JPH0711704B2 - Multilayer type photoconductor for electrophotography - Google Patents
Multilayer type photoconductor for electrophotographyInfo
- Publication number
- JPH0711704B2 JPH0711704B2 JP21858387A JP21858387A JPH0711704B2 JP H0711704 B2 JPH0711704 B2 JP H0711704B2 JP 21858387 A JP21858387 A JP 21858387A JP 21858387 A JP21858387 A JP 21858387A JP H0711704 B2 JPH0711704 B2 JP H0711704B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- resin binder
- charge
- molecular weight
- charge transport
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/05—Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
- G03G5/0528—Macromolecular bonding materials
- G03G5/0592—Macromolecular compounds characterised by their structure or by their chemical properties, e.g. block polymers, reticulated polymers, molecular weight, acidity
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/043—Photoconductive layers characterised by having two or more layers or characterised by their composite structure
- G03G5/047—Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/05—Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
- G03G5/0528—Macromolecular bonding materials
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は積層型電子写真用感光体に関し、詳しくは有機
材料を含む電荷輸送層,電荷発生層からなり、電子写真
方式の複写機,プリンターなどに用いられる正帯電方式
の積層型電子写真用感光体に関する。Description: TECHNICAL FIELD The present invention relates to a laminated electrophotographic photoreceptor, and more specifically, it is composed of a charge transport layer containing an organic material and a charge generation layer, and is an electrophotographic copying machine or printer. The present invention relates to a positive charging type laminated electrophotographic photoconductor used for such purposes.
従来より電子写真用感光体(以下感光体とも称する。)
の感光材料としてはセレンまたはセレン合金などの無機
光導電性物質、酸化亜鉛あるいは硫化カドミウムなどの
無機光導電性物質を樹脂結着剤中に分散させたもの、ポ
リ−N−ビニルカルバゾールまたはポリビニルアントラ
センなどの有機光導電性物質、フタロシアニン化合物あ
るいはビスアゾ化合物などの有機光導電性物質,または
これら有機光導電性物質を樹脂結着剤中に分散させたも
のなどが利用されている。また感光体には暗所で表面電
荷を保持する機能と光を受容して電荷を輸送する機能と
が必要であるが、一つの層でこれらの機能を合わせ持っ
たいわゆる単層型感光体と、主とし電荷発生に寄与する
層と暗所での表面電荷の保持と光受容時の電荷輸送に寄
与する層とに機能分離した層を積層したいわゆる積層型
感光体がある。これらの感光体を用いた電子写真法によ
る画像形成には、例えばカールソン方式が適用される。
この方式での画像形成は暗所での感光体へのコロナ放電
による帯電、帯電された感光体表面上への露光による原
稿の文字や絵などの静電潜像の形成、形成された静電潜
像のトナーによる現像、現像されたトナー像の紙などの
支持体への転写,定着により行われ、トナー像転写後の
感光体は除電,残留トナーの除去,光除電などを行った
後、再使用に供される。Conventionally, a photoconductor for electrophotography (hereinafter also referred to as a photoconductor).
Examples of the photosensitive material include an inorganic photoconductive substance such as selenium or a selenium alloy, an inorganic photoconductive substance such as zinc oxide or cadmium sulfide dispersed in a resin binder, poly-N-vinylcarbazole or polyvinylanthracene. And the like, organic photoconductive substances such as phthalocyanine compounds or bisazo compounds, and those obtained by dispersing these organic photoconductive substances in a resin binder are used. In addition, the photoconductor must have the function of retaining surface charge in the dark and the function of receiving light and transporting charge, but a so-called single-layer type photoconductor having both of these functions in one layer There is a so-called multi-layer type photoreceptor in which functionally separated layers are laminated mainly in a layer that contributes to charge generation and a layer that contributes to retaining surface charges in a dark place and transporting charges during light reception. For example, the Carlson method is applied to the image formation by the electrophotographic method using these photoconductors.
Image formation by this method is performed by charging the photoconductor in the dark by corona discharge, forming an electrostatic latent image such as characters and pictures on the document by exposing the surface of the charged photoconductor, and forming the electrostatic latent image. It is performed by developing the latent image with toner, transferring the developed toner image to a support such as paper, and fixing it. After the toner image is transferred, the photoconductor is neutralized, residual toner is removed, and light is neutralized. Used for reuse.
