JPH0339969A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0339969A
JPH0339969A JP17593789A JP17593789A JPH0339969A JP H0339969 A JPH0339969 A JP H0339969A JP 17593789 A JP17593789 A JP 17593789A JP 17593789 A JP17593789 A JP 17593789A JP H0339969 A JPH0339969 A JP H0339969A
Authority
JP
Japan
Prior art keywords
charge
photoreceptor
layer
free phthalocyanine
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17593789A
Other languages
Japanese (ja)
Inventor
Hitoshi Origasa
折笠 仁
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP17593789A priority Critical patent/JPH0339969A/en
Publication of JPH0339969A publication Critical patent/JPH0339969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain an electrophotographic sensitive body high in sensitivity and superior in repetition characteristics and dark decay characteristics by regulating the content of ionic impurities in a metal-free phthalocyanine as an electric charge generating material to <=250mug/g. CONSTITUTION:The electrophotographic sensitive body is formed by successively laminating on a conductive substrate 1 a charge generating organic layer 2 containing the charge generating material of the metal-free phthalocyanine having the content of the ionic impurities regulated to <=250mug/g, and a charge transfer layer 3 each by preparing a coating fluid and coating with it, thus permitting the obtained electrophotographic sensitive body to be superior in electrophotographic characteristics, such as sensitivity, dark decay characteristics, and repetition characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電子写真用感光体に関し、詳しくは有機材料
からなる電荷発生層、電荷輸送層を備え、電子写真方式
のプリンター、複写機などに用いられる積層型電子写真
用感光体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more specifically, it is equipped with a charge generation layer and a charge transport layer made of an organic material, and is suitable for use in electrophotographic printers, copying machines, etc. The present invention relates to a laminated electrophotographic photoreceptor that is used.

〔従来の技術〕[Conventional technology]

従来より電子写真用感光体(以下感光体とも称する)の
感光材料としてはセレンまたはセレン合金などの無機光
導電性物質、酸化亜鉛あるいは硫化カドミウムなどの無
機光導電性物質を樹脂結着剤中に分散させたもの、ポリ
−N−ビニルカルバゾールまたはポリビニルアントラセ
ンなどの有機光導電性物質、フタロシアニン化合物ある
いはビスアゾ化合物などの有機光導電性物質、またはこ
れらの有機光導電性物質を樹脂結着剤中に分散させたも
のなどが利用されている。
Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) include inorganic photoconductive substances such as selenium or selenium alloys, or inorganic photoconductive substances such as zinc oxide or cadmium sulfide in a resin binder. dispersions, organic photoconductive materials such as poly-N-vinylcarbazole or polyvinylanthracene, phthalocyanine compounds or bisazo compounds, or dispersions of these organic photoconductive materials in resin binders. Dispersed ones are used.

また、感光体には暗所で表面電荷を保持する機能、光を
受、容して電荷を発生する機能、同じく光を受容して電
荷を輸送する機能とが必要であるが、一つの層でこれら
の機能をあわせもったいわゆる単層型感光体と、主とし
て電荷発生に寄与する層と暗所での表面電荷の保持と光
受容時の電荷輸送に寄与する層とに機能分離した層を積
層したいわゆる積層型感光体がある。これらの感光体を
用いた電子写真法による画像形成には、例えばカールソ
ン方式が適用される。この方式での画像形成は暗所での
感光体へのコロナ放電による帯電、帯電された感光体表
面上への露光による原稿の文字や桧などの静電潜像の形
成、形成された静電潜像のトナーによる現像、現像され
たトナー像の紙などの支持体への転写、定着により行わ
れ、トナー像転写後の感光体は除電、残留トナーの除去
、光除電などを行った後、再使用に供される。
In addition, a photoreceptor must have the function of retaining a surface charge in the dark, the function of receiving and receiving light to generate a charge, and the function of receiving light and transporting a charge. We developed a so-called single-layer photoreceptor that has both of these functions, and a layer that is functionally separated into a layer that mainly contributes to charge generation, a layer that contributes to surface charge retention in the dark, and a layer that contributes to charge transport during light reception. There is a so-called laminated type photoreceptor. For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. Image formation in this method involves charging the photoconductor in a dark place by corona discharge, forming electrostatic latent images such as letters and cypress on the original by exposing the surface of the charged photoconductor, and This is done by developing a latent image with toner, transferring the developed toner image to a support such as paper, and fixing it. After the toner image has been transferred, the photoreceptor is subjected to static neutralization, removal of residual toner, photostatic static elimination, etc. Subject to reuse.

