JP3340273B2 - Composite electrode and method for producing nitrogen trifluoride gas using the same - Google Patents

Composite electrode and method for producing nitrogen trifluoride gas using the same

Info

Publication number
JP3340273B2
JP3340273B2 JP03233095A JP3233095A JP3340273B2 JP 3340273 B2 JP3340273 B2 JP 3340273B2 JP 03233095 A JP03233095 A JP 03233095A JP 3233095 A JP3233095 A JP 3233095A JP 3340273 B2 JP3340273 B2 JP 3340273B2
Authority
JP
Japan
Prior art keywords
gas
nickel
anode
composite electrode
nitrogen trifluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03233095A
Other languages
Japanese (ja)
Other versions
JPH08225976A (en
Inventor
明政 田坂
眞 在塚
徳幸 岩永
敦久 三本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP03233095A priority Critical patent/JP3340273B2/en
Publication of JPH08225976A publication Critical patent/JPH08225976A/en
Application granted granted Critical
Publication of JP3340273B2 publication Critical patent/JP3340273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は三弗化窒素(NF)ガ
スの製造方法に関する。更に詳しくは、フッ化アンモニ
ウム(NHF)−フッ化水素(HF)系溶融塩の電解
によるNFガスの製造方法に関する。
The present invention relates to nitrogen trifluoride (NF 3) a method for the production of gas. More specifically, the present invention relates to a method for producing NF 3 gas by electrolysis of an ammonium fluoride (NH 4 F) -hydrogen fluoride (HF) -based molten salt.

【0002】[0002]

【従来の技術】最近のエレクトロニクス産業の飛躍的な
発展に伴い、半導体素子の高密度化、高性能化が進めら
れ、超大規模集積回路の生産が増加している。これに伴
い、該集積回路製造過程に使用されるドライエッチング
用のガスとして、また、CVD装置のクリーナー用のガ
スとして高純度のNFガスが要求されるようになっ
た。
2. Description of the Related Art With the recent rapid development of the electronics industry, the density and performance of semiconductor devices have been increased, and the production of ultra-large-scale integrated circuits has been increasing. Accordingly, high-purity NF 3 gas has been required as a gas for dry etching used in the integrated circuit manufacturing process and as a gas for a cleaner of a CVD apparatus.

【0003】NFガスの製造方法は大きく化学法と電
解法とに分けられる。化学法は、第一段階として電解に
よりフッ素(F)ガスを製造し、第二段階において得
られたFガスと窒素含有原料とを反応させることによ
りNFガスを製造するものである。一方、電解法は、
窒素分およびフッ素分を含有する非水溶液系溶融塩を電
解液とし、これを電解することによりNFガスを製造
するものである。
[0003] The method for producing NF 3 gas is roughly divided into a chemical method and an electrolytic method. In the chemical method, a fluorine (F 2 ) gas is produced by electrolysis as a first step, and an NF 3 gas is produced by reacting the F 2 gas obtained in the second step with a nitrogen-containing raw material. On the other hand, the electrolysis method
An NF 3 gas is produced by using a non-aqueous solution type molten salt containing a nitrogen component and a fluorine component as an electrolytic solution and electrolyzing the electrolytic solution.

【0004】電解法は化学法と比較した場合、一段階
で、かつ高収率でNFガスを製造できる利点を有して
いる。
[0004] The electrolysis method has an advantage that NF 3 gas can be produced in one step and in a high yield as compared with the chemical method.

【0005】化学法では、四弗化炭素(CF)が多量
に含まれるFを原料とするため、必然的に多量のCF
がNFガス中へ混入する。ところが、このCF
NF と物性が極めて似ており、高純度のNFガスを
得るためには、工業的にコストの嵩む高度の精製技法を
適用せざるを得ない。これに対して、電解法では合成の
過程でCFが生成、あるいは混入することが殆ど無い
ため、容易に高純度のNFガスを得られる利点を有し
ている。
In the chemical method, carbon tetrafluoride (CF4) Is large
F included in2Inevitably requires a large amount of CF
4Is NF3Mix into gas. However, this CF4Is
NF 3Is very similar in physical properties to high-purity NF3Gas
In order to obtain it, use sophisticated purification techniques that are industrially expensive.
I have to apply it. In contrast, the electrolytic method
In the process CF4Is hardly generated or mixed
Therefore, high-purity NF3Has the advantage of obtaining gas
ing.