近年、可とう性,熱安定性,膜形成性などの利点によ
り、有機材料を用いた積層型感光体が実用化されてきて
いる。この種の積層型感光体は第2図の模式的断面図に
示すように通常導電性基体1上に有機電荷発生物質を含
む電荷発生層3、有機電荷輸送性物質を含む電荷輸送層
2が順次積層されてなり、前述の画像形成に際して負コ
ロナ帯電方式がとられる。ところが負コロナ放電では多
量のオゾンが発生するため帯電時感光体表面はオゾンに
より強く酸化される状態となり、好ましくない。一方、
正コロナ帯電方式は負コロナ帯電方式に比べてコロナ放
電が安定している,オゾンの発生が少ない,さらに適合
する現像剤の製造が容易であるといった点で優れてい
る。しかしながら、第2図に示した層構成で正コロナ帯
電方式を適用できる感光体を形成するに好適な有機電荷
発生物質,有機電荷輸送性物質はまだ見出されておら
ず、従って、現状では正コロナ帯電方式を適用するため
には感光体の層構成を変えざるを得ない。In recent years, laminated type photoreceptors using an organic material have been put into practical use due to advantages such as flexibility, thermal stability, and film formability. As shown in the schematic cross-sectional view of FIG. 2, this type of multi-layered photosensitive member generally includes a charge generation layer 3 containing an organic charge generating substance and a charge transport layer 2 containing an organic charge transporting substance on a conductive substrate 1. The layers are sequentially laminated, and the negative corona charging method is used for the above-mentioned image formation. However, since a large amount of ozone is generated in negative corona discharge, the surface of the photoreceptor is strongly oxidized by ozone during charging, which is not preferable. on the other hand,
The positive corona charging method is superior to the negative corona charging method in that the corona discharge is more stable, less ozone is generated, and a suitable developer can be easily manufactured. However, an organic charge generating substance and an organic charge transporting substance suitable for forming a photoconductor to which the positive corona charging method can be applied in the layer structure shown in FIG. In order to apply the corona charging method, the layer structure of the photoconductor has to be changed.
第3図に正コロナ帯電方式で用い得る積層型感光体の代
表的な層構成の例を示す。第3図に示した感光体を作製
するには、アルミニウム,銅,ステンレスなどの導電性
基体1上にまず電荷輸送層2を形成する。電荷輸送層2
は、ピラゾリン化合物,ヒドラゾン化合物,スチリル化
合物などの有機電荷輸送性物質とポリメタクリル酸メチ
ルポリマー,ポリカーボネート,ポリウレタンなどの樹
脂バインダーとを有機溶媒中に均一に溶解させた材料
を、ディップ法,しごき法,スプレー法などにより塗布
し形成される。次に、電荷発生層3を、プリンター用と
しては赤外光領域に吸収ピークを有するフタロシアニン
系化合物と、複写機用としては可視光領域に吸収ピーク
を有するアゾ系化合物などと、ポリエステル,ポリメタ
クリル酸メチルポリマーなどの樹脂バインダーとを、有
機溶媒中に溶解した材料を同様に塗布することにより形
成される。そして最後に、電荷発生層3の保護を目的と
して被覆層4を、ポリエステル,ポリアミドなどの有機
絶縁材料を使って形成することにより、製造することが
できる。FIG. 3 shows an example of a typical layer structure of a layered type photoconductor that can be used in the positive corona charging system. In order to manufacture the photoreceptor shown in FIG. 3, the charge transport layer 2 is first formed on the conductive substrate 1 made of aluminum, copper, stainless steel or the like. Charge transport layer 2
Is a material obtained by uniformly dissolving an organic charge-transporting substance such as a pyrazoline compound, a hydrazone compound or a styryl compound and a resin binder such as polymethylmethacrylate polymer, polycarbonate or polyurethane in an organic solvent by a dipping method or an ironing method. It is applied and formed by a spray method or the like. Next, the charge generation layer 3 is composed of a phthalocyanine compound having an absorption peak in the infrared light region for a printer, an azo compound having an absorption peak in the visible light region for a copying machine, polyester, polymethacryl It is formed by similarly applying a material obtained by dissolving a resin binder such as acid methyl polymer in an organic solvent. Finally, the coating layer 4 can be manufactured by using an organic insulating material such as polyester or polyamide for the purpose of protecting the charge generation layer 3.