近年、可とう性、熱安定性、膜形成性などの利点により
、有機材料を用いた電子写真用感光体が実用化されてき
ている。例えば、ポIJ−N−ビニルカルバソールと2
.4.7−トリニトロフルオレン−9−オンとからなる
感光体く米国特許第3484237号明細書に記載〉、
有機顔料を主成分とする感光体(特開昭47−3754
3号公報に記載)、染料と樹脂とからなる共晶錯体を主
成分とする感光体(特開昭47−10785号公報に記
載)などである。
In recent years, electrophotographic photoreceptors using organic materials have been put into practical use due to their advantages such as flexibility, thermal stability, and film-forming properties. For example, polyJ-N-vinylcarbasol and 2
.. A photoreceptor comprising 4.7-trinitrofluoren-9-one as described in U.S. Pat. No. 3,484,237,
Photoreceptor containing organic pigment as main component (Japanese Patent Application Laid-Open No. 47-3754
3), and a photoreceptor whose main component is a eutectic complex consisting of a dye and a resin (described in JP-A-47-10785).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように、有機材料は無機材料にない多くの長所を
持つが、しかしながら、感光体に要求されるすべての特
性を満足するものがまだ得られていないのが現状であり
、特に光感度、暗減衰特性。
As mentioned above, organic materials have many advantages that inorganic materials do not have, but at present, it is not yet possible to obtain a material that satisfies all the characteristics required of a photoreceptor, especially in terms of photosensitivity and Dark decay characteristics.

繰り返し連続使用時の特性などに問題があった。There were problems with the characteristics when used repeatedly and continuously.

この発明は、有機材料からなる電荷発生層および電荷輸
送層を備え、光感度、暗減衰特性、繰り返し特性などの
電子写真特性の優れた感光体を提供することを課題とす
る。
An object of the present invention is to provide a photoreceptor that includes a charge generation layer and a charge transport layer made of an organic material and has excellent electrophotographic properties such as photosensitivity, dark decay properties, and repeatability properties.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、この発明によれば、導電性基体上に有機
材料からなる電荷発生層および電荷輸送層を備えてなる
感光体において、電荷発生層の電荷発生物質がメタルフ
リーフタロンアニンであり、かつ、このメタルフリーフ
タロシアニンに含まれるイオン性不純物の割合が250
μs/g以下である感光体とすることによって解決され
る。
According to the present invention, the above-mentioned problem is solved because, in a photoreceptor comprising a charge generation layer and a charge transport layer made of an organic material on a conductive substrate, the charge generation substance of the charge generation layer is metal-free phthalonanine. , and the proportion of ionic impurities contained in this metal-free phthalocyanine is 250.
This problem can be solved by using a photoreceptor with a photoreceptor that has a photoconductivity of μs/g or less.

〔作用〕[Effect]

本発明者らは、上記課題を解決するために、各種電荷発
生物質について鋭意評価検討を進め、数多くの実験を行
った結果、その技術的解明はまだ充分なされていないが
、電荷発生物質としてイオン性不純物の割合が250μ
g/g以下であるメタルフリーフタロシアニンを使用す
ることが電子写真特性の向上に有効であることを見出し
、優れた感光体を得るに至ったのである。
In order to solve the above-mentioned problems, the present inventors have carried out intensive evaluation studies on various charge-generating substances, and as a result of conducting numerous experiments, the present inventors have found that, although the technical clarification has not yet been fully elucidated, ion ions can be used as charge-generating substances. The proportion of sexual impurities is 250μ
They discovered that the use of metal-free phthalocyanine having a content of less than g/g is effective in improving electrophotographic properties, and they were able to obtain an excellent photoreceptor.

