreceptor, and more specifically, it is composed of a charge transport layer and a charge generation layer containing an organic material, and is a positive charging type photoreceptor used in electrophotographic copiers, printers, etc. The present invention relates to a laminated electrophotographic photoreceptor. [Prior Art] Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) include inorganic photoconductive substances such as selenium or selenium alloys, and inorganic photoconductive substances such as zinc oxide or cadmium sulfide. organic photoconductive materials such as poly-N-vinylcarbazole or polyvinylanthracene, phthalocyanine compounds or bisazo compounds, or these organic photoconductive materials dispersed in a resin binder; Dispersed materials are used. In addition, a photoreceptor must have the function of retaining surface charge in the dark and the function of receiving light and transporting the charge, but so-called single-layer photoreceptors have both of these functions in one layer. There is a so-called laminated photoreceptor in which functionally separated layers are laminated, including a layer that mainly contributes to charge generation, and a layer that contributes to surface charge retention in the dark and charge transport during light reception. For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. Image formation in this method involves charging the photoconductor in a dark place by corona discharge, forming electrostatic latent images such as letters and pictures on the document by exposing the surface of the charged photoconductor, and This is done by developing a latent image with toner, transferring the developed toner image to a support such as paper, and fixing it. After the toner image has been transferred, the photoreceptor is subjected to static neutralization, residual toner removal, optical static neutralization, etc. Subject to reuse. In recent years, multilayer photoreceptors using organic materials have been put into practical use due to their advantages such as flexibility, thermal stability, and film formability. This type of laminated photoreceptor is
As shown in the schematic cross-sectional view of the figure, a normally conductive substrate 2
1, a charge generation layer 23 containing an organic charge generation substance;
The charge transport layer 22 containing an organic charge transport substance is sequentially laminated, and a negative corona charging method is used during the above-mentioned image formation. However, since a large amount of ozone is generated in negative corona discharge, the surface of the photoreceptor is strongly oxidized by ozone during charging, which is not preferable. On the other hand, the positive corona charging method is superior to the negative corona charging method in that corona discharge is more stable, less ozone is generated, and it is easier to manufacture a compatible developer. However, an organic charge-generating substance or an organic charge-transporting substance suitable for forming a photoreceptor to which positive corona charging method can be applied with the layer structure shown in Fig. 2 has not yet been found. In order to apply the corona charging method, it is necessary to change the layer structure of the photoreceptor. FIG. 3 shows an example of a typical layer structure of a laminated photoreceptor that can be used in a positive corona charging method. To manufacture the photoreceptor shown in FIG. 3, a charge transport layer 32 is first formed on a conductive substrate 31 made of aluminum, copper, stainless steel, or the like. The charge transport layer 32 is made of a material in which an organic charge transport substance such as a pyrazoline compound, a hydrazone compound, or a styryl compound and a resin binder such as polymethyl methacrylate polymer, polycarbonate, or polyurethane are uniformly dissolved in an organic solvent. It is applied and formed by methods such as ironing, ironing, and spraying methods. Next, the charge generation layer 33 is made of a phthalocyanine compound having an absorption peak in the infrared region for printers, an azo compound having an absorption peak in the visible region for copying machines, polyester, polymethacrylate, etc. It is formed by similarly applying a material dissolved in an organic solvent with a resin binder such as methyl acid. Finally, the cover layer 34 for the purpose of protecting the charge generation layer 33 can be manufactured by forming it using an organic insulating material such as polyester or polyamide. In the case of the negative corona charging method shown in FIG. 2, the materials constituting the charge generation layer and the charge transporting layer are substantially the same as in the case of the positive corona charging method described above. [Problems to be Solved by the Invention] However, in a laminated photoreceptor using an organic material as described above, the electrophotographic characteristics of the photoreceptor vary greatly depending on the average molecular weight of the resin binder forming the charge transport layer. . Table 1 shows a charge generation layer formed by bonding X-type phthalocyanine to polyester (Vylon 200 manufactured by Toyobo Co., Ltd.) on an aluminum substrate, and a p-
When the resin binder for the charge transport layer is polymethyl methacrylate (PMMA) with a molecular weight of 50,000 in a negative corona charging type photoreceptor for printers in which the charge transport layer is formed by applying diethylaminobenzaldehyde-diphenylhydrazone (ABPH). and the half-life exposure amount E 1/2 (μJ/cm 2 ) when using polymethyl methacrylate (PMMA) with a molecular weight of 700,000.