【0006】電解法NFガスの工業的合成の概要は次
の通りである。電解液は、アンモニアや酸性フッ化アン
モニウム(NHHF)と、無水フッ化水素(HF)
よりなるNHF−HF系溶融塩を使用する。これをニ
ッケル製の陽極で電解する。NFガスは陽極より発生
し、陽極側から不純物を含むNFガスが得られる。精
製操作後のNFガス純度は99.99容量%を超え
る。
The outline of the industrial synthesis of electrolytic NF 3 gas is as follows. The electrolytic solution is ammonia or ammonium acid fluoride (NH 4 HF 2 ) and anhydrous hydrogen fluoride (HF)
NH 4 F-HF-based molten salt is used. This is electrolyzed with a nickel anode. NF 3 gas is generated from the anode, and NF 3 gas containing impurities is obtained from the anode side. NF 3 gas purity after the purification operation exceeds 99.99% by volume.

【0007】[0007]

【発明が解決しようとする課題】陽極に最適な金属材料
はニッケルである。他の金属では、不働態化して電流が
流れないか、あるいは激しく溶解するもののいずれかで
ある。しかしニッケルの場合も幾分かの溶解が起こり、
電極が消耗する。このため、工業的生産においては、頻
繁な電極交換を招くだけでなく、溶解で生成したニッケ
ル塩で汚染された電解液も頻繁に交換することが余儀な
くされる。この課題に対して種々の電極材料や電解液に
ついて、溶解抑制の効果が検討されているが、決定的な
対策は見出されていない。
The most suitable metal material for the anode is nickel. Other metals are either passivated and no current flows, or they melt violently. However, some dissolution also occurs with nickel,
The electrodes wear out. For this reason, in industrial production, not only frequent electrode replacement is caused, but also frequent replacement of the electrolytic solution contaminated with the nickel salt generated by dissolution is inevitable. To address this problem, the effect of suppressing dissolution of various electrode materials and electrolytes has been studied, but no definitive measures have been found.

【0008】[0008]

【課題を解決するための手段】本発明者らは、鋭意この
溶解に関する問題解決に向けニッケルとその他の金属と
の溶解挙動の相違について検討した。その結果、ニッケ
ルの場合は安定な導電性オキシフルオライドが電極表面
を覆い、その膜を介して電極と電解液との間で電子の授
受が行われているため、他の金属に比べて低い溶解量
で、かつ不働態状態にならずに電解が行われることを見
いだした。更に電極表面の導電性オキシフルオライドの
生成を積極的に促進するため、特定の電極を用いること
により、更に溶解量を低減できるものと考え、本発明を
完成するに至ったものである。
Means for Solving the Problems The present inventors diligently studied the difference in dissolution behavior between nickel and other metals in order to solve this problem relating to dissolution. As a result, in the case of nickel, the stable conductive oxyfluoride covers the electrode surface, and electrons are exchanged between the electrode and the electrolyte through the film, so that it is lower than other metals. It has been found that electrolysis is carried out in a dissolved amount and without being in a passive state. Further, the present invention is considered to be able to further reduce the amount of dissolution by using a specific electrode in order to positively promote the generation of conductive oxyfluoride on the electrode surface, thereby completing the present invention.

【0009】即ち、本発明はニッケル系酸化物と分散ニ
ッケルメッキまたはニッケル粉末とを燒結させることに
より得られる三フッ化窒素ガス製造用の複合電極、また
はフッ化アンモニウム(NHF)−フッ化水素(H
F)系溶融塩であって、組成モル比(HF/NHF)
が1〜3である電解液を、100〜140℃に保持しな
がら、上記の複合電極を陽極として用い電解することを
特徴とする三フッ化窒素ガスの製造方法に関する。
That is, the present invention provides a composite electrode for producing nitrogen trifluoride gas obtained by sintering a nickel-based oxide and dispersed nickel plating or nickel powder, or ammonium fluoride (NH 4 F) -fluoride. Hydrogen (H
F) A molten salt having a composition molar ratio (HF / NH 4 F)
The present invention relates to a method for producing a nitrogen trifluoride gas, comprising performing electrolysis using the above-mentioned composite electrode as an anode while maintaining an electrolytic solution having a value of 1 to 3 at 100 to 140 ° C.