〔実施例〕〔Example〕

以下、この発明の実施例について、図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図はこの発明の感光体のそれぞれ異な
る実施例を示す概念的断面図で、lは導電性基体、2は
電荷発生層、3は電荷輸送層、4は被覆層である。
1 and 2 are conceptual cross-sectional views showing different embodiments of the photoreceptor of the present invention, where l is a conductive substrate, 2 is a charge generation layer, 3 is a charge transport layer, and 4 is a coating layer. .

導電性基体1は感光体の電極としての役目と同時に他の
各層の支持体となっており、円筒状、板状、フィルム状
のいずれでも良く、材質的にはアルミニウム、ステンレ
ス鋼、ニッケルナト0)金rR1あるいはガラス、樹脂
などの上に導電処理をほどこしたものでも良い。
The conductive substrate 1 serves as an electrode for the photoreceptor and at the same time serves as a support for other layers, and may be cylindrical, plate-shaped, or film-shaped, and may be made of aluminum, stainless steel, or nickel. It may be made of gold rR1, glass, resin, or the like, which is subjected to conductive treatment.

電荷発生層2は有機光導電性物質を真空蒸着して、ある
いは有機光導電性物質の粒子を樹脂バインダー(結着剤
)中に分散させた材料を塗布して形成され、光を受容し
て電荷を発生する。また、その電荷発生効率が高いこと
と同時に発生した電荷の電荷輸送層3への注入性が重要
で電場依存性が少なく低電場でも注入の良いことが望ま
しい。
The charge generation layer 2 is formed by vacuum-depositing an organic photoconductive substance or by coating a material in which particles of an organic photoconductive substance are dispersed in a resin binder, and is capable of receiving light. Generates electric charge. In addition to the high charge generation efficiency, the ability to inject the generated charges into the charge transport layer 3 is also important, and it is desirable that the charge is less dependent on the electric field and can be easily injected even in a low electric field.

電荷発生層は電荷発生機能を有すればよいので、その膜
厚は電荷発生物質の光吸収係数より決まり一般的には5
μm以下であり、好適には1μm以下である。電荷発生
層は電荷発生物質を主体としてこれに電荷輸送物質など
を添加して使用することも可能である。
Since the charge generation layer only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance and is generally 5.
It is 1 μm or less, preferably 1 μm or less. The charge generation layer is mainly composed of a charge generation substance, and a charge transport substance or the like may be added thereto.

電荷輸送層3は樹脂バインダー中に有機電荷輸送物質を
分散させた材料からなる塗膜であり、暗所では絶縁体層
として感光体の電荷を保持し、光受容時には電荷発生層
から注入される電荷を輸送する機能を発揮する。有機電
荷輸送物質としては、ピラゾリン、ヒドラゾン、トリフ
ェニルメタン。
The charge transport layer 3 is a coating film made of a material in which an organic charge transport substance is dispersed in a resin binder, and in the dark, it serves as an insulating layer to retain the charge on the photoreceptor, and when receiving light, it is injected from the charge generation layer. Demonstrates the function of transporting electric charge. Examples of organic charge transport substances include pyrazoline, hydrazone, and triphenylmethane.

スチリル、オキサジアゾールなどの誘導体が用いられる
。樹脂バインダーとしては、ポリカーボネート、ポリエ
ステル、ポリアミド、ポリウレタン。
Derivatives such as styryl and oxadiazole are used. Resin binders include polycarbonate, polyester, polyamide, and polyurethane.

エポキシ、シリコン樹脂、メタクリル酸エステルの重合
体および共重合体などが用いられるが、機械的、化学的
および電気的安定性、密着性などのほかに電荷輸送物質
との相溶性が重要である。電荷輸送層の膜厚は実用的に
有効な表面電位を維持するためには3〜30μmの範囲
が好ましく、より好適には5〜20μmである。
Polymers and copolymers of epoxy, silicone resin, methacrylic acid ester, etc. are used, but compatibility with the charge transport substance is important in addition to mechanical, chemical, and electrical stability, adhesion, etc. In order to maintain a practically effective surface potential, the thickness of the charge transport layer is preferably in the range of 3 to 30 μm, and more preferably in the range of 5 to 20 μm.