This is a comparison. Measurement of half-life exposure is -6kV in the dark.
The surface of the photoreceptor was charged by performing corona discharge for 10 seconds, and then irradiated with monochromatic light of 1 μW at a wavelength of 780 nm.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明によれば、
導電性基体上に有機電荷輸送性物質を樹脂バイン
ダー中に含有させた液を塗布して形成した電荷輸
送層、有機電荷発生物質を樹脂バインダー中に含
有させた液を塗布して形成した電荷発生層、被覆
層を順次積層してなり正コロナ帯電方式で用いら
れる積層型電子写真用感光体において、前記電荷
輸送層を形成する樹脂バインダーが平均分子量の
異なる少なくとも二種類以上の高分子樹脂混合系
からなり、該高分子樹脂混合系の中で平均分子量
の最も大きい樹脂の平均分子量が10万以上であ
り、かつ、平均分子量が10万以上である樹脂の混
合比率が該高分子樹脂混合系の樹脂全体に対して
15重量%から80重量%の範囲内にあること積層型
電子写真用感光体とする。 〔作用〕 このように、電荷輸送層に用いる樹脂バインダ
ーを高分子樹脂混合系とし、平均分子量が10万以
上の高平均分子量の樹脂を15重量%から80重量%
の範囲内で含ませることにより、電荷輸送層は溶
けにくくなり、電荷発生層を塗布形成するときに
下地層の電荷輸送層が溶けることはなくなり、外
観良好な電荷発生層を形成することができる。し
かも、電荷輸送層の樹脂バインダー中には平均分
子量の小さい樹脂が20重量%ないし85重量%含ま
れているので、電荷輸送層全層が平均分子量の大
きい樹脂で形成された場合に比べて感光体の感度
は向上する。 〔実施例〕 第1図に本発明による感光体の一実施例の模式
的断面図を示す。導電性基体1上に有機電荷輸送
性物質を分子量の異なる二種類以上の樹脂を混合
した混合系樹脂バインダーに含有させた液を塗布
して電荷輸送層12を形成し、その上に有機電荷
発生物質を樹脂バインダーに含有させた液を塗布
して電荷発生層13とし、さらにその上に被覆層
14を形成した正コロナ帯電方式の積層型感光体
である。 実施例 1 まず、電荷輸送層の樹脂バインダーとして分子
量の異なる二種類のポリメタクリル酸メチル
(PMMA)を混合した混合系樹脂バインダーを用
いた例について述べる。 Al合金からなる基体上に電荷輸送性物質とし
てヒドラゾン系化合物のp−ジエチルアミノベン
ズアルデヒド−ジフエニルヒドラゾン(ABPH)
を用い、混合系樹脂バインダーとし平均分子量5
万の低分子量PMMAと平均分子量70万の高分子
量PMMAとを重量混合比率で1:1に混合した
ものを用いて電荷輸送層を形成する。その上に電
荷発生物質としてX型フタロシアニン、樹脂バイ
ンダーとしてポリエステル樹脂のバイロン200(商
品名、東洋紡製)を用いた液を塗布して電荷発生
層を形成し、さらにその上に被覆層を設けて、プ
リンター用の正コロナ帯電方式積層型感光体を作
製した。 比較のために、上記混合系樹脂バインダーの替
わりに平均分子量70万のPMMA単独のバインダ
ーを用いて形成した電荷輸送層を設けた比較例の
感光体を作製した。 これらの感光体について、+6kVのコロナ放電
を10秒間行つて感光体表面を帯電させ、波長
780nmで1μWの単色光を照射したときの半減露光
量E1/2(μJ/cm2)を測定した。その結果を第2表
に示す。
In order to achieve the above object, according to the present invention,
A charge transport layer formed by coating a liquid containing an organic charge transporting substance in a resin binder on a conductive substrate, and a charge generation layer formed by coating a liquid containing an organic charge generating substance in a resin binder. In a laminated electrophotographic photoreceptor which is formed by successively laminating layers and coating layers and is used in a positive corona charging system, the resin binder forming the charge transport layer is a mixture of at least two types of polymer resins having different average molecular weights. The average molecular weight of the resin with the largest average molecular weight in the polymer resin mixture system is 100,000 or more, and the mixing ratio of the resin with an average molecular weight of 100,000 or more is in the polymer resin mixture system. for the entire resin
The content must be within the range of 15% to 80% by weight for laminated electrophotographic photoreceptors. [Function] In this way, the resin binder used in the charge transport layer is a polymer resin mixture, and the resin having a high average molecular weight of 100,000 or more is contained in an amount of 15% to 80% by weight.