第2図に示した負コロナ帯電方式の場合の電荷発生層構
成材料および電荷輸送層構成材料も、上記正コロナ帯電
方式の場合とほぼ同様なものが用いられる。As the charge generation layer constituent material and the charge transport layer constituent material in the case of the negative corona charging method shown in FIG. 2, substantially the same materials as those in the case of the positive corona charging method are used.
ところが、前述のような有機材料を用いた積層型感光体
においては、電荷輸送層2を形成する樹脂バインダーに
より感光体の電子写真特性は大きく変化する。第1表は
アルミニウム基板上に、X型フタロシアニンをポリエス
テル(東洋紡製バイロン200)に分散させてなる電荷発
生層を塗布し、さらにヒドラゾン化合物としてp−ジエ
チルアミノベンズアルデヒド−ジフェニルヒドラゾン
(ABPH)を適用して電荷輸送層を形成した負コロナ帯電
方式感光体において電荷輸送層用樹脂バインダーを分子
量5万のポリカ−ボネートとした場合と、分子量70万の
ポリメタクリル酸メチルポリマー(PMMA)とした場合の
半減露光量E1/2(μJ/cm2)の比較である。半減露光量
の測定は暗所で−6kVのコロナ放電を10秒間行って感光
体表面を帯電させ、波長780nWで1μmの単色光を照射
することによって行ったものである。However, in the laminated type photoreceptor using the organic material as described above, the electrophotographic characteristics of the photoreceptor are largely changed by the resin binder forming the charge transport layer 2. Table 1 shows that a charge generation layer made by dispersing X-type phthalocyanine in polyester (Vylon 200 manufactured by Toyobo) is coated on an aluminum substrate, and p-diethylaminobenzaldehyde-diphenylhydrazone (ABPH) is applied as a hydrazone compound. Half-exposure when the resin binder for the charge transport layer in the negative corona charging type photoreceptor having the charge transport layer is polycarbonate having a molecular weight of 50,000 and polymethyl methacrylate polymer (PMMA) having a molecular weight of 700,000. It is a comparison of the amounts E 1/2 (μJ / cm 2 ). The half-dose exposure amount was measured by performing a −6 kV corona discharge in the dark for 10 seconds to charge the surface of the photoconductor, and irradiating 1 μm of monochromatic light with a wavelength of 780 nW.
第1表に見られるとおり、電荷輸送層用樹脂バインダー
として低分子量であるポリカーボネートを用いた感光体
の方が、高分子量であるPMMAを用いた感光体よりも、半
減露光量が明らかに小さく、高感度であることが判る。
同様の現象は、電荷発生物質としてアゾ顔料のクロロダ
イアンブルーを使った複写機用感光体においても見ら
れ、2luxの白色光を照射したときの半減露光量(lux・s
ec)は電荷輸送層樹脂バインダーがポリカーボネートで
ある感光体の方が小さくなる。 As can be seen in Table 1, the half-exposure amount of the photoreceptor using the low molecular weight polycarbonate as the resin binder for the charge transport layer is obviously smaller than that of the photoreceptor using the high molecular weight PMMA, It can be seen that the sensitivity is high.
A similar phenomenon was observed in photoconductors for copiers that used the azo pigment chlorodian blue as the charge generation substance, and the half-exposure amount (lux · s
ec) is smaller for photoreceptors in which the charge transport layer resin binder is polycarbonate.
ところが、第3図に示したような正コロナ帯電方式の積
層型感光体の電荷輸送層用樹脂バインダーとして分子量
の小さいポリカーボネートを用い、感度の向上を図ろう
とすると、電荷発生層塗布中に下地の電荷輸送層が溶け
るために良好に塗布することができず外観が極めて悪く
なり不良となる。すなわち、分子量の小さい樹脂は溶媒
に溶け易いため、低分子量の樹脂で形成された電荷輸送
層の上に電荷発生層を塗布形成しようとすると、電荷発
生層用塗布液の溶媒が電荷輸送層の樹脂を溶かしてしま
い外観を悪化させてしまう。この欠点は電荷発生層用塗
布液に用いる溶媒を種々選択しても完全に除去すること
はできない。従って、正コロナ帯電方式の積層型感光体
の場合、ポリカーボネートなどの低分子量の樹脂バイン
ダーを電荷輸送層に用いることができないという問題点
があった。However, when a polycarbonate having a small molecular weight is used as the resin binder for the charge transport layer of the layered type photoreceptor of the positive corona charging type as shown in FIG. 3, it is attempted to improve the sensitivity. Since the charge transport layer is melted, it cannot be applied well and the appearance is extremely deteriorated, resulting in a defect. That is, since a resin having a small molecular weight is easily dissolved in a solvent, when a charge generating layer is formed by coating on a charge transporting layer formed of a resin having a low molecular weight, the solvent of the charge generating layer coating solution is It melts the resin and deteriorates the appearance. This drawback cannot be completely removed even if various solvents are used for the charge generation layer coating liquid. Therefore, in the case of a positive corona charging type laminated photoreceptor, there is a problem that a low molecular weight resin binder such as polycarbonate cannot be used in the charge transport layer.
