JPH0551782A - Production of gaseous nitrogen trifluoride - Google Patents

Production of gaseous nitrogen trifluoride

Info

Publication number
JPH0551782A
JPH0551782A JP3211917A JP21191791A JPH0551782A JP H0551782 A JPH0551782 A JP H0551782A JP 3211917 A JP3211917 A JP 3211917A JP 21191791 A JP21191791 A JP 21191791A JP H0551782 A JPH0551782 A JP H0551782A
Authority
JP
Japan
Prior art keywords
potential
electrode
anode
electrolysis
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3211917A
Other languages
Japanese (ja)
Inventor
Makoto Aritsuka
塚 眞 在
Atsuhisa Mitsumoto
本 敦 久 三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3211917A priority Critical patent/JPH0551782A/en
Publication of JPH0551782A publication Critical patent/JPH0551782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To suppress revelation of anode effect in a production of nitrogen trifluoride using a carbon electrode. CONSTITUTION:In the production of gaseous nitrogen trifluoride by electrolysis using an ammonium fluoride-hydrogen fluoride two component molten salt as an electrolyte, when the ratio of the maximum current under >=1V and < 4V potential based standard hydrogen electrode potential to the maximum current under 4V potential in potential scanning with a carbonaceous electrode as an anode is >=10, electrolysis is executed in >=50mA/cm<2> anode current density with another carbonaceous electrode from the carbonaceous electrode. In the result, revelation of anode effect is suppressed and dissolution of anode, contamination of electrolyte is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は三弗化窒素ガス(NF3) の
製造方法に関する。更に詳しくは、フッ化アンモニウム
(NH4F)−フッ化水素(HF)2成分系溶融塩の電解によるNF
3 ガスの製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing nitrogen trifluoride gas (NF 3 ). More specifically, ammonium fluoride
NF by electrolysis of (NH 4 F) -hydrogen fluoride (HF) binary molten salt
3 Gas production method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】最近の
エレクトロニクス産業の飛躍的な発展に伴い、半導体素
子の高密度化、高性能化が進められ、超大規模集積回路
の生産が増加している。これに伴い、該集積回路製造過
程に使用されるドライエッチング用のガスとして、ま
た、CVD装置のクリーナー用のガスとして高純度のNF
3 ガスが要求されるようになった。
2. Description of the Related Art With the recent rapid development of the electronics industry, the density and performance of semiconductor devices have been increased, and the production of ultra-large-scale integrated circuits has increased. .. Along with this, NF of high purity is used as a gas for dry etching used in the manufacturing process of the integrated circuit and as a gas for a cleaner of a CVD device.
3 gas is now required.

【0003】NF3 ガスの製造方法は大きく化学法と電解
法とに分けられる。化学法は、第一段階として電解によ
りフッ素ガス(F2)を製造し、第二段階において得られた
F2と窒素含有原料とを反応させることによりNF3 ガスを
製造するものである。一方、電解法は、窒素分およびフ
ッ素分を含有する非水溶液系溶融塩を電解液とし、これ
を電解することによりNF3 ガスを製造するものである。
The method of producing NF 3 gas is roughly divided into a chemical method and an electrolytic method. The chemical method was obtained in the second step by producing fluorine gas (F 2 ) by electrolysis as the first step.
NF 3 gas is produced by reacting F 2 with a nitrogen-containing raw material. On the other hand, in the electrolysis method, a NF 3 gas is produced by electrolyzing a non-aqueous solution type molten salt containing a nitrogen content and a fluorine content as an electrolytic solution.

【0004】工業的な電解法の特徴としては、CF4 をほ
とんど含まない高純度のNF3ガスを製造できることであ
る。CF4 の沸点はNF3ガス の沸点に極めて接近している
等、物性が極めて似ているため、NF3 ガス中のCF4 を精
製により除去することは極めて困難であり、高純度NF3
ガス製造のためには炭素源を有しない工程であることが
重要である。
A feature of the industrial electrolysis method is that high-purity NF 3 gas containing almost no CF 4 can be produced. Equal the boiling point of CF 4 is very close to the boiling point of NF 3 gas, since the physical properties are very similar, be removed by purification of CF 4 in the NF 3 gas is extremely difficult, high-purity NF 3
For gas production, it is important that the process does not have a carbon source.

【0005】次に電解法に関して、さらに詳しく述べ
る。電解法において使用可能な陽極材料はニッケルと炭
素である。ニッケルを使用した場合は、CF4 発生の原因
となる炭素源を有しない工程となるため、CF4 をほとん
ど含有しない高純度のNF3ガス を製造することが出来
る。しかし、ニッケル陽極は次の欠点を有している。即
ち、ニッケル陽極は電解により、溶解電流効率で僅かに
数パーセントの割合で溶解する。しかし、工業的に長期
間の電解を継続すると、ニッケル陽極は消耗し、やがて
電極の更新が必要となる。さらには溶解したニッケルが
ニッケル錯塩スラッジとして溶融塩電解液中に蓄積し、
電解液を汚染するため、電解液の更新も必要となる。電
極や溶融塩電解液の更新頻度は電流量や電極の大きさに
よって異なるが、工業的には操業効率を低下させる最大
の原因であり、大きな問題となっている。
Next, the electrolysis method will be described in more detail. Anode materials that can be used in the electrolysis method are nickel and carbon. When nickel is used, since the process does not have a carbon source that causes CF 4 generation, it is possible to produce a high-purity NF 3 gas containing almost no CF 4 . However, the nickel anode has the following drawbacks. That is, the nickel anode is electrolyzed at a dissolution current efficiency of only a few percent. However, when the electrolysis is industrially continued for a long period of time, the nickel anode is consumed, and eventually the electrode needs to be renewed. Furthermore, the dissolved nickel accumulates in the molten salt electrolyte as nickel complex salt sludge,
Since the electrolyte is contaminated, the electrolyte needs to be renewed. The frequency of renewal of the electrode and the molten salt electrolyte varies depending on the amount of current and the size of the electrode, but it is the biggest cause of the reduction in operation efficiency industrially and is a major problem.

【0006】炭素は不溶性であるため、陽極に使用した
場合、ニッケルの場合の問題は起こらない。しかし、電
極自身を炭素源としてCF4 が発生するため、高純度のNF
3ガス が製造できず、さらには電極が崩壊するなどの問
題がある。ところが、最近になってCF4 の発生が抑制さ
れ、かつ機械的強度も著しく改善された新型炭素電極が
開発されたため、新型炭素電極による高純度NF3ガス 製
造の可能性が高まっている。
Since carbon is insoluble, the problem with nickel does not occur when used in the anode. However, since CF 4 is generated using the electrode itself as a carbon source, high-purity NF
3 Gas cannot be produced, and there are problems such as electrode collapse. However, since a new type of carbon electrode was recently developed in which the generation of CF 4 was suppressed and mechanical strength was remarkably improved, the possibility of producing high-purity NF 3 gas using the new type carbon electrode is increasing.

【0007】しかし、炭素電極に特有の問題、いわゆる
陽極効果については完全に解決されいないため、新型炭
素電極であっても陽極として使用するためには障害があ
る。
However, the problem peculiar to the carbon electrode, that is, the so-called anodic effect has not been completely solved, and even the new-type carbon electrode has a problem in using it as an anode.

【0008】[0008]

【課題を解決するための手段】ここで陽極効果とは、電
解中に突然電位が異常に上昇し、電解が継続できなくな
る現象を言う。これは、電解中に電極表面に生成した極
めて表面エネルギーの低い皮膜により、電極表面が発生
したガスで覆われるために起こる。
The anodic effect is a phenomenon in which the electric potential suddenly rises abnormally during electrolysis and electrolysis cannot be continued. This occurs because the electrode surface is covered with the generated gas by the film having extremely low surface energy generated on the electrode surface during electrolysis.

【0009】発明者らは、陽極効果の発現について鋭意
検討を重ねた結果、炭素質電極での電解を行う前に、該
炭素質電極とは別に用意した炭素質電極を用い、この電
極で電位走査を行った際に得られる単掃引ボルタモグラ
ムの電流ピーク比率が所定の要件を満たしていれば、そ
の後、炭素質電極での電解を行っても陽極効果が発現し
ないことを見いだし、本発明を完成するに至ったもので
ある。
[0009] As a result of intensive studies on the manifestation of the anodic effect, the inventors have used a carbonaceous electrode prepared separately from the carbonaceous electrode before conducting electrolysis on the carbonaceous electrode, If the current peak ratio of the single-sweep voltammogram obtained when performing scanning satisfies the predetermined requirements, then, it was found that the anode effect does not appear even if electrolysis with a carbonaceous electrode is performed, and the present invention was completed. It has come to do.

【0010】即ち、本発明はフッ化アンモニウム−フッ
化水素2成分系溶融塩を電解液とする電解法による三弗
化窒素ガスの製造において、炭素質電極を陽極とする電
位走査で、標準水素電極電位を基準とする電位で1V以
上4V未満での最大電流に対する4V以上での最大電流
の比が10以上であるとき、該炭素電極とは別な炭素質電
極で陽極電流密度が50mA/cm2以上で電解を行うことを特
徴とする三フッ化窒素ガスの製造方法である。
That is, according to the present invention, in the production of nitrogen trifluoride gas by an electrolysis method using an ammonium fluoride-hydrogen fluoride binary system molten salt as an electrolytic solution, a standard hydrogen is used in a potential scan using a carbonaceous electrode as an anode. When the ratio of the maximum current at 4 V or more to the maximum current at 1 V or more and less than 4 V based on the electrode potential is 10 or more, the anode current density is 50 mA / cm in a carbonaceous electrode different from the carbon electrode. A method for producing nitrogen trifluoride gas, characterized in that electrolysis is performed at 2 or more.

【0011】尚、本発明は、炭素電極を使用する上で従
来より問題であった、陽極効果の発現を抑制することを
目的としたものであり、炭素電極の新型、従来型は問わ
ないことは言うまでもない。
The present invention is intended to suppress the development of the anodic effect, which has been a problem in the past when using a carbon electrode, and it does not matter whether the carbon electrode is a new type or a conventional type. Needless to say.

【0012】以下、本発明を詳細に開示する。まず、電
解に使用する溶融塩の調整方法について述べる。溶融塩
の調整方法は概ね2つの方法で実施可能である。第1の
方法は、一水素二フッ化アンモニウム(NH4HF2)とHFより
調整する方法で、まず、容器もしくは電解槽にNH4HF2
所定量投入し、これに所定量のガス状HFを吹き込むもの
である。そして第2の方法は、容器もしくは電解槽中
で、所定量のアンモニアガス(NH3) とガス状HFを直接反
応させて溶融塩を調整する方法である。後者の方法にお
いては、NH3 ガスおよびHFガスのいずれにも5〜70 vol
%程度の乾燥不活性ガス、例えば窒素、アルゴン、ヘリ
ウム、を同伴させて供給すると、ガス供給管に溶融塩が
逆流することもなく安定に調整できる。いずれも該溶融
塩を容易に調整することが可能である。尚、NH4Fは著し
い潮解性と熱分解性を有するが、溶融塩原料として使用
することは可能である。
The present invention will be disclosed in detail below. First, a method for adjusting the molten salt used for electrolysis will be described. The molten salt can be prepared by two methods. The first method is to adjust from ammonium hydrogen difluoride (NH 4 HF 2 ) and HF. First, a predetermined amount of NH 4 HF 2 is put into a container or an electrolytic cell, and a predetermined amount of gaseous form is added to this. It is what blows HF. The second method is a method in which a predetermined amount of ammonia gas (NH 3 ) is directly reacted with gaseous HF in a container or an electrolytic cell to prepare a molten salt. In the latter method, it is 5 to 70 vol for both NH 3 gas and HF gas.
When a dry inert gas of about%, for example, nitrogen, argon, or helium is supplied together, the molten salt can be stably adjusted without backflow of the molten salt into the gas supply pipe. In either case, the molten salt can be easily adjusted. NH 4 F has remarkable deliquescent property and thermal decomposability, but it can be used as a molten salt raw material.

【0013】本発明に使用する溶融塩の温度としては16
0℃ 以下が望ましい。溶融塩の温度が160℃ を超えると
蒸気圧が著しく高くなり、溶融塩の損失が多くなるばか
りでなく、電解生成ガスの導出口付近に揮発成分が凝縮
固結し、閉塞を引き起こす問題も生じる。
The temperature of the molten salt used in the present invention is 16
0 ° C or less is desirable. When the temperature of the molten salt exceeds 160 ° C, the vapor pressure becomes extremely high, which not only increases the loss of the molten salt but also causes the problem that volatile components are condensed and solidified near the outlet of the electrolysis product gas, which causes clogging. ..

【0014】上記の如く、調整された電解液を使用し
て、電解を行う前に、炭素質電極を用いて電位走査を行
うことが本発明の特徴である。電位走査を行うための炭
素質電極は、次の特徴を有するものを使用することが好
ましい。即ち、濃硫酸中における電位走査により求めら
れた単掃引ボルタモグラムにおいて、最大の電流密度を
有するピークを与える電位が、硫酸第二水銀を基準電極
とする電位で、1.2 V以上であることである。濃硫酸中
での挙動は、炭素電極中の微結晶層間へのHFの侵入の難
易を測る尺度として活用でき、該電位が1.2Vに満たな
いものは濃硫酸中での電位走査により崩壊等の異常が認
められることもある。
As described above, it is a feature of the present invention that the potential scanning is performed using the carbonaceous electrode before the electrolysis using the prepared electrolytic solution. As the carbonaceous electrode for performing potential scanning, it is preferable to use a carbonaceous electrode having the following characteristics. That is, in the single sweep voltammogram obtained by potential scanning in concentrated sulfuric acid, the potential giving the peak having the maximum current density is 1.2 V or more in terms of the potential using mercuric sulfate as the reference electrode. The behavior in concentrated sulfuric acid can be used as a scale for measuring the difficulty of HF penetration between microcrystalline layers in a carbon electrode, and those whose potential is less than 1.2 V may be destroyed by potential scanning in concentrated sulfuric acid. Abnormalities may be found.

【0015】その他、次のような特徴を有する炭素電極
を使用することは差し支えない。気孔率が2〜10数%、
また、気孔の平均口径は、例えば1μmである。かさ比
重としては1.50〜1.7g・cm-3程度を有するもの、更に
組織または形状が等方的な骨材原料を用いる(例えば、
特公昭50−39427号に開示された原料製造の工程
参照)方法や、原料である骨材粒子が特定の方向に配列
しないような成形方法を選ぶ(例えば、特公昭51−2
0197号に開示された加圧型込めの工程参照)技術を
応用して得られる固有抵抗の異方比が1.2以下である炭
素ブロック(いわゆる等方性炭素)より切り出されたも
の、等である。また、高い機械的強度を示すものものも
良い。例えば曲げ強度で50MPa 以上であること等であ
る。
Other than that, it is acceptable to use a carbon electrode having the following characteristics. Porosity 2 ~ 10%,
The average diameter of the pores is, for example, 1 μm. A bulk specific gravity of about 1.50 to 1.7 g · cm −3, and an aggregate raw material having an isotropic structure or shape (for example,
Select a method disclosed in Japanese Patent Publication No. 50-39427) or a molding method in which the raw material aggregate particles are not aligned in a specific direction (for example, Japanese Patent Publication No. 51-2).
No. 0197 disclosed in Japanese Patent Application No. 0197), which is cut out from a carbon block (so-called isotropic carbon) having an anisotropy ratio of specific resistance of 1.2 or less, which is obtained by applying the technique. Further, a material having high mechanical strength is also preferable. For example, the bending strength is 50 MPa or more.

【0016】これらの電極は本来の電解用電極とは別に
設置されるため、電極のサイズは特に制限が無い。従っ
て、電解槽蓋部に電位走査用電極を取り付ける孔を設
け、ここより電位走査用電極を設置する方法が最も簡便
に本発明を実施できる方法である。より具体的には1cm
2程度の電極面積を有していれば十分に実施可能であ
る。
Since these electrodes are installed separately from the original electrodes for electrolysis, the size of the electrodes is not particularly limited. Therefore, the method of providing the hole for mounting the potential scanning electrode in the electrolytic cell lid and installing the potential scanning electrode from this hole is the most simple method for carrying out the present invention. More specifically, 1 cm
If the electrode area is about 2, it can be sufficiently implemented.

【0017】次にこの電位走査用電極を用いて電位走査
を行う。電位走査の条件としては、走査速度、走査電位
範囲が上げられる。走査速度は1mV/sec程度から数百mV
/secまでの範囲で実施可能である。無論、この範囲を外
れても差し支えない。しかし、走査速度が極端に遅い場
合は、電流の絶対値が小さくなるため電流計によっては
測定が困難になる場合も有り得る。また、走査速度が極
端に速い場合も電流の絶対値が大きくなるため同様であ
る。このように、走査速度は電位走査を行う機器の能力
により適宜選択されるべきものである。走査電位範囲は
通常、自然浸漬電位より、標準水素電極電位(以下、SH
E と略記する)を基準として10Vまでの範囲で行えば十
分である。自然浸漬電位以下では還元電流が流れるため
本発明においては意味がない。10V以上までの範囲で実
施することに差し仕えはないが、経験的には10V以上で
実施する必要はない。
Next, potential scanning is performed using this potential scanning electrode. As the conditions for the potential scanning, the scanning speed and the scanning potential range can be increased. Scanning speed is from 1 mV / sec to several hundred mV
It can be implemented in the range of up to / sec. Of course, it does not matter if it goes out of this range. However, when the scanning speed is extremely slow, the absolute value of the current becomes small, which may make the measurement difficult depending on the ammeter. Further, even when the scanning speed is extremely high, the absolute value of the current becomes large, and the same is true. As described above, the scanning speed should be appropriately selected according to the capability of the device for performing potential scanning. The scanning potential range is usually from the natural immersion potential to the standard hydrogen electrode potential (hereinafter, SH
It is sufficient to carry out the voltage up to 10 V with reference to (abbreviated as E). It is meaningless in the present invention because a reducing current flows below the natural immersion potential. Although there is no problem in implementing it in the range of 10V or more, it is empirically not necessary to implement it in the range of 10V or more.

【0018】以上により、電位走査を行うが、ここでは
走査速度100mV/sec 、走査電位範囲は自然浸漬電位より
10V vs.SHE で行った。電位走査により得られたボルタ
モグラムには通常、図1に示すように2つの電流ピーク
が認められる。1〜4V vs.SHE におけるピークの電流
値をIp1、4Vvs.SHE より高い電位に現れるピークの電
流値もしくは最大の電流値をIp2とすると、電流ピーク
比はIp2/Ip1で表される。この電流ピーク比が10未満
であるときは、その後、電解用電極に切り替えた際、陽
極効果を発生する。一方、該比率が10以上の時は陽極効
果は発生しない。
The potential scanning is performed as described above. Here, the scanning speed is 100 mV / sec, the scanning potential range is more than the natural immersion potential.
It was performed at 10V vs. SHE. Usually, two current peaks are observed in the voltammogram obtained by the potential scanning as shown in FIG. When the peak current value at 1 to 4 V vs. SHE is Ip1, and the peak current value or the maximum current value appearing at a potential higher than 4 V vs. SHE is Ip2, the current peak ratio is represented by Ip2 / Ip1. When the current peak ratio is less than 10, the anode effect is generated when switching to the electrode for electrolysis thereafter. On the other hand, when the ratio is 10 or more, the anode effect does not occur.

【0019】[0019]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0020】実施例1 NH4F-HF 2成分系溶融塩は、容量約2lの電解槽中で調
製した。真空乾燥したNH4HF2 約2200gを電解槽に仕込
み、電解槽中にHFガス約800gを50g/minにて送入し調製
した。溶融塩組成はおよそNH4F・2HFであった。これを電
解液とし、まず電位走査用炭素質電極を陽極とし、電位
走査速度100mV/sec 、走査電位範囲を自然浸漬電位より
10V vs.SHE で電位走査をおこなった。その結果、得ら
れた電流ピーク比は14であった。そこで、引続き陽極電
流密度を70mA/cm2として電解を1時間行ったが、陽極効
果は発生しなかった。
Example 1 The NH 4 F-HF binary molten salt was prepared in an electrolytic cell having a volume of about 2 liters. About 2200 g of vacuum-dried NH 4 HF 2 was charged into the electrolytic cell, and about 800 g of HF gas was fed into the electrolytic cell at 50 g / min for preparation. The molten salt composition was approximately NH 4 F · 2HF. This was used as an electrolytic solution, first the potential scanning carbonaceous electrode was used as the anode, the potential scanning speed was 100 mV / sec, and the scanning potential range was more than the natural immersion potential.
A potential scan was performed at 10 V vs. SHE. As a result, the obtained current peak ratio was 14. Then, electrolysis was continued for 1 hour at an anode current density of 70 mA / cm 2 , but the anode effect did not occur.

【0021】比較例1 実施例1において、真空乾燥されていないNH4HF2を用い
て溶融塩を調整した他は実施例1と同様におこなった。
電位走査の結果得られた電流ピーク比は7であった。ま
た、引続き炭素電極で電解を行ったところ、1時間を待
たずに陽極効果が発生し、電圧の異常上昇が発生し、電
解の継続が不能となった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the molten salt was prepared by using NH 4 HF 2 which was not vacuum dried.
The current peak ratio obtained as a result of the potential scanning was 7. Further, when electrolysis was continued with the carbon electrode, the anode effect occurred within 1 hour, an abnormal increase in voltage occurred, and continuation of electrolysis became impossible.

【0022】[0022]

【発明の効果】炭素電極はニッケル電極の欠点である溶
解を解消する電極であるが、陽極効果という欠点を有し
ている。これを確実に抑えることが重要であるが、本発
明ではきわめて簡便な手法を用いることで陽極効果の抑
制に大きな効果があることを見いだした。NF3ガスの電
解製造における従来の問題点、即ち陽極の溶解、電解液
の汚染等を解決する新たな可能性を与えた意義は大きい
といえる。
The carbon electrode is an electrode that solves the drawback of the nickel electrode, namely the dissolution, but it has the drawback of the anode effect. Although it is important to surely suppress this, the present invention has found that the use of an extremely simple method has a great effect on suppressing the anode effect. It can be said that there is great significance in giving a new possibility to solve the conventional problems in the electrolytic production of NF 3 gas, that is, the dissolution of the anode, the contamination of the electrolytic solution and the like.

【0023】[0023]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電位走査によるボルタモグラムの一例
より得られる電流ピーク。
FIG. 1 is a current peak obtained from an example of a voltammogram by potential scanning of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フッ化アンモニウム−フッ化水素2成
分系溶融塩を電解液とする電解法による三弗化窒素ガス
の製造において、炭素質電極を陽極とする電位走査で、
標準水素電極電位を基準とする電位で1V以上4V未満
での最大電流に対する4V以上での最大電流の比が10以
上であるとき、該炭素電極とは別な炭素質電極で陽極電
流密度が50mA/cm2以上で電解を行うことを特徴とする三
フッ化窒素ガスの製造方法。
1. In the production of nitrogen trifluoride gas by an electrolytic method using an ammonium fluoride-hydrogen fluoride binary molten salt as an electrolytic solution, a potential scanning using a carbonaceous electrode as an anode,
When the ratio of the maximum current at 4 V or more to the maximum current at 1 V or more and less than 4 V at the potential based on the standard hydrogen electrode potential is 10 or more, the carbonaceous electrode different from the carbon electrode has an anode current density of 50 mA. A method for producing nitrogen trifluoride gas, characterized in that electrolysis is performed at a pressure of not less than / cm 2 .
【請求項2】 電位走査を行う炭素質電極が、濃硫酸
中における電位走査により求められた単掃引ボルタモグ
ラムにおいて、最大の電流密度を有するピークを与える
電位が、硫酸第二水銀を基準電極とする電位で、1.2 V
以上である請求項1の方法。
2. The potential of a carbonaceous electrode for performing potential scanning, which gives a peak having the maximum current density in a single-sweep voltammogram obtained by potential scanning in concentrated sulfuric acid, uses mercuric sulfate as a reference electrode. 1.2 V at electric potential
The method according to claim 1, which is the above.
JP3211917A 1991-08-23 1991-08-23 Production of gaseous nitrogen trifluoride Pending JPH0551782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3211917A JPH0551782A (en) 1991-08-23 1991-08-23 Production of gaseous nitrogen trifluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3211917A JPH0551782A (en) 1991-08-23 1991-08-23 Production of gaseous nitrogen trifluoride

Publications (1)

Publication Number Publication Date
JPH0551782A true JPH0551782A (en) 1993-03-02

Family

ID=16613805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3211917A Pending JPH0551782A (en) 1991-08-23 1991-08-23 Production of gaseous nitrogen trifluoride

Country Status (1)

Country Link
JP (1) JPH0551782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2365023A (en) * 2000-07-18 2002-02-13 Ionex Ltd Increasing the surface area of an electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2365023A (en) * 2000-07-18 2002-02-13 Ionex Ltd Increasing the surface area of an electrode
GB2365023B (en) * 2000-07-18 2002-08-21 Ionex Ltd A process for improving an electrode
US7341655B2 (en) 2000-07-18 2008-03-11 Ionex Limited Process for improving an electrode

Similar Documents

Publication Publication Date Title
CN1840742B (en) Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
KR100641603B1 (en) Preparation of high purity fluorine gas
CN101328592B (en) Conductive diamond electrode structure and method for electrolytic synthesis of fluorine-containing material
US20100006449A1 (en) Method of electrolytically synthesizing nitrogen trifluoride
JPH0551782A (en) Production of gaseous nitrogen trifluoride
KR100742484B1 (en) The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
JP7122315B2 (en) Electrode, method for producing same, and method for producing regenerated electrode
JP3037464B2 (en) Method for producing nitrogen trifluoride gas
KR100447420B1 (en) Electrode for use in preparation of nitrogen trifluoride gas
JPH0551779A (en) Production of gaseous nitrogen trifluoride
JPS6261115B2 (en)
JP2001295086A (en) Carbon electrode for generating fluorine gas or nitrogen trifluoride gas and device for generating fluorine gas or nitrogen trifluoride gas using the electrode
JPH0551778A (en) Production of gaseous nitrogen trifluoride
JP2896196B2 (en) Method for producing nitrogen trifluoride gas
JP3162594B2 (en) Electrolytic solution and method for producing nitrogen trifluoride gas using the same
JP3340273B2 (en) Composite electrode and method for producing nitrogen trifluoride gas using the same
JPH0570982A (en) Production of gaseous nitrogen trifluoride
JP2914698B2 (en) Method for producing nitrogen trifluoride by molten salt electrolysis
JP2000104188A (en) Electrolytic cell
CN113862707B (en) Method for preparing trifluoromethyl sulfuryl fluoride by medium-temperature electrolysis method
RU2760027C1 (en) Method for electrolytic production of silicon from molten salts
JP2000104187A (en) Electrolytic cell (1)
JPH03170307A (en) Production of nitrogen trifluoride
JP2854934B2 (en) Method for producing nitrogen trifluoride gas
JP2001181882A (en) Electrolytic cell