By containing within this range, the charge transport layer becomes difficult to dissolve, and the charge transport layer of the base layer does not melt when the charge generation layer is applied and formed, making it possible to form a charge generation layer with a good appearance. . Moreover, since the resin binder of the charge transport layer contains 20% to 85% by weight of a resin with a small average molecular weight, it is less sensitive to light than if the entire charge transport layer was made of a resin with a large average molecular weight. Body sensitivity improves. [Example] FIG. 1 shows a schematic cross-sectional view of an example of a photoreceptor according to the present invention. A charge transporting layer 12 is formed by coating a liquid containing an organic charge transporting substance in a mixed resin binder, which is a mixture of two or more resins with different molecular weights, on the conductive substrate 1, and an organic charge generating layer is formed on the conductive substrate 1. This is a laminated photoreceptor of a positive corona charging type, in which a liquid containing a substance in a resin binder is applied to form a charge generation layer 13, and a coating layer 14 is further formed on the charge generation layer 13. Example 1 First, an example will be described in which a mixed resin binder in which two types of polymethyl methacrylate (PMMA) having different molecular weights are mixed is used as the resin binder of the charge transport layer. A hydrazone compound, p-diethylaminobenzaldehyde-diphenylhydrazone (ABPH), is used as a charge transporting substance on a substrate made of an Al alloy.
was used as a mixed resin binder with an average molecular weight of 5.
The charge transport layer is formed using a mixture of low molecular weight PMMA of 10,000 yen and high molecular weight PMMA of 700,000 yen in a weight mixing ratio of 1:1. A charge generation layer is formed by applying a liquid containing X-type phthalocyanine as a charge generation substance and polyester resin Vylon 200 (trade name, manufactured by Toyobo Co., Ltd.) as a resin binder, and a coating layer is further provided on top of the liquid. , we have fabricated a positive corona charging type laminated photoreceptor for printers. For comparison, a photoreceptor of a comparative example was prepared in which a charge transport layer was formed using a PMMA sole binder having an average molecular weight of 700,000 instead of the mixed resin binder described above. For these photoreceptors, a +6kV corona discharge was performed for 10 seconds to charge the photoreceptor surface and change the wavelength.
The half-life exposure amount E 1/2 (μJ/cm 2 ) when irradiated with 1 μW monochromatic light at 780 nm was measured. The results are shown in Table 2.