本発明は、上述の点に鑑みてなされたものであって、有
機材料からなる電荷輸送層,電荷発生層を備え、優れた
電子写真特性,特に高感度を有し、かつ、外観良好な、
正コロナ帯電方式の複写機またはプリンター用の積層型
電子写真用感光体を提供することを目的とする。The present invention has been made in view of the above points, and includes a charge transport layer made of an organic material, a charge generation layer, excellent electrophotographic characteristics, particularly high sensitivity, and a good appearance,
It is an object of the present invention to provide a laminate type electrophotographic photoreceptor for a positive corona charging type copying machine or printer.
上記目的を達成するために、本発明によれば、導電性基
体上に有機電荷輸送性物質を樹脂バインダー中に分散さ
せた液を塗布して形成した電荷輸送層,有機電荷発生物
質を樹脂バインダー中に分散させた液を塗布して形成し
た電荷発生層,被覆層を順次積層してなり正コロナ帯電
方式で用いられる積層型電子写真用感光体において、前
記電荷輸送層が樹脂バインダーの分子量が異なる二つの
層の積層であり、該二層のうち、前記導電性基体に接す
る側の層は低分子量の樹脂バインダーからなり、前記電
荷発生層に接する側の層はより高分子量の樹脂バインダ
ーからなる積層型電子写真用感光体とする。In order to achieve the above object, according to the present invention, a charge transport layer formed by applying a liquid in which an organic charge transporting substance is dispersed in a resin binder onto a conductive substrate, and an organic charge generating substance as a resin binder. In a laminated electrophotographic photoreceptor used in the positive corona charging system, which is formed by sequentially laminating a charge generation layer and a coating layer formed by applying a liquid dispersed therein, the charge transport layer has a molecular weight of a resin binder. It is a laminate of two different layers, of which the layer in contact with the conductive substrate is made of a low molecular weight resin binder, and the layer in contact with the charge generation layer is made of a higher molecular weight resin binder. The laminated-type electrophotographic photoreceptor is
上述のように、電荷輸送層を二層構造とし、電荷発生層
に接する側の層には分子量の大きい樹脂バインダーを用
いてあるため、電荷発生層塗布形成時に下地となるこの
層は溶けることはなく、外観良好な電荷発生層を塗布形
成することができる。また、導電性基体に接する側の層
には分子量の小さい樹脂バインダーが用いられているの
で、電荷輸送層を分子量の大きい樹脂バインダーによる
単層構造とした場合に比べて感度の向上が得られる。As described above, since the charge transport layer has a two-layer structure and a resin binder having a large molecular weight is used for the layer in contact with the charge generation layer, this layer serving as the base during the formation of the charge generation layer coating does not melt. The charge generation layer having a good appearance can be formed by coating. Further, since the resin binder having a small molecular weight is used for the layer in contact with the conductive substrate, the sensitivity can be improved as compared with the case where the charge transport layer has a single layer structure of the resin binder having a large molecular weight.