【0010】次に、更に本発明について詳しく開示す
る。本発明に用いるニッケル系酸化物には、NiO
NiO、Ni、Ni 、NiO1+X、Li
NiO、NiO及びNiO+ニッケル酸化物が挙
げられる。また、焼結時に酸化物となる、例えばNi
(OH)なども用いることができる。
Next, the present invention will be described in more detail.
You. The nickel-based oxide used in the present invention includes NiO2,
NiO, Ni2O3, Ni 3O4, NiO1 + X, Li
NiO2, Ni2O and Ni2O + nickel oxide
I can do it. Also, it becomes an oxide during sintering, for example, Ni
(OH)2Etc. can also be used.

【0011】本発明に用いる電極は、ニッケル系酸化物
と分散ニッケルメッキまたはニッケル粉末と燒結によっ
てニッケルと共存させることで得られる。例えばニッケ
ル粉末とニッケル酸リチウムを混合成形後、不活性ガス
雰囲気中で高温で燒結せしめる方法では、主にニッケル
系酸化物が酸化ニッケルであるニッケルとの燒結電極を
得ることができる。
The electrode used in the present invention is obtained by coexisting nickel by nickel-based oxide and dispersed nickel plating or sintering with nickel powder. For example, in a method in which nickel powder and lithium nickel oxide are mixed and then sintered at a high temperature in an inert gas atmosphere, a sintered electrode mainly made of nickel whose nickel-based oxide is nickel oxide can be obtained.

【0012】また、ニッケル酸リチウムをニッケルメッ
キ浴に分散粒子として分散させ、電解することにより、
ニッケル板上にニッケルマトリックス中にニッケル酸リ
チウムが取り込まれた複合電極を得ることができる。な
お、使用するニッケル板はニッケルを主体として含有す
るものであって、ニッケル含有量が概ね60%以上のも
のが好ましい。また、純ニッケル、モネル合金等が挙げ
られる。
Further, by dispersing lithium nickelate as dispersed particles in a nickel plating bath and performing electrolysis,
A composite electrode in which lithium nickelate is incorporated in a nickel matrix on a nickel plate can be obtained. The nickel plate used mainly contains nickel, and preferably has a nickel content of about 60% or more. Further, pure nickel, a monel alloy, and the like can be given.

【0013】電解槽の構成として、図1に例示する。本
体1と槽蓋2は、電解液8および発生したガスを系外と
隔離する構造となっている。本体1と槽蓋2の接続は気
密性を確保するためパッキンを介して固定密閉するのが
一般的である。尚、本体1および槽蓋2の内面はフッ素
樹脂等で被覆すると、その耐久性は一層向上する。
FIG. 1 shows an example of the configuration of the electrolytic cell. The main body 1 and the tank lid 2 have a structure that isolates the electrolytic solution 8 and generated gas from the outside of the system. In general, the connection between the main body 1 and the tank lid 2 is fixed and sealed via packing in order to ensure airtightness. When the inner surfaces of the main body 1 and the tank lid 2 are covered with a fluororesin or the like, the durability is further improved.

【0014】陽極3および陰極4は槽蓋2に設けられた
隔壁5により隔てる。陽極3から発生したNFと陰極
4から発生したHが混合すると容易に発火爆発するた
め、これを防ぐために隔壁5が設けられる。なお、隔壁
5の下方向への長さは、本体1底部に極端に接近しない
こと、および電解液面より下であることを条件に適宜選
択できる。なお、本体1を陰極または陽極とすることも
可能である。
The anode 3 and the cathode 4 are separated by a partition wall 5 provided on the tank lid 2. When NF 3 generated from the anode 3 and H 2 generated from the cathode 4 are mixed, they easily ignite and explode. Therefore, a partition 5 is provided to prevent this. The length of the partition wall 5 in the downward direction can be appropriately selected on condition that the partition wall 5 does not extremely approach the bottom of the main body 1 and is below the electrolyte surface. Note that the main body 1 can be a cathode or an anode.