被覆層4を設けることはこの発明において必須ではない
が、近年の感光体に対する耐久性の向上に対する要求に
こたえるためには被覆層を設けることが望ましい。
Although providing the coating layer 4 is not essential in the present invention, it is desirable to provide the coating layer in order to meet the recent demand for improved durability of photoreceptors.

被覆層4は暗所ではコロナ放電の電荷を受容して保持す
る機能を有しており、かつ電荷発生層が感応する光を透
過する性能を有し、露光時に光を透過し、電荷発生層に
到達させ1発生した電荷の注入を受けて表面電荷を中和
消滅させることが必要である。被覆材料としては、ポリ
エステル、ポリアミドなどの有機絶縁性皮膜形成材料が
適用できる。また、これら有機材料とガラス樹脂、Si
20などの無機材料さらには金属、金属酸化物などの電
気抵抗を低減せしめる材料とを混合して用いることもで
きる。被覆材料としては有機絶縁性皮膜形成材料に限定
されることはなく810□などの無機材料さらには金属
、金属酸化物などを蒸着、スパッタリングなどの方法に
より形成することも可能である。被覆材料は前述の通り
電荷発生物質の光の吸収極大の波長領域においてできる
だけ透明であることが望ましい。
The coating layer 4 has the function of receiving and retaining the charges of corona discharge in a dark place, and has the ability to transmit the light to which the charge generation layer is sensitive, and transmits the light upon exposure, and the charge generation layer It is necessary to neutralize and eliminate the surface charges by injecting the charges generated when the surface charges reach 1. As the coating material, organic insulating film-forming materials such as polyester and polyamide can be used. In addition, these organic materials, glass resin, Si
It is also possible to use a mixture of inorganic materials such as No. 20 and materials that reduce electrical resistance such as metals and metal oxides. The coating material is not limited to organic insulating film-forming materials, and may also be formed using inorganic materials such as 810□, metals, metal oxides, etc. by methods such as vapor deposition and sputtering. As mentioned above, it is desirable that the coating material be as transparent as possible in the wavelength region where the charge generating substance absorbs maximum light.

被覆層自体の膜厚は被覆層の配合組成にも依存するが、
繰り返し連続使用したとき残留電位が増大するなどの悪
影響が出ない範囲で任意に設定できる。
The thickness of the coating layer itself depends on the composition of the coating layer, but
It can be set arbitrarily within a range that does not cause adverse effects such as an increase in residual potential when used repeatedly and continuously.

以下、具体的な実施例について説明する。Hereinafter, specific examples will be described.

実施例1 電荷発生物質としてイオン性不純物を240μg/g含
んだX型メタルフリーフタロシアニンを1重量部、結着
剤樹脂として塩化ビニル系共重合樹脂(商品名MR−1
10:日本ゼオン■日本ゼオン部製を、ジクロロメタン
200重量部と混合し、3時間混合機により混練を行い
塗布液を調製し電荷発生層用の塗液を作製した。
Example 1 1 part by weight of X-type metal-free phthalocyanine containing 240 μg/g of ionic impurities as a charge generating substance, vinyl chloride copolymer resin (trade name MR-1) as a binder resin.
10: Nippon Zeon ■ (manufactured by Nippon Zeon Department) was mixed with 200 parts by weight of dichloromethane and kneaded for 3 hours using a mixer to prepare a coating solution to prepare a coating solution for the charge generation layer.

ここで言うイオン性不純物とはメタルフリーフタロシア
ニンの合皮や結晶制御の過程で混入するC1−、 So
、2−、 No、−などがあげられるがこれらのイオン
性不純物に限定されるものではない。
The ionic impurities referred to here are C1- and So, which are mixed in during the synthetic skin and crystal control process of metal-free phthalocyanine.
, 2-, No, -, etc., but are not limited to these ionic impurities.