第1図に、本発明の感光体の一実施例の模式的断面図を
示す。アルミニウムなどの導電性基体1上に、電荷輸送
層(A)21と、電荷輸送層(B)22からなる電荷輸送層
2を設け、さらに、電荷発生層3、被覆層4を順次積層
形成したものである。電荷輸送層(A)21には、樹脂バ
インダーとして低分子量であるポリカーボネートを用
い、電荷輸送層(B)22には、分子量の大きいPMMAを用
いている。従って、電荷発生層塗布時に、下地に、分子
量の大きいPMMAが中間層として介在しているため、この
層を溶かすことなく、きれいに電荷発生層3を塗布する
ことができる。しかも、電荷輸送層(A)21は、ポリカ
ーボネートを樹脂バインダーとしているため、電荷輸送
層がPMMAを樹脂バインダーとした単層構造である場合に
比べ、感度の向上が得られる。FIG. 1 shows a schematic sectional view of an embodiment of the photoconductor of the present invention. A charge transport layer (A) 21 and a charge transport layer (B) 22 are provided on a conductive substrate 1 such as aluminum, and a charge generation layer 3 and a coating layer 4 are sequentially laminated. It is a thing. Polycarbonate having a low molecular weight is used as the resin binder for the charge transport layer (A) 21, and PMMA having a large molecular weight is used for the charge transport layer (B) 22. Therefore, when the charge generation layer is applied, PMMA having a large molecular weight is present as an intermediate layer in the base, so that the charge generation layer 3 can be applied neatly without melting this layer. Moreover, since the charge transport layer (A) 21 uses polycarbonate as the resin binder, the sensitivity can be improved as compared with the case where the charge transport layer has a single layer structure using PMMA as the resin binder.
電荷輸送層(B)22に用いる樹脂バインダーに平均分子
量の異なる各種高分子樹脂を使って、電荷発生層塗布後
の外観を詳細に観測した結果、電荷輸送層(B)22の平
均分子量が10万を超え,好ましくは20万程度以上であれ
ば良好な外観を呈する感光体が得られることを見出し
た。When various polymer resins having different average molecular weights were used as the resin binder used in the charge transport layer (B) 22, the appearance after coating the charge generation layer was observed in detail, and as a result, the average molecular weight of the charge transport layer (B) 22 was 10 It has been found that a photoreceptor having a good appearance can be obtained when the amount exceeds 10,000, preferably around 200,000.
実施例1 第2表に、電荷輸送性物質をヒドラゾン系化合物として
p−ジエチルアミノベンズアルデヒド−ジフェニルヒド
ラゾン(ABPH)を使い、X型フタロシアニンとバイロン
にて形成した電荷発生層を有するプリンター用正コロナ
帯電方式の積層感光体において、電荷輸送層の樹脂バイ
ンダーを平均分子量70万のPMMAによる単層構造とした場
合と、平均分子量5万であるポリカーボネートからなる
層と上記PMMAからなる層との二層構造とした場合の、+
6kVのコロナ放電を10秒間行って感光体表面を帯電さ
せ、波長780nmで1μWの単色光を照射したときの半減
露光量の違いを示す。単層構造に比べ、電荷輸送層を二
層構造にした感光体は、感度において優れているばかり
でなく、外観においても単層構造感光体とまったく変わ
らない程度に良好であった。Example 1 In Table 2, a positive corona charging system for a printer having a charge generation layer formed of X-type phthalocyanine and Byron using p-diethylaminobenzaldehyde-diphenylhydrazone (ABPH) as a hydrazone compound as a charge transporting substance. In the laminated photoconductor of, the case where the resin binder of the charge transport layer has a single layer structure of PMMA having an average molecular weight of 700,000, and a two-layer structure of a layer made of polycarbonate having an average molecular weight of 50,000 and the layer made of PMMA described above. If you do, +
The difference in half-exposure amount when the surface of the photoconductor is charged by performing corona discharge of 6 kV for 10 seconds and the monochromatic light of 1 μW is irradiated at a wavelength of 780 nm is shown. Compared to the single-layer structure, the photoreceptor having a two-layer charge transport layer was excellent not only in sensitivity but also in appearance as well as the single-layer structure.
この他に、電荷輸送性物質にピラゾリン系化合物として
1−フェニル−3−(p−ジエチルアミノスチリル)−
5−(パラジエチルアミノフェニル)−2−ピラゾリン
を用いて電荷輸送層を形成したプリンター用正コロナ帯
電方式の積層型感光体に関して、同様に試作検討を行っ
た結果、同様に電荷輸送層を二層構造にした感光体の方
が高感度を示し、かつ、良好な外観を呈した。 In addition, 1-phenyl-3- (p-diethylaminostyryl) -as a charge transporting substance as a pyrazoline compound
A positive corona charging type laminated photoreceptor for a printer in which a charge transport layer was formed by using 5- (paradiethylaminophenyl) -2-pyrazoline was similarly tested, and as a result, two charge transport layers were similarly formed. The structured photoreceptor showed higher sensitivity and exhibited a good appearance.
実施例2 次に、本発明の第2の実施例として、電荷発生層にクロ
ロダイアンブルーを用いた複写機用感光体の結果につい
て示す。第3表は、p−ジエチルアミノベンズアルデヒ
ド−ジフェニルヒドラゾン(ABPH)を用いて電荷輸送層
を形成し、その上にクロロダイアンブルーとバイロンか
らなる電荷発生層を設けた正コロナ帯電方式の積層型感
光体に関して、電荷輸送層に平均分子量70万のPMMAを樹
脂バインダーに用いた単層構造のものと、平均分子量4
万のポリカーボネートからなる層と70万のPMMAからなる
層を二層構造にしたものとの半減露光量の違いを示す。
なお、半減露光量の測定は、2luxの白色光照射下で行っ
た。Example 2 Next, as a second example of the present invention, the results of a photoconductor for a copying machine using chlorodian blue for the charge generation layer will be described. Table 3 shows a positive corona charging type laminated photoreceptor in which a charge transport layer was formed using p-diethylaminobenzaldehyde-diphenylhydrazone (ABPH) and a charge generation layer composed of chlorodian blue and byron was provided thereon. Regarding the charge transport layer, a single layer structure using PMMA having an average molecular weight of 700,000 as a resin binder and an average molecular weight of 4
The difference in half-exposure between a double layer structure consisting of 10,000 polycarbonate layers and 700,000 PMMA layers is shown.
The half-exposure amount was measured under irradiation with 2 lux of white light.
この場合もプリンター用のものと同様に二層構造の感光
体の方が、高感度を有し、かつ、外観も良好であった。 In this case as well, similarly to the one for a printer, the two-layer structure photoreceptor had higher sensitivity and a good appearance.
この他に、電荷輸送性物質にピラゾリン系化合物として
1−フェニル−3−(p−ジエチルアミノスチリル)−
5−(パラジエチルアミノフェニル)−2−ピラゾリン
を用いて電荷輸送層を形成した複写機用正コロナ帯電方
式の積層型感光体に関して、同様に試作検討を行った結
果、同様に電荷輸送層を二層構造にした感光体の方が高
感度を示し、かつ、良好な外観を呈した。In addition, 1-phenyl-3- (p-diethylaminostyryl) -as a charge transporting substance as a pyrazoline compound
A positive corona charging type laminated type photoreceptor for a copying machine, in which a charge transport layer was formed by using 5- (paradiethylaminophenyl) -2-pyrazoline, was similarly tested. The photoreceptor having a layered structure showed higher sensitivity and exhibited a good appearance.
実施例3 さらに、本発明の第3の実施例として前記ポリカーボネ
ート以外の低分子樹脂バインダーとして、同一構造では
あるが平均分子量がそれぞれ10万、70万と異なる2種類
のPMMAを用いた場合の結果を示す。なお、この2種類の
PMMAを使って負コロナ帯電方式の積層型感光体をそれぞ
れ試作した結果、低分子量のPMMAの方が高い感度を示し
たが、この低分子PMMAのみを正コロナ帯電方式用樹脂バ
インダーに適用すると、前記従来技術における低分子量
ポリカーボネートの場合と同様に外観を極めて悪化させ
てしまった。第4表は、電荷輸送性物質にヒドラゾン系
化合物としてp−ジエチルアミノベンズアルデヒロ−ジ
フェニルヒドラゾン(ABPH)を用いて、その上にX型フ
タロシアニンとバイロンからなる電荷発生層を設けたプ
リンター用正コロナ帯電方式積層型感光体において、電
荷輸送層の樹脂バインダーを高分子PMMA(平均分子量70
万)のみで形成したものと、基体側を低分子PMMA(平均
分子量10万)とし、電荷発生層側を高分子PMMA(平均分
子量70万)とした二層構造のものに関する半減露光量の
比較を示したものである。この場合も同様に、二層構造
の感光体の方が感度が高く、かつ、良好な外観を呈し
た。Example 3 Furthermore, as a third example of the present invention, the results when using two types of PMMA having the same structure but different average molecular weights of 100,000 and 700,000 as low molecular weight resin binders other than the polycarbonate, respectively. Indicates. In addition, these two types
As a result of trial manufacture of negative corona charging type laminated type photoreceptors using PMMA, low molecular weight PMMA showed higher sensitivity, but when only this low molecular weight PMMA is applied to the positive corona charging type resin binder, As in the case of the low molecular weight polycarbonate in the prior art, the appearance was extremely deteriorated. Table 4 shows a normal corona for a printer in which p-diethylaminobenzaldehylo-diphenylhydrazone (ABPH) is used as a hydrazone compound as a charge transporting material, and a charge generating layer composed of X-type phthalocyanine and byron is provided thereon. In the charging type laminated type photoreceptor, the resin binder of the charge transport layer is polymer PMMA (average molecular weight 70
Half-exposure amount of the two-layer structure in which the low molecular weight PMMA (average molecular weight 100,000) is used on the substrate side and the high molecular weight PMMA (average molecular weight is 700,000) is used on the charge generation layer side. Is shown. In this case as well, the two-layer structure photoreceptor has higher sensitivity and a good appearance.