【0015】生成したガスは、槽蓋2に設けられた陽極
ガス排出口6および陰極ガス排出口7より電解槽外部へ
導き出される。また、電解にあたっては、陽極3側及び
陰極4側にそれぞれ窒素ガス等の不活性ガスをキャリヤ
ーガスとして送入する場合もある。本体1、槽蓋2、隔
壁5の材質は通常金属であるが、必要に応じてフッ素樹
脂なども使用可能である。
The generated gas is led out of the electrolytic cell through an anode gas outlet 6 and a cathode gas outlet 7 provided in the tank lid 2. In the electrolysis, an inert gas such as a nitrogen gas may be supplied as a carrier gas to the anode 3 side and the cathode 4 side, respectively. The material of the main body 1, the tank lid 2, and the partition 5 is usually a metal, but a fluororesin or the like can be used if necessary.

【0016】例示した電解槽は基本的な構成用件を示し
ただけであり、無論、形状、電極や隔壁の配置など様々
である。特殊な電極を使用するが、そのために特殊な構
成の電解槽である必要はない。また、電解槽の構成によ
り、本発明の効果が影響を受けるものでもない。
The illustrated electrolytic cell merely shows the basic configuration requirements, and it goes without saying that the electrolytic cell varies in shape, arrangement of electrodes and partition walls, and the like. Although a special electrode is used, there is no need for a specially configured electrolytic cell for that purpose. Further, the effects of the present invention are not affected by the configuration of the electrolytic cell.

【0017】電解液は、フッ化アンモニウム(NH
F)−フッ化水素(HF)系塩を使用する。調製方法
としては、例えば、アンモニアガスと無水フッ化水素よ
り調製、一水素二フッ化アンモニウムと無水フッ化水素
より調製、フッ化アンモニウムと無水フッ化水素より調
製する等の方法がある。
The electrolyte is ammonium fluoride (NH)
4 F) - using a hydrogen fluoride (HF) based salts. Examples of the preparation method include a method of preparing from ammonia gas and anhydrous hydrogen fluoride, a method of preparing from ammonium hydrogen difluoride and anhydrous hydrogen fluoride, a method of preparing from ammonium fluoride and anhydrous hydrogen fluoride.

【0018】電解液の調製方法は、たとえば、次のよう
な方法で行うことができる。一水素二フッ化アンモニウ
ム(NHHF)または/およびフッ化アンモニウム
(NHF)と無水HFより調製する方法は、まず、容
器もしくは電解槽にNHHFまたは/およびNH
Fを所定量投入し、これに所定量の無水HFガスを吹き
込むものである。
The electrolytic solution can be prepared, for example, by the following method. A method for preparing ammonium hydrogen difluoride (NH 4 HF 2 ) or / and ammonium fluoride (NH 4 F) and anhydrous HF is as follows. First, NH 4 HF 2 or / and NH 4 is added to a vessel or an electrolytic cell.
A predetermined amount of F is charged, and a predetermined amount of anhydrous HF gas is blown into this.

【0019】もうひとつの方法は、容器もしくは電解槽
中で、所定量のNHガスとHFガスを直接反応させて
電解液を調製する方法である。なかでも、NHガスお
よびHFガスの反応においては、5〜70vol%程度
の乾燥不活性ガス、例えば、窒素、アルゴン、ヘリウム
等を同伴させて供給すると、ガス供給管に電解液が逆流
することもなく安定に調製できる。いずれも該電解液を
容易に調製することが可能である。
Another method is a method in which a predetermined amount of NH 3 gas and HF gas are directly reacted in a container or an electrolytic bath to prepare an electrolytic solution. In particular, in the reaction of the NH 3 gas and the HF gas, when a dry inert gas of about 5 to 70 vol%, for example, nitrogen, argon, helium, etc. is supplied, the electrolyte flows back into the gas supply pipe. And can be prepared stably. In any case, the electrolyte can be easily prepared.

【0020】電解液の組成としては、HF/NHFの
モル比1〜3が好適である。該モル比が1未満での該電
解液は熱分解性を帯びるために好ましくない。また、モ
ル比が3を超えるとHFの蒸気圧が高くなり、HFの損
失が多く、この損失により電解液組成の変動が大きくな
るため好ましくない。該モル比が1〜3であるのが好適
であるが、より高い組成安定性を求めるならば、1.5
〜2.5の範囲が、更には1.8〜2.2の範囲が最適
である。
The composition of the electrolytic solution is preferably a HF / NH 4 F molar ratio of 1 to 3. The electrolytic solution having a molar ratio of less than 1 is not preferable because it has thermal decomposability. On the other hand, if the molar ratio exceeds 3, the vapor pressure of HF becomes high, and the loss of HF is large. This loss undesirably increases the fluctuation of the electrolyte composition. The molar ratio is preferably 1 to 3, but if higher composition stability is required, 1.5
The optimum range is from 2.5 to 2.5, and more preferably from 1.8 to 2.2.