次に、電荷輸送物質として1−フェニル−3−(p−ジ
エチルアミノスチリル)−5−(パラジエチルアミノフ
ェニル〉−2−ピラゾリン(Aspp)1重量部、結着
剤樹脂としてポリカーボネート樹脂(商品名パンライ)
 L −1225+帝人化成■製)1重量部とを、ジク
ロロメタン6重量部ニ溶解し電荷輸送層用の塗液を作製
した。次に、アルミニウムを蒸着したポリエステルテレ
フタレートフィルム上に電荷発生層(1μm)、電荷輸
送層(15μm)の順にそれぞれ調製した塗液を塗布し
、第1図に示した構成の負帯電用の感光体を作製した。
Next, 1 part by weight of 1-phenyl-3-(p-diethylaminostyryl)-5-(para-diethylaminophenyl)-2-pyrazoline (Aspp) was used as a charge transport material, and polycarbonate resin (trade name: Panrye) was used as a binder resin.
A coating liquid for a charge transport layer was prepared by dissolving 1 part by weight of L-1225+Teijin Kasei ■ in 6 parts by weight of dichloromethane. Next, a charge generation layer (1 μm) and a charge transport layer (15 μm) were coated with the prepared coating liquids in this order on a polyester terephthalate film on which aluminum had been vapor-deposited. was created.

比較例1 実施例1の電荷発生物質をイオン性不純物を500μg
/g含んだX型メタルフリーフタロシアニンに変え、そ
の他は実施例1と同様にして感光体を作製した。
Comparative Example 1 500 μg of ionic impurities were added to the charge generating substance of Example 1.
A photoreceptor was produced in the same manner as in Example 1, except that X-type metal-free phthalocyanine containing /g was used.

実施例2 実施例1の電荷輸送物質をp−ジエチルアミノベンズア
ルデヒド−ジフェニルヒドラゾン(ABPH)に変え、
その他は実施例1と同様にして感光体を作製した。
Example 2 The charge transport material in Example 1 was changed to p-diethylaminobenzaldehyde-diphenylhydrazone (ABPH),
A photoreceptor was produced in the same manner as in Example 1 in other respects.

比較例2 実施例2の電荷発生物質をイオン性不純物を500μg
/g含んだX型メタルフリーフタロシアニンに変え、そ
の他は実施例2と同様にして感光体を作製した。
Comparative Example 2 500 μg of ionic impurities were added to the charge generating substance of Example 2.
A photoreceptor was produced in the same manner as in Example 2, except that X-type metal-free phthalocyanine containing /g was used.

実施例3 比較例1の電荷発生物質1g、メタノール(試薬特級)
25rn1.純水25mj!とを混合し、撹拌しながら
超音波により1時間分散処理を行った後、メタルフリー
フタロシアニンを分離・乾燥した。このX型メタルフリ
ーフタロシアニンのイオン性不純物濃度を測定したとこ
ろ24μg/gであった。
Example 3 1 g of the charge generating substance of Comparative Example 1, methanol (reagent special grade)
25rn1. Pure water 25mj! After performing a dispersion treatment using ultrasonic waves for 1 hour while stirring, the metal-free phthalocyanine was separated and dried. The ionic impurity concentration of this X-type metal-free phthalocyanine was measured and found to be 24 μg/g.

比較例1の電荷発生物質を上記の処理を行ったX型メタ
ルフリーフタロシアニンに変え、その他は比較例Iと同
様にして感光体を作製した。
A photoreceptor was produced in the same manner as in Comparative Example I except that the charge generating material in Comparative Example 1 was changed to X-type metal-free phthalocyanine treated as described above.

実施例4 実施例1と同様にして電荷発生層用および電荷輸送用の
塗液をそれぞれ調製し、アルミニウムをMMしたポリエ
ステルテレフタレートフィルム上に電荷輸送層、電荷発
生層の順にそれぞれ塗液を塗布し、第2図に示した構成
の正帯電用の感光体を作製した。ただし、この発明に直
接関与しない被覆層は設けなかった。
Example 4 Coating liquids for a charge generation layer and a charge transport layer were prepared in the same manner as in Example 1, and the coating liquids were applied to a polyester terephthalate film containing MM of aluminum in the order of the charge transport layer and the charge generation layer. A positively charging photoreceptor having the configuration shown in FIG. 2 was prepared. However, a coating layer not directly related to this invention was not provided.

比較例3 実施例4の電荷発生物質をイオン性不純物を500μs
/g 含んだX型メタルフリーフタロシアニンに変え、
その他は実施例4と同様にして感光体を作製した。
Comparative Example 3 Ionic impurities were added to the charge generating substance of Example 4 for 500 μs.
/g into X-type metal-free phthalocyanine containing
A photoreceptor was produced in the same manner as in Example 4 in other respects.

実施例5 実施例4の電荷輸送物質をp−ジエチルアミノベンズア
ルデヒド−ジフェニルヒドラゾン(ABPH)に変え、
その他は実施例4と同様にして感光体を作製した。
Example 5 The charge transport material in Example 4 was changed to p-diethylaminobenzaldehyde-diphenylhydrazone (ABPH),
A photoreceptor was produced in the same manner as in Example 4 in other respects.

比較例4 実施例5の電荷発生物質をイオン性不純物を500μg
/g含んだX型メタルフリーフタロシアニンに変え、そ
の他は実施例5と同様にして感光体を作製した。
Comparative Example 4 500 μg of ionic impurities were added to the charge generating substance of Example 5.
A photoreceptor was produced in the same manner as in Example 5, except that X-type metal-free phthalocyanine containing /g was used.

このようにして得られた感光体の電子写真特性を川口電
機製静電記録紙試験装置r S P−428Jを用いて
測定した。
The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester RSP-428J manufactured by Kawaguchi Electric.

感光体の表面電位VS(ボルト)は暗所で負帯電用感光
体には−6,OkVのコロナ放電、正帯電用感光体には
+6. QkVのコロナ放電を10秒間行って感光体表
面を帯電させたときの初期の表面電位であり、続いてコ
ロナ放電を中止した状態で5秒間暗所保持したときの表
面電位低下ΔV、(ボルト)を測定し、ΔV d/ V
 sをDDR5(5秒後暗中減衰率)と定義した。さら
に続いて感光体表面に照度1μWの単色光(780nm
)を照射してV、が半分になるまでの時間(秒)を求め
半減衰露光量El/2(μJ/Cn)とした。
The surface potential VS (volts) of the photoconductor is -6 in the dark for the negatively charged photoconductor, and +6 for the positively charged photoconductor with OkV corona discharge. This is the initial surface potential when the photoreceptor surface is charged by QkV corona discharge for 10 seconds, and the surface potential drop ΔV, (volt) when the photoreceptor surface is then held in the dark for 5 seconds with corona discharge stopped. Measure ΔV d/V
s was defined as DDR5 (dark decay rate after 5 seconds). Furthermore, monochromatic light (780 nm) with an illuminance of 1 μW was applied to the surface of the photoreceptor.
) was irradiated and the time (seconds) required for V to be halved was determined to be the half-attenuation exposure amount El/2 (μJ/Cn).

測定結果を第1表に示す。The measurement results are shown in Table 1.

第 表 第1表に見られるように、実施例1と比較例1゜実施例
2と比較例2.実施例3と比較例1.実施例4と比較例
3.実施例5と比較例4とをそれぞれ比較して、表面電
位、半減衰露光量は同等であるが、5秒後暗中減衰率は
いずれも実施例の方が向上しており、この発明の電荷発
生物質の優位性は明らかである。
As seen in Table 1, Example 1 and Comparative Example 1, Example 2 and Comparative Example 2. Example 3 and Comparative Example 1. Example 4 and Comparative Example 3. Comparing Example 5 and Comparative Example 4, it was found that the surface potential and half-attenuation exposure were the same, but the dark decay rate after 5 seconds was better in both examples, indicating that the charge of this invention was better. The superiority of generated substances is clear.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、プリンター用または複写機用積層型
感光体において、電荷発生物質であるメタルフリーフタ
ロシアニンに含まれるイオン性不純物を250μg/g
以下にすることによって、高感度で繰り返し特性に優れ
、しかも暗減衰特性の優れた感光体を得ることができる
According to this invention, in a laminated photoconductor for printers or copiers, ionic impurities contained in metal-free phthalocyanine, which is a charge generating substance, are reduced to 250 μg/g.
By doing the following, a photoreceptor with high sensitivity, excellent repeatability, and excellent dark decay characteristics can be obtained.

この発明による感光体は機能分離型であり各層を機能面
から個別に考えやすく、材料設計の自由度も大きい。例
えば、電荷発生物質は露光光源の種類に対応して好適な
メタルフリーフタロシアニンを選ぶことができ、−例を
あげるとX型フタロシアニン化合物を用いれば半導体レ
ーザブリンク−に使用可能な感光体を得ることができる
The photoreceptor according to the present invention is of a functionally separated type, making it easy to consider each layer individually from a functional standpoint, and offering a large degree of freedom in material design. For example, a suitable metal-free phthalocyanine can be selected as the charge-generating material depending on the type of exposure light source. For example, if an X-type phthalocyanine compound is used, a photoreceptor that can be used for semiconductor laser blinking can be obtained. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はこの発明の感光体のそれぞれ異な
る実施例を示す概念的断面図である。
1 and 2 are conceptual sectional views showing different embodiments of the photoreceptor of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1)導電性基体上に有機材料からなる電荷発生層および
電荷輸送層を備えてなる電子写真用感光体において、電
荷発生層の電荷発生物質がメタルフリーフタロシアニン
であり、かつ、このメタルフリーフタロシアニンに含ま
れるイオン性不純物の割合が250μg/g以下である
ことを特徴とする電子写真用感光体。
1) In an electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer made of an organic material on a conductive substrate, the charge generation substance of the charge generation layer is metal-free phthalocyanine, and the metal-free phthalocyanine is An electrophotographic photoreceptor characterized in that the proportion of ionic impurities contained is 250 μg/g or less.
JP17593789A 1989-07-07 1989-07-07 Electrophotographic sensitive body Pending JPH0339969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17593789A JPH0339969A (en) 1989-07-07 1989-07-07 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17593789A JPH0339969A (en) 1989-07-07 1989-07-07 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0339969A true JPH0339969A (en) 1991-02-20

Family

ID=16004864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17593789A Pending JPH0339969A (en) 1989-07-07 1989-07-07 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0339969A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088761A (en) * 2011-10-21 2013-05-13 Oki Data Corp Image forming apparatus
US8649097B2 (en) 2009-03-24 2014-02-11 Olympus Corporation Method of controlling inclination angle of Fabry-Perot tunable filters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649097B2 (en) 2009-03-24 2014-02-11 Olympus Corporation Method of controlling inclination angle of Fabry-Perot tunable filters
JP2013088761A (en) * 2011-10-21 2013-05-13 Oki Data Corp Image forming apparatus

Similar Documents

Publication Publication Date Title
JPH0212258A (en) Electrophotographic sensitive body
JPH01102469A (en) Electrophotographic sensitive body
JPH04119360A (en) Electrophotographic sensitive body
JPS63158560A (en) Electrophotographic sensitive body
JPH032760A (en) Electrophotographic sensitive body
JPH0339969A (en) Electrophotographic sensitive body
JPH0194349A (en) Electrophotographic sensitive body
JPH0248669A (en) Electrophotographic sensitive body
JPH0524505B2 (en)
JPH01307759A (en) Electrophotographic sensitive body
JPS63157159A (en) Electrophotographic sensitive body
JPH0194348A (en) Laminate type electrophotographic sensitive body
JPS63158557A (en) Electrophotographic sensitive body
JPH01107262A (en) Electrophotographic sensitive body
JPH01107263A (en) Electrophotographic sensitive body
JPS63157161A (en) Electrophotographic sensitive body
JPH0197965A (en) Electrophotographic sensitive body
JPH01172965A (en) Electrophotographic sensitive body
JPS6348555A (en) Laminated type electrophotographic sensitive body
JPS63158559A (en) Electrophotographic sensitive body
JPH09160272A (en) Electrophotographic photoreceptor
JPH0571945B2 (en)
JPS63192050A (en) Electrophotographic sensitive body
JPS63267953A (en) Laminate type electrophotographic sensitive body
JPH01107266A (en) Electrophotographic sensitive body