〔発明の効果〕 本発明によれば、導電性基体上に有機材料からなる電荷
輸送層,電荷発生層を順次塗布形成し、さらにその上に
被覆層を備えた正コロナ帯電方式の積層型電子写真用感
光体において、電荷輸送層を樹脂バインダーの分子量が
異なる二層構造とし、導電性基体に接する側の層に低分
子量の樹脂バインダーを用い、電荷発生層に接する側の
層により高分子量の樹脂バインダーを用いる。 EFFECTS OF THE INVENTION According to the present invention, a positive corona charging type laminated electron in which a charge transport layer and a charge generation layer made of an organic material are sequentially formed on a conductive substrate, and a coating layer is further provided thereon In the photographic photoreceptor, the charge transport layer has a two-layer structure in which the molecular weight of the resin binder is different, a low molecular weight resin binder is used for the layer in contact with the conductive substrate, and a high molecular weight layer is used for the layer in contact with the charge generation layer. A resin binder is used.
このような構成とすることにより、電荷輸送層上に電荷
発生層を塗布形成するときに塗布液の溶媒により電荷輸
送層が溶けることはなくなり、外観良好な電荷発生層を
形成することができる。また、電荷輸送層を高分子量の
樹脂バインダーの単層で形成した感光体よりも高感度と
なる。With such a configuration, the charge transport layer is not dissolved by the solvent of the coating liquid when the charge generation layer is formed by coating on the charge transport layer, and the charge generation layer having a good appearance can be formed. Further, it has higher sensitivity than the photoreceptor in which the charge transport layer is formed of a single layer of a high molecular weight resin binder.
本発明においては、電荷発生物質は使用される露光光源
の種類に対応して自由に選択でき、かくして、有機材料
からなる電荷輸送層,電荷発生層を備え、優れた電子写
真特性,特に高感度を有し、かつ、外観良好な、正コロ
ナ帯電方式の複写機またはプリンター用の積層型電子写
真用感光体を得ることが可能となる。In the present invention, the charge-generating substance can be freely selected according to the type of exposure light source used, and thus has a charge-transporting layer and a charge-generating layer made of an organic material and has excellent electrophotographic characteristics, particularly high sensitivity. It is possible to obtain a laminated-type electrophotographic photoconductor for a copying machine or a printer of the positive corona charging type, which has a good appearance and has a good appearance.
第1図は本発明の感光体の一実施例の、第2図は負コロ
ナ帯電方式の感光体の一例の、第3図は正コロナ帯電方
式の感光体の従来例の構造をそれぞれ示す模式的断面図
である。 1……導電性基体、2……電荷輸送層、3……電荷発生
層、4……被覆層、21……電荷輸送層(A)、22……電
荷輸送層(B)。FIG. 1 is a schematic diagram showing the structure of an example of the photosensitive member of the present invention, FIG. 2 is a schematic diagram of an example of a negative corona charging type photosensitive member, and FIG. 3 is a schematic diagram showing the structure of a conventional example of a positive corona charging type photosensitive member. FIG. 1 ... Conductive substrate, 2 ... Charge transport layer, 3 ... Charge generation layer, 4 ... Covering layer, 21 ... Charge transport layer (A), 22 ... Charge transport layer (B).
Claims (2)
バインダー中に分散させた液を塗布して形成した電荷輸
送層,有機電荷発生物質を樹脂バインダー中に分散させ
た液を塗布して形成した電荷発生層,被覆層を順次積層
してなり正コロナ帯電方式で用いられる積層型電子写真
用感光体において、前記電荷輸送層が樹脂バインダーの
分子量が異なる二つの層の積層であり、該二層のうち前
記導電性基体に接する側の層は低分子量の樹脂バインダ
ーからなり、前記電荷発生層に接する側の層はより高分
子量の樹脂バインダーからなることを特徴とする積層型
電子写真用感光体。1. A charge transport layer formed by coating a liquid in which an organic charge transporting substance is dispersed in a resin binder on a conductive substrate, and a liquid in which an organic charge generating substance is dispersed in a resin binder. In the laminated electrophotographic photoreceptor used in the positive corona charging system, which is formed by sequentially laminating the charge generation layer and the coating layer formed as described above, the charge transport layer is a laminate of two layers having different molecular weights of resin binders, Of the two layers, the layer in contact with the conductive substrate comprises a low molecular weight resin binder, and the layer in contact with the charge generation layer comprises a higher molecular weight resin binder. Photoconductor.
て、電荷輸送層を構成する二層のうち、導電性基体に接
する側の層は平均分子量10万以下の樹脂バインダーから
なり、電荷発生層に接する側の層は平均分子量が10万を
超える樹脂バインダーからなることを特徴とする積層型
電子写真用感光体。2. The photosensitive member according to claim 1, wherein among the two layers constituting the charge transport layer, the layer in contact with the conductive substrate is made of a resin binder having an average molecular weight of 100,000 or less, A laminated electrophotographic photoreceptor characterized in that the layer in contact with the generating layer is composed of a resin binder having an average molecular weight of more than 100,000.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21858387A JPH0711704B2 (en) | 1987-09-01 | 1987-09-01 | Multilayer type photoconductor for electrophotography |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21858387A JPH0711704B2 (en) | 1987-09-01 | 1987-09-01 | Multilayer type photoconductor for electrophotography |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6461756A JPS6461756A (en) | 1989-03-08 |
JPH0711704B2 true JPH0711704B2 (en) | 1995-02-08 |
Family
ID=16722228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21858387A Expired - Lifetime JPH0711704B2 (en) | 1987-09-01 | 1987-09-01 | Multilayer type photoconductor for electrophotography |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0711704B2 (en) |
-
1987
- 1987-09-01 JP JP21858387A patent/JPH0711704B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6461756A (en) | 1989-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4071361A (en) | Electrophotographic process and apparatus | |
JPS6184655A (en) | Photosensitive image forming member containing chloroindium phthalocyanine | |
US4335194A (en) | Two color electrophotographic process and material | |
JPS5858552A (en) | Electrophotographic receptor | |
JPH0711704B2 (en) | Multilayer type photoconductor for electrophotography | |
JPH0551903B2 (en) | ||
JP2707795B2 (en) | Electrophotographic photoreceptor | |
JP2917473B2 (en) | Electrophotographic photoreceptor | |
JPH0836301A (en) | Electrophotographic copying method for reversal developing | |
JP2754384B2 (en) | Electrophotographic photoreceptor | |
JP2705278B2 (en) | Electrophotographic photoreceptor | |
JPH01307760A (en) | Electrophotographic sensitive body | |
JPS62153959A (en) | Laminated type electrophotographic sensitive body | |
JPH0194348A (en) | Laminate type electrophotographic sensitive body | |
JPH03140964A (en) | Electrophotographic sensitive body | |
JPS5952831B2 (en) | Electrophotographic latent image formation method | |
JPH07128895A (en) | Electrophotographic photoreceptor and electrophotographic device | |
JPH01134464A (en) | Electrophotographic sensitive body | |
JPS5882260A (en) | Electrophotographic method for copying plural sheets and electrophotographic receptor used for it | |
JPH0337655A (en) | Electrophotographic sensitive body | |
JPH03260658A (en) | Electrophotographic sensitive body | |
JPH01158453A (en) | Image forming member and method and apparatus for forming image by using same | |
JPH11184130A (en) | Electrophotographic photoreceptor | |
JPS6041048A (en) | Multicolor copying electrophotographic sensitive body | |
JPH0812427B2 (en) | Bipolar photoreceptor |