【0021】電解電流密度は好ましくは1〜30A・d
−2である。電流密度の下限界は、NFガスの生産
性に影響するものであり技術的な制約は殆ど無い。電極
近傍で発生する熱は電流密度にほぼ比例する。このた
め、電流密度が著しく高くなると、電解液の温度が局部
的に高くなる、組成が安定しない等の不都合が生じる。
本発明の効果に対して影響は無いものの、概ね電流密度
の範囲は1〜30A・dm−2、更に好ましくは5〜2
0A・dm−2の範囲が推奨される。
The electrolytic current density is preferably 1 to 30 A · d
m- 2 . The lower limit of the current density affects the productivity of NF 3 gas, and has almost no technical restrictions. The heat generated near the electrodes is almost proportional to the current density. For this reason, when the current density becomes extremely high, inconveniences such as a local increase in the temperature of the electrolytic solution and an unstable composition are caused.
Although there is no effect on the effects of the present invention, the range of the current density is generally 1 to 30 A · dm −2 , more preferably 5 to 2
A range of 0 A · dm −2 is recommended.

【0022】なお、電解に用いられる陰極としては、一
般にNFガスの電解製造に用いられている材料、たと
えば鉄、スチール、ニッケル、モネル等を使用すること
ができる。
As the cathode used for the electrolysis, a material generally used for electrolytic production of NF 3 gas, for example, iron, steel, nickel, monel, etc. can be used.

【0023】[0023]

【実施例】以下、実施例により本発明を更に具体的に説
明する。 実施例1 乾燥した1110gの酸性フッ化アンモニウム(NH
HF)を良く混ぜた後、容量3Lのフッ素樹脂製細口
瓶に入れた。この細口瓶の底部までフッ素樹脂チューブ
を挿入し、細口瓶を計量しながら無水フッ化水素ガス3
90gを吹き込み、組成比HF/NHF=2の電解液
(NHF・2HF)を得た。次にニッケル酸リチウム
(LiNiO)粉末9.8gとニッケル粉末53gを
よく混ぜたのち、直径20mmのタブレットに成形し
た。これを900℃、2時間、アルゴン雰囲気中で燒結
することで複合電極を得た。次にさきの電解液を入れた
容量200ccのフッ素樹脂製電解槽に複合電極をセッ
トし、電解を行った。温度120℃、電流密度25mA
にて70時間の電解を行った後、陽極の重量を測定した
ところ、溶解により0.11gの減少が見られた。
The present invention will be described more specifically with reference to the following examples. Example 1 1110 g of dried ammonium acid fluoride (NH 4
After thoroughly mixing HF 2 ), the mixture was placed in a fluororesin small-mouthed bottle having a capacity of 3 L. Insert a fluororesin tube up to the bottom of this small-mouthed bottle and measure
90 g was blown thereinto to obtain an electrolytic solution (NH 4 F · 2HF) having a composition ratio of HF / NH 4 F = 2. Next, 9.8 g of lithium nickel oxide (LiNiO 2 ) powder and 53 g of nickel powder were mixed well, and then formed into tablets having a diameter of 20 mm. This was sintered at 900 ° C. for 2 hours in an argon atmosphere to obtain a composite electrode. Next, the composite electrode was set in a fluorine resin electrolytic tank having a capacity of 200 cc containing the electrolytic solution, and electrolysis was performed. Temperature 120 ° C, current density 25mA
After performing electrolysis for 70 hours at, the weight of the anode was measured, and a decrease of 0.11 g due to dissolution was observed.

【0024】比較例1 ニッケル粉末だけで実施例1と同様に燒結して得た電極
を用い、実施例1と同様の実験を行った。その結果、陽
極の重量は0.27g減少した。
Comparative Example 1 The same experiment as in Example 1 was performed using an electrode obtained by sintering in the same manner as in Example 1 using only nickel powder. As a result, the weight of the anode was reduced by 0.27 g.