【表】 電荷輸送層に高分子量PMMA単独バインダー
を用いた比較例に比べ、混合系樹脂バインダーを
用いた方が感度が向上していることが判る。ま
た、外観は両者まつたく差がなく共に良好であつ
た。 この他に、電荷輸送性物質として、ABPHの
替わりにピラゾリン系化合物の1−フエニル−3
−(p−ジエチルアミノスチリル)−5−(パラジ
エチルアミノフエニル)−2−ピラゾリンを用い
て、同様にプリンター用の正コロナ帯電方式積層
型感光体を試作検討を行つた結果、同様に電荷輸
送層用として高分子量PMMAと低分子量PMMA
との混合系樹脂バインダーを使用した感光体の方
が平均分子量70万の高分子量PMMAを単独で用
いた感光体に比べて高感度を示し、かつ、遜色の
ない良好な外観を呈した。 さらに、電荷輸送性物質としてABPHを用い、
電荷発生物質としてクロロダイアンブルーを用い
て、同様に複写機用の正コロナ帯電方式積層型感
光体の試作検討の結果、2luxの白色光照射下での
半減露光量E1/2(lux・sec)は第3表に示すよう
に、電荷輸送層用の樹脂バインダーとして高分子
量PMMAと低分子量PMMAとの混合系樹脂バイ
ンダーを使用した感光体の方が平均分子量70万の
高分子量PMMAを単独で用いた感光体に比べて
高感度を示し、かつ、遜色のない良好な外観を呈
した。
[Table] It can be seen that the sensitivity is improved when a mixed resin binder is used in the charge transport layer compared to a comparative example in which a high molecular weight PMMA sole binder is used. In addition, there was no difference in appearance between the two, and both were good. In addition, as a charge transport substance, 1-phenyl-3, a pyrazoline compound, can be used instead of ABPH.
Using -(p-diethylaminostyryl)-5-(para-diethylaminophenyl)-2-pyrazoline, we conducted a trial production of a positive corona charging type laminated photoreceptor for printers, and found that the same charge transport layer For high molecular weight PMMA and low molecular weight PMMA
The photoreceptor using a mixed resin binder with PMMA showed higher sensitivity than the photoreceptor using only high molecular weight PMMA with an average molecular weight of 700,000, and had a comparable good appearance. Furthermore, using ABPH as a charge transporting substance,
As a result of prototyping a positive corona charging type laminated photoreceptor for copying machines using chlorodiane blue as a charge generating substance, we found that the half-reduction exposure amount E 1/2 (lux・sec) under 2lux white light irradiation. ), as shown in Table 3, a photoreceptor using a mixed resin binder of high molecular weight PMMA and low molecular weight PMMA as the resin binder for the charge transport layer is better than using high molecular weight PMMA alone with an average molecular weight of 700,000. It exhibited higher sensitivity than the photoreceptor used, and a comparable good appearance.

【表】 以上、電荷輸送層の形成に用いる混合系樹脂バ
インダーとして、平均分子量5万の低分子量
PMMAと平均分子量70万の高分子量PMMAとの
混合系とし、その混合比率を重量比率で1:1に
混合したものについて述べてきた。そこで、さら
に詳細な検討を進めるために、平均分子量5万の
低分子PMMAに対して、混合する高分子PMMA
の分子量ならびにその混合比率を変化させること
による感光体特性への影響について調べた。 その結果、混合系樹脂バインダーの高分子量
PMMAの方の平均分子量が10万より小さくなる
と、そのような混合系樹脂バインダーで形成され
た電荷輸送層はその上に電荷発生層を塗布形成す
るときに溶けて、良好な外観の感光体を得ること
ができなくなることが判つた。この電荷輸送層の
溶ける現象は混合系樹脂バインダーの高分子量
PMMAの混合比率を変えても防ぐことはできな
かつた。 また、高分子量PMMAの平均分子量を10万以
上として、平均分子量5万の低分子量PMMAに
対する混合比率を種々変化させて電荷輸送層用バ
インダーに使用した結果、該高分子量PMMAの
平均分子量によつて混合比率の最適範囲には若干
の差異はみられるが、高分子量PMMAの混合系
樹脂バインダー全体に対する混合比率が15重量%
〜80重量%の範囲内であれば、従来用いてきた平
均分子量50万以上の高分子量PMMAの単独バイ
ンダーに比べ感光体の感度の向上が得られ、か
つ、良好な外観を示した。なお、該混合系樹脂バ
インダーにおいて、低分子量PMMAの方の平均
分子量の変化による感光体特性への影響について
も検討を行つた結果、この低分子量PMMAの平
均分子量が10万以下の場合、該低分子量PMMA
の平均分子量の変化により最適混合範囲に若干の
相異は生じるものの、上述と同様に、低分子量
PMMAの混合系樹脂バインダー全体に対する混
合比率が20重量%〜85重量%の範囲内であれば、
平均分子量50万以上の高分子量PMMAの単独バ
インダーに比べ感光体の感度の向上が得られ、か
つ、遜色のない良好な外観を示した。 実施例 2 次に、電荷輸送層の樹脂バインダーとして、平
均分子量5万のポリカーボネートと平均分子量70
万のPMMAとの混合系樹脂バインダーを用いた
例を示す。ポリカーボネートを電荷輸送層用樹脂
バインダーとすると、電荷輸送性物質がピラゾリ
ン系化合物でもヒドラゾン化合物でも良好な感光
体特性が負コロナ帯電方式積層型感光体で得られ
るのに対し、高分子量のPMMAを用いた場合に
は、ピラゾリン系化合物のみ、ある程度の感光体
特性を示す。さらに、同じピラゾリン系化合物と
して1−フエニル−3−(p−ジエチルアミノス
チリル)−5−(パラジエチルアミノフエニル)−
2−ピラゾリンを電荷輸送性物質に用いた場合、
感光体特性面では樹脂バインダーをポリカーボネ
ートにした方が優れている。しかるに、この種の
ポリカーボネートを電荷輸送層用樹脂バインダー
に用いて正コロナ帯電方式の積層構造の感光体を
形成すると、電荷発生層塗布時に下地の電荷輸送
層が溶けてしまい、極めて悪い外観を呈すること
になり、ポリカーボネート単独ではバインダーと
して使用することができない。これに対して、上
記平均分子量70万のPMMAと平均分子量5万の
ポリカーボネートを、重量比率で1:1に混合し
た樹脂バインダーを用い、電荷輸送性物質にp−
ジエチルアミノベンズアルデヒド−ジフエニルヒ
ドラゾン(ABPH)を用いて電荷輸送層を形成
し、その上に電荷発生物質としてX型フタロシア
ニンを用い、樹脂バインダーとしてバイロンを用
いた電荷発生層を塗布形成し被覆層を設けたプリ
ンター用の正コロナ帯電方式積層型感光体は、電
荷発生を塗布形成するときに下地に電荷輸送層が
溶けることはなく、電荷輸送層に平均分子量70万
の高分子量PMMAを単独で樹脂バインダーとし
て用いた感光体に比べて遜色のない良好な外観の
感光体が得られる。しかも感光体特性において
も、第4表に示すように、混合系樹脂バインダー
を用いた感光体では感度の向上が見られる。
[Table] The above is a low-molecular-weight compound with an average molecular weight of 50,000 as a mixed resin binder used to form a charge transport layer.
We have described a mixed system of PMMA and high molecular weight PMMA with an average molecular weight of 700,000, with a mixing ratio of 1:1 by weight. Therefore, in order to proceed with a more detailed study, we decided to mix high-molecular PMMA with low-molecular PMMA with an average molecular weight of 50,000.
The effects of changing the molecular weight and mixing ratio on the photoreceptor properties were investigated. As a result, the high molecular weight of the mixed resin binder
When the average molecular weight of PMMA is less than 100,000, the charge transport layer formed with such a mixed resin binder will melt when a charge generation layer is applied thereon, resulting in a photoreceptor with a good appearance. It turned out that it would not be possible to obtain it. This melting phenomenon of the charge transport layer is caused by the high molecular weight of the mixed resin binder.
Even if the mixing ratio of PMMA was changed, the problem could not be prevented. In addition, as a result of using high molecular weight PMMA with an average molecular weight of 100,000 or more and varying the mixing ratio of low molecular weight PMMA with an average molecular weight of 50,000 in a binder for a charge transport layer, it was found that depending on the average molecular weight of the high molecular weight PMMA, Although there are some differences in the optimum range of mixing ratio, the mixing ratio of high molecular weight PMMA to the entire mixed resin binder is 15% by weight.
Within the range of ~80% by weight, the sensitivity of the photoreceptor was improved compared to the conventionally used single binder of high molecular weight PMMA with an average molecular weight of 500,000 or more, and a good appearance was obtained. In addition, in this mixed resin binder, we also investigated the effect on photoreceptor characteristics due to changes in the average molecular weight of low molecular weight PMMA, and found that when the average molecular weight of this low molecular weight PMMA is 100,000 or less, the low molecular weight PMMA molecular weightPMMA
Although there are slight differences in the optimal mixing range due to changes in the average molecular weight of
If the mixing ratio of PMMA to the entire mixed resin binder is within the range of 20% to 85% by weight,
Compared to a single binder of high molecular weight PMMA with an average molecular weight of 500,000 or more, the sensitivity of the photoreceptor was improved and the appearance was as good as that. Example 2 Next, polycarbonate with an average molecular weight of 50,000 and polycarbonate with an average molecular weight of 70 were used as resin binders for the charge transport layer.
An example using a mixed resin binder with 10,000 PMMA is shown below. If polycarbonate is used as the resin binder for the charge transport layer, good photoreceptor properties can be obtained with a negative corona charging type laminated photoreceptor even if the charge transport material is a pyrazoline compound or a hydrazone compound. In this case, only the pyrazoline compound exhibits certain photoreceptor properties. Furthermore, as the same pyrazoline compound, 1-phenyl-3-(p-diethylaminostyryl)-5-(para-diethylaminophenyl)-
When 2-pyrazoline is used as a charge transporting substance,
In terms of photoreceptor properties, it is better to use polycarbonate as the resin binder. However, if this type of polycarbonate is used as the resin binder for the charge transport layer to form a photoreceptor with a laminated structure using positive corona charging, the underlying charge transport layer will melt when the charge generation layer is applied, resulting in an extremely poor appearance. Therefore, polycarbonate alone cannot be used as a binder. On the other hand, a resin binder made by mixing PMMA with an average molecular weight of 700,000 and polycarbonate with an average molecular weight of 50,000 at a weight ratio of 1:1 was used, and p-
A charge transport layer is formed using diethylaminobenzaldehyde-diphenylhydrazone (ABPH), and a charge generation layer using X-type phthalocyanine as a charge generation substance and Vylon as a resin binder is formed on the charge transport layer to form a coating layer. The positive corona charging type laminated photoreceptor for printers does not have a charge transport layer that dissolves in the base when applying charge generation, and the charge transport layer is made of high molecular weight PMMA with an average molecular weight of 700,000 and is solely a resin binder. A photoreceptor with a good appearance comparable to that of the photoreceptor used as a photoreceptor can be obtained. Moreover, in terms of photoreceptor characteristics, as shown in Table 4, the photoreceptor using a mixed resin binder shows an improvement in sensitivity.

【表】 実施例 3 電荷輸送層用樹脂バインダーとして、平均分子
量70万のPMMA、平均分子量5万のPMMAおよ
び平均分子量5万のポリカーボネートを重量混合
比率2:1:1で混合した混合系を用い、電荷輸
送性物質としてp−ジエチルアミノベンズアルデ
ヒド−ジフエニルヒドラゾン(ABPH)を用い
て電荷輸送層を形成し、その上に電荷発生物質と
してX型フタロシアニン、樹脂バインダーとして
バイロン200を用いて電荷発生層を設け、さらに
被覆層を形成してプリンター用の正コロナ帯電方
式積層型感光体を作製した。電荷輸送層用樹脂バ
インダーとして平均分子量70万のPMMAを単独
で用いた感光体と比較して外観は良好で遜色な
く、感光体特性では第5表に示すように感度の向
上が見られる。三種類の樹脂を混合した混合系樹
脂バインダーの有効性は明らかである。
[Table] Example 3 A mixed system in which PMMA with an average molecular weight of 700,000, PMMA with an average molecular weight of 50,000, and polycarbonate with an average molecular weight of 50,000 were mixed at a weight mixing ratio of 2:1:1 was used as a resin binder for the charge transport layer. A charge transport layer was formed using p-diethylaminobenzaldehyde-diphenylhydrazone (ABPH) as a charge transport substance, and a charge generation layer was formed thereon using X-type phthalocyanine as a charge generation substance and Vylon 200 as a resin binder. A positive corona charging type laminated photoreceptor for a printer was prepared by forming a coating layer. Compared to a photoreceptor using PMMA with an average molecular weight of 700,000 alone as the resin binder for the charge transport layer, the appearance is good and comparable, and the photoreceptor properties show improved sensitivity as shown in Table 5. The effectiveness of a mixed resin binder made by mixing three types of resins is clear.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導電性基体上に有機材料から
なる電荷輸送層、電荷発生層を順次塗布形成し、
さらにその上に被覆層を備えた正コロナ帯電方式
の積層型電子写真用感光体において、電荷輸送層
を形成する樹脂バインダーとして、平均分子量の
異なる少なくとも二種類以上の高分子樹脂混合系
で、しかもそれらの樹脂の中で平均分子量の最も
大きい樹脂の平均分子量が10万以上であり、その
量が混合系の樹脂全体に対して15重量%から80重
量%の範囲内にあるようなものを用いる。このよ
うな高分子樹脂混合系を樹脂バインダーとして用
いることにより、電荷輸送層上に電荷発生層を塗
布形成するときに塗布液の溶媒により電荷輸送層
が溶けることはなくなり、良好な電荷発生層を形
成することができる。 かくして、電荷輸送層を高分子量の樹脂バイン
ダーのみで形成した感光体よりも高感度で、しか
も外観良好な正コロナ帯電方式積層型感光体を得
ることができる。 また、本発明においては、電荷発生物質は自由
に選ぶことができるので、使用される露光光源の
種類に対応して適均に選択することにより複写機
用あるいはプリンター用の正コロナ帯電方式積層
型電子写真用感光体とすることが可能となる。
According to the present invention, a charge transport layer and a charge generation layer made of an organic material are sequentially coated on a conductive substrate,
Furthermore, in a positive corona charging type laminated electrophotographic photoreceptor having a coating layer thereon, the resin binder forming the charge transport layer is a mixed system of at least two or more types of polymer resins having different average molecular weights; Among these resins, use one in which the average molecular weight of the resin with the highest average molecular weight is 100,000 or more, and the amount thereof is within the range of 15% to 80% by weight based on the total resin of the mixed system. . By using such a polymer resin mixed system as a resin binder, when a charge generation layer is coated on a charge transport layer, the charge transport layer will not be dissolved by the solvent of the coating solution, and a good charge generation layer can be formed. can be formed. In this way, it is possible to obtain a positive corona charging type laminated photoreceptor that has higher sensitivity and a better appearance than a photoreceptor in which the charge transport layer is formed only from a high molecular weight resin binder. In addition, in the present invention, since the charge-generating substance can be freely selected, it is possible to appropriately select the charge-generating substance according to the type of exposure light source used, thereby making it possible to create a positive corona charging type laminated type for copiers or printers. It becomes possible to use it as a photoreceptor for electrophotography.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の感光体の一実施例の、第2図
は負コロナ帯電方式の感光体の一例の、第3図は
正コロナ帯電方式の感光体の従来例の構造をそれ
ぞれ示す模式的断面図である。 11,21,31…導電性基体、12,22,
32…電荷輸送層、13,23,33…電荷発生
層、14,34…被覆層。
Fig. 1 is a schematic diagram showing the structure of an embodiment of the photoreceptor of the present invention, Fig. 2 is an example of a photoreceptor using a negative corona charging method, and Fig. 3 is a schematic diagram showing the structure of a conventional example of a photoreceptor using a positive corona charging method. FIG. 11, 21, 31... conductive substrate, 12, 22,
32... Charge transport layer, 13, 23, 33... Charge generation layer, 14, 34... Covering layer.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性基体上に有機電荷輸送性物質を樹脂バ
インダー中に含有させた液を塗布して形成した電
荷輸送層、有機電荷発生物質を樹脂バインダー中
に含有させた液を塗布して形成した電荷発生層、
被覆層を順次積層してなり正コロナ帯電方式で用
いられる積層型電子写真用感光体において、前記
電荷輸送層を形成する樹脂バインダーが平均分子
量の異なる少なくとも二種類以上の高分子樹脂混
合系からなり、該高分子樹脂混合系の中で平均分
子量の最も大きい樹脂の平均分子量が10万以上で
あり、かつ、平均分子量が10万以上である樹脂の
混合比率が該高分子樹脂混合系の樹脂全体に対し
て15重量%から80重量%の範囲内にあることを特
徴とする積層型電子写真用感光体。
1 A charge transport layer formed by coating a liquid containing an organic charge transporting substance in a resin binder on a conductive substrate, and a charge forming layer formed by coating a liquid containing an organic charge generating substance in a resin binder. generation layer,
In a laminated electrophotographic photoreceptor in which coating layers are sequentially laminated and used in a positive corona charging method, the resin binder forming the charge transport layer is composed of a mixed system of at least two or more types of polymer resins having different average molecular weights. , the average molecular weight of the resin with the largest average molecular weight in the polymer resin mixture system is 100,000 or more, and the mixing ratio of the resin with an average molecular weight of 100,000 or more is the entire resin of the polymer resin mixture system. A laminated electrophotographic photoreceptor characterized in that the content is within a range of 15% to 80% by weight.
JP23918587A 1987-09-24 1987-09-24 Laminated type electrophotographic sensitive body Granted JPS6480963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23918587A JPS6480963A (en) 1987-09-24 1987-09-24 Laminated type electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23918587A JPS6480963A (en) 1987-09-24 1987-09-24 Laminated type electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS6480963A JPS6480963A (en) 1989-03-27
JPH0551903B2 true JPH0551903B2 (en) 1993-08-03

Family

ID=17040983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23918587A Granted JPS6480963A (en) 1987-09-24 1987-09-24 Laminated type electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS6480963A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400024B1 (en) * 2002-02-19 2003-09-29 삼성전자주식회사 Method for preventing flow pattern of wet type color image forming apparatus and the system adopting the same
JP4567614B2 (en) * 2005-09-13 2010-10-20 株式会社リコー Electrophotographic equipment

Also Published As

Publication number Publication date
JPS6480963A (en) 1989-03-27

Similar Documents

Publication Publication Date Title
JPH0212258A (en) Electrophotographic sensitive body
JPH0551903B2 (en)
JPH03257459A (en) Electrophotographic sensitive body
JP2917473B2 (en) Electrophotographic photoreceptor
JPH0711704B2 (en) Multilayer type photoconductor for electrophotography
JP3417145B2 (en) Electrophotographic photoreceptor
JPH0836301A (en) Electrophotographic copying method for reversal developing
JPH03278061A (en) Electrophotographic sensitive body
JP2754384B2 (en) Electrophotographic photoreceptor
JP2650450B2 (en) Electrophotographic photoreceptor
JP2707826B2 (en) Electrophotographic photoreceptor
JPH03140964A (en) Electrophotographic sensitive body
JPH0337655A (en) Electrophotographic sensitive body
JP2705278B2 (en) Electrophotographic photoreceptor
JP2674305B2 (en) Electrophotographic photoreceptor
JPH01307760A (en) Electrophotographic sensitive body
JPH0194348A (en) Laminate type electrophotographic sensitive body
JPS62153959A (en) Laminated type electrophotographic sensitive body
JP2666492B2 (en) Electrophotographic photoreceptor
JPH03260658A (en) Electrophotographic sensitive body
JPS6348555A (en) Laminated type electrophotographic sensitive body
JPH03102359A (en) Electrophotographic sensitive body
JPH0339969A (en) Electrophotographic sensitive body
JPS61278855A (en) Photosensitive body for electrophotography
JPH027056B2 (en)