【0025】実施例2 ワット浴(NiSO・6HO=280g/L、Ni
Cl・6HO=45g/L、ほう酸=40g/L)
150mlに、LiNiO(粒径10μm以下)を1
0g添加し、よく分散させた。次に実効面積4cm
ニッケル板をワット浴に浸漬し、40℃、電流密度20
mA/cm〔2A/dm〕にて電解メッキを行っ
た。この電極を実施例1と同様の方法にて、NHF・
2HF電解液中で電解実験を行った。その結果、陽極の
重量は0.22g減少していた。
[0025] Example 2 Watts bath (NiSO 4 · 6H 2 O = 280g / L, Ni
Cl 2 · 6H 2 O = 45g / L, boric acid = 40 g / L)
LiNiO 2 (particle size: 10 μm or less) is added to 150 ml
0 g was added and dispersed well. Next, a nickel plate having an effective area of 4 cm 2 was immersed in a Watt bath at 40 ° C. and a current density of 20 ° C.
Electroplating was performed at mA / cm 2 [2 A / dm 2 ]. This electrode was treated with NH 4 F.
An electrolysis experiment was performed in a 2HF electrolyte. As a result, the weight of the anode was reduced by 0.22 g.

【0026】比較例2 実施例2において、ワット浴にLiNiOを添加して
いない他は実施例2と同様の実験を行った。その結果、
陽極の重量は0.32g減少していた。
Comparative Example 2 The same experiment as in Example 2 was performed except that LiNiO 2 was not added to the Watt bath. as a result,
The weight of the anode was reduced by 0.32 g.

【0027】[0027]

【発明の効果】電解法は高純度の三フッ化窒素ガスを容
易に得られる優れた方法であるが、これまで陽極の溶解
量が多いことが工業的な課題であった。本発明の方法に
よれば、これまでの電解プロセスに全く手を付けること
なく、ニッケルの溶解量を大幅に抑えることができる画
期的発明である。このことは、電極や電解液の交換頻度
を半分以下に抑えることができるだけでなく、コスト低
減も成しうる。工業的生産における効果は極めて大きい
ものといえる。
The electrolysis method is an excellent method for easily obtaining a high-purity nitrogen trifluoride gas, but it has been an industrial problem that a large amount of anode has been dissolved so far. ADVANTAGE OF THE INVENTION According to the method of this invention, it is an epoch-making invention in which the amount of dissolution of nickel can be suppressed significantly, without changing a conventional electrolysis process at all. This not only can reduce the replacement frequency of the electrodes and the electrolyte to less than half, but can also reduce the cost. The effect in industrial production can be said to be extremely large.

【0028】[0028]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電解槽の一例Fig. 1 Example of electrolytic cell

【符号の説明】[Explanation of symbols]

1 本体 2 槽蓋 3 陽極 4 陰極 5 隔壁 6 陽極ガス排出口 7 陰極ガス排出口 8 電解液 DESCRIPTION OF SYMBOLS 1 Main body 2 Tank lid 3 Anode 4 Cathode 5 Partition wall 6 Anode gas outlet 7 Cathode gas outlet 8 Electrolyte

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−140783(JP,A) 特開 平3−170687(JP,A) 特開 平3−236486(JP,A) 特表 平2−500602(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 C01B 21/083 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-140783 (JP, A) JP-A-3-170687 (JP, A) JP-A-3-236486 (JP, A) 500602 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25B 1/00-15/08 C01B 21/083

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル系酸化物と分散ニッケルメッ
キまたはニッケル粉末とを燒結させることにより得られ
る三フッ化窒素ガス製造用の複合電極。
1. A composite electrode for producing nitrogen trifluoride gas obtained by sintering a nickel-based oxide and dispersed nickel plating or nickel powder.
【請求項2】 フッ化アンモニウム(NHF)−フ
ッ化水素(HF)系溶融塩であって、組成モル比(HF
/NHF)が1〜3である電解液を、100〜140
℃に保持しながら、請求項1の複合電極を陽極として用
い電解することを特徴とする三フッ化窒素ガスの製造方
法。
2. An ammonium fluoride (NH 4 F) -hydrogen fluoride (HF) -based molten salt having a composition molar ratio (HF
/ NH 4 F) is 1 to 3 with 100 to 140
2. A method for producing nitrogen trifluoride gas, comprising performing electrolysis using the composite electrode according to claim 1 as an anode while maintaining the temperature at a temperature of ° C.
JP03233095A 1995-02-21 1995-02-21 Composite electrode and method for producing nitrogen trifluoride gas using the same Expired - Fee Related JP3340273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03233095A JP3340273B2 (en) 1995-02-21 1995-02-21 Composite electrode and method for producing nitrogen trifluoride gas using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03233095A JP3340273B2 (en) 1995-02-21 1995-02-21 Composite electrode and method for producing nitrogen trifluoride gas using the same

Publications (2)

Publication Number Publication Date
JPH08225976A JPH08225976A (en) 1996-09-03
JP3340273B2 true JP3340273B2 (en) 2002-11-05

Family

ID=12355939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03233095A Expired - Fee Related JP3340273B2 (en) 1995-02-21 1995-02-21 Composite electrode and method for producing nitrogen trifluoride gas using the same

Country Status (1)

Country Link
JP (1) JP3340273B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG87196A1 (en) 1999-12-21 2002-03-19 Mitsui Chemicals Inc Electrode and electrolyte for use in preparation of nitrogen trifluoride gas, and preparation method of nitrogen trifluoride gas by use of them
KR100541978B1 (en) * 2001-08-17 2006-01-16 주식회사 효성 Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989001996A1 (en) * 1987-08-27 1989-03-09 Kishinevsky Politekhnichesky Institut Imeni S.Lazo Method and nickel-oxide electrode for applying a composite nickel-oxide coating to a metal carrier
JP2764623B2 (en) * 1989-11-30 1998-06-11 三井化学株式会社 Electrolytic cell
JP2914698B2 (en) * 1990-02-14 1999-07-05 関東電化工業株式会社 Method for producing nitrogen trifluoride by molten salt electrolysis
DE4010961A1 (en) * 1990-04-05 1991-10-10 Bayer Ag ANODES FOR ELECTROCHEMICAL FLUORATION AND FLUORINE PRODUCTION AND METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
JPH08225976A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
US6759160B2 (en) Silicon oxide powder and making method
CN1840742B (en) Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
Peng et al. Magnesium nanostructures for energy storage and conversion
EP3708537B1 (en) Method for producing alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery
TW200909613A (en) Conductive diamond electrode structure and method for electrolytic synthesis of fluorine-containing material
US20100006449A1 (en) Method of electrolytically synthesizing nitrogen trifluoride
Kim et al. Lithium-Mediated ammonia electro-synthesis: effect of CsClO4 on lithium plating efficiency and ammonia synthesis
JP3340273B2 (en) Composite electrode and method for producing nitrogen trifluoride gas using the same
TW526288B (en) Electrode and electrolyte for use in preparation of nitrogen trifluoride gas, and preparation method of nitrogen trifluoride gas by use of them
JP7428126B2 (en) Anode for electrolytic synthesis and method for producing fluorine gas or fluorine-containing compound
CN112408410A (en) Method for preparing boride through low-temperature melting reaction, prepared boride and application of boride
JP3162594B2 (en) Electrolytic solution and method for producing nitrogen trifluoride gas using the same
CN109853003B (en) Microporous channel type molten salt corrosion resistant boride/diamond composite material and preparation method thereof
JP4326141B2 (en) Electrode used for producing nitrogen trifluoride gas, method for producing nitrogen trifluoride gas, and electrolytic cell for producing nitrogen trifluoride gas
KR101411714B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JP2001064791A (en) Composite electrode and production of gaseous nitrogen trifluoride using the same
EP3842571A1 (en) Electrolytic synthesis anode and method for producing fluorine gas
JPH0586490A (en) Production of gaseous nitrogen trifluoride
KR101411662B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JP2001181882A (en) Electrolytic cell
JP2854934B2 (en) Method for producing nitrogen trifluoride gas
JPH11335105A (en) Production of nitrogen trifluoride gas
JP2000104187A (en) Electrolytic cell (1)
JP2000104188A (en) Electrolytic cell
JPH02263988A (en) Production of gaseous nitrogen trifluoride

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees