JPH0551754A - Formation of thin film by plasma cvd method - Google Patents

Formation of thin film by plasma cvd method

Info

Publication number
JPH0551754A
JPH0551754A JP21536891A JP21536891A JPH0551754A JP H0551754 A JPH0551754 A JP H0551754A JP 21536891 A JP21536891 A JP 21536891A JP 21536891 A JP21536891 A JP 21536891A JP H0551754 A JPH0551754 A JP H0551754A
Authority
JP
Japan
Prior art keywords
substrate
thin film
film
plasma cvd
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21536891A
Other languages
Japanese (ja)
Inventor
Keizo Harada
敬三 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21536891A priority Critical patent/JPH0551754A/en
Publication of JPH0551754A publication Critical patent/JPH0551754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form various high-quality thin films such as an insulating thin film, protective film and amorphous silicon thin film on a substrate at a high rate and low cost by using plasma CVD. CONSTITUTION:A substrate 5 to be treated is held by a holder 4 in a reaction furnace 1. A permanent magnet 9 is set on the rear side of each substrate 5. The substrate 5 is heated by a heater 6, the reaction furnace is closed, a gaseous reactant is uniformly supplied on the surface of the substrate 5, a high-frequency voltage is impressed between the holder 4 grounded through a high-frequency oscillator 7 and an electrode 3, hence the cycloidal movement of electrons is caused close to the substrate surface by the magnetic field of the magnet and a high-frequency electric field, a high-density and high-efficiency plasma discharge is generated only on the effective thin film forming region, and a high-quality thin film is formed on the substrate surface at a high rate. Besides, a film is not formed on the unwanted site, the device is repaired less frequently, the consumption of energy and gaseous reactants is reduced, and a thin film is formed with this simple device at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラズマCVD法で基
材上に絶縁薄膜をはじめとする各種の高品質薄膜を高速
で作製するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing various kinds of high quality thin films such as insulating thin films on a substrate by plasma CVD at high speed.

【0002】[0002]

【従来の技術】薄膜の形成方法としては、真空蒸着法、
イオンプレーティング、スパッタ法などに代表されるP
VD(Physical Vapor Deposit
ion)法、反応ガスを熱的に分解して薄膜を生成する
CVD(Chemical Vapor Deposi
tion)法、反応ガスの分解をプラズマ放電によって
行うプラズマCVD法などがあり、薄膜の用途に応じて
これ等の方法が使い分けられている。
2. Description of the Related Art As a method for forming a thin film, a vacuum deposition method,
P represented by ion plating and sputtering method
VD (Physical Vapor Deposition)
ion) method, CVD (Chemical Vapor Deposi) that thermally decomposes a reaction gas to form a thin film
ionization method, a plasma CVD method in which the reaction gas is decomposed by plasma discharge, and the like, and these methods are properly used according to the application of the thin film.

【0003】これ等のうち、低温での成膜が可能なプラ
ズマCVD法は、半導体装置に用いるSiN、SiO2
などの絶縁薄膜や保護膜、太陽電池用のアモルファスS
i薄膜などの形成方法として近年多用されるようになっ
てきた。例えば、J.Electrochem.So
c.:ELECTROCHEMICAL SCIENC
E AND TECHNOLOGY誌Vol126,N
o6ページ930−934のJohn R.Halla
hanなどは平行平板型プラズマCVD法によるSiO
2 薄膜の形成について述べている。
Of these, the plasma CVD method capable of forming a film at a low temperature includes SiN and SiO 2 used for semiconductor devices.
Insulating thin film and protective film such as Amorphous S for solar cells
In recent years, it has been widely used as a method for forming an i thin film. For example, J. Electrochem. So
c. : ELECTROCHEMICAL SCIENC
E AND TECHNOLOGY Magazine Vol126, N
o6, John R. et al., pages 930-934. Halla
han and the like are SiO produced by the parallel plate plasma CVD method.
2 Describes the formation of thin films.

【0004】この従来のプラズマCVD法を図4を参照
して以下に概説する。反応炉1内の接地されたホルダ4
で被処理基材5を保持してヒータ6により所定の温度に
加熱する。次に反応炉1を密閉してガス供給系2より反
応ガスを反応炉1内に供給する。その反応ガスとして
は、例えば、酸化シリコン薄膜の形成時にはシランガス
(SiH4 )と酸化窒素ガス(N2 O)が用いられ、こ
れ等を流量調節部2a、2bに通し、流量を調整して送
り込む。そして、ガス供給系中で混合したこれ等のガス
を反応炉1内の下部に設けられたシャワー状電極3より
基材の表面に向けて均一に流す。その一方で、高周波発
振器7により電極3と接地のホルダ4間に高周波電圧を
印加する。これにより、供給された混合ガスがプラズマ
状態となりガスの反応が起こって基材上に酸化シリコン
薄膜が形成される。
This conventional plasma CVD method will be outlined below with reference to FIG. Grounded holder 4 in reactor 1
Then, the substrate 5 to be treated is held and heated to a predetermined temperature by the heater 6. Next, the reaction furnace 1 is closed and a reaction gas is supplied into the reaction furnace 1 from the gas supply system 2. As the reaction gas, for example, silane gas (SiH 4 ) and nitric oxide gas (N 2 O) are used at the time of forming a silicon oxide thin film, and these are passed through the flow rate control units 2a and 2b and the flow rate is adjusted and sent. .. Then, these gases mixed in the gas supply system are made to flow uniformly from the shower electrode 3 provided in the lower part of the reaction furnace 1 toward the surface of the base material. On the other hand, a high frequency oscillator 7 applies a high frequency voltage between the electrode 3 and the grounded holder 4. As a result, the supplied mixed gas is brought into a plasma state and a reaction of the gas occurs to form a silicon oxide thin film on the base material.

【0005】なお、この方法によって生じる酸化シリコ
ン薄膜の膜質や成膜速度は、加熱される基材の温度や反
応ガス圧及び反応ガスの流量、流量比などに依存する。
The film quality and the film forming rate of the silicon oxide thin film produced by this method depend on the temperature of the substrate to be heated, the reaction gas pressure, the flow rate of the reaction gas, the flow rate ratio, and the like.

【0006】[0006]

【発明が解決しようとする課題】上述した従来のプラズ
マCVD法は、成膜速度を速めると下記の膜質低下等の
問題を生じる。
In the above-mentioned conventional plasma CVD method, when the film formation speed is increased, the following problems such as deterioration of film quality occur.

【0007】即ち、成膜速度を上げるための効果的な方
法として通常、反応ガスの流量を増やし、ガス圧を高め
る方法が採られる。しかしながら、このような方法で成
膜速度を上げると、得られる薄膜の膜質が、例えば絶縁
膜の場合には耐電圧性が下がるなどの問題を生じてあま
り良くならない。また、ガス流量やガス圧を上げると、
シランガスの未反応種が数多く形成されて反応炉内にダ
ストが大量に発生し、得られる膜がピンホールの多いも
のになる傾向がある。さらに、発生した大量のダストに
より真空排気系(図4の8)が詰まったり、装置のメン
テナンス頻度が高まるなどの事態を招いて成膜コストが
高くつく。
That is, as an effective method for increasing the film formation rate, a method of increasing the flow rate of the reaction gas and increasing the gas pressure is usually adopted. However, if the film formation rate is increased by such a method, the quality of the obtained thin film is not so good because, for example, in the case of an insulating film, there arises a problem that the withstand voltage is lowered. Also, when the gas flow rate and gas pressure are increased,
Many unreacted species of silane gas are formed, a large amount of dust is generated in the reaction furnace, and the resulting film tends to have many pinholes. Further, the large amount of dust generated causes the vacuum exhaust system (8 in FIG. 4) to be clogged and the maintenance frequency of the apparatus to be increased, resulting in a high film forming cost.

【0008】[0008]

【課題を解決するための手段】本発明は上記の課題を解
決して高品質薄膜を高速で成膜することを可能ならしめ
るために、被処理基材を反応炉内の接地されたホルダで
保持し、かつ、加熱して反応炉密閉後その被処理基材の
表面部に反応ガスを均一に分配し、この反応ガスを上記
ホルダと炉内の電極間に高周波電界を印加してプラズマ
状態にし、上記被処理基材の表面に薄膜を生成するプラ
ズマCVD法において、上記被処理基材の裏側に永久磁
石を設置し、この磁石の磁界を被処理基材の表面部に生
じさせて上記高周波電界の印加を行う。
In order to solve the above problems and enable high-quality thin films to be formed at high speed, the present invention uses a holder that is grounded in a reaction furnace for a substrate to be processed. After holding and heating and sealing the reaction furnace, the reaction gas is evenly distributed on the surface of the substrate to be treated, and a high-frequency electric field is applied between the holder gas and the electrodes in the furnace to form a plasma state. In the plasma CVD method for producing a thin film on the surface of the substrate to be treated, a permanent magnet is installed on the back side of the substrate to be treated, and the magnetic field of the magnet is generated on the surface portion of the substrate to be treated. A high frequency electric field is applied.

【0009】[0009]

【作用】一般に、プラズマCVD法における薄膜の成膜
速度及び膜質は、反応ガスの励起効率に大きく依存する
ことが知られている。即ち、励起効率の高いプラズマ放
電を起こさせれば成膜速度は速くなり、膜質も向上す
る。しかし、単に反応ガス圧やガス流量を増やすだけで
は、反応ガス中の励起種の数が増えて成膜速度は速まる
ものの、先に述べたように、膜質低下や装置のメンテナ
ンス増加の問題を生じる。
In general, it is known that the deposition rate and film quality of a thin film in the plasma CVD method greatly depend on the excitation efficiency of the reaction gas. That is, when a plasma discharge with high excitation efficiency is generated, the film formation rate is increased and the film quality is also improved. However, simply increasing the reaction gas pressure or the gas flow rate increases the number of excited species in the reaction gas and increases the film formation rate, but as described above, it causes problems such as deterioration of film quality and increased maintenance of the apparatus. ..

【0010】そこで、発明者は、電界と磁界中において
は電子がサイクロイド運動し、これがプラズマ放電中の
反応ガス励起効率向上に効果を奏することに着目した。
そして、成膜コストを高めずに高品質薄膜を高速で成膜
させ得る方法として被処理基材の裏側に永久磁石を設置
し、この磁石の磁界と高周波電界とによる電子のサイク
ロイド運動を基材表面近傍にのみ生じさせて当該部に高
効率のプラズマ放電を起こさせる上述の本発明方法を想
いつくに至った。
Therefore, the inventor has noticed that the electrons perform a cycloidal motion in the electric field and the magnetic field, which has an effect of improving the reaction gas excitation efficiency during plasma discharge.
Then, as a method for forming a high-quality thin film at a high speed without increasing the film forming cost, a permanent magnet is installed on the back side of the substrate to be processed, and the cycloidal movement of electrons by the magnetic field and the high frequency electric field of the magnet is used as the substrate. The above-mentioned method of the present invention, which is generated only in the vicinity of the surface and causes a highly efficient plasma discharge in the relevant portion, has been conceived.

【0011】一般に磁界併用型プラズマCVD法として
知られるECR(エレクトロン・サイクロトロン・レゾ
ナンス)−プラズマCVD法を用いた薄膜形成方法は数
多く報告されている。しかしながら、これ等の磁界併用
法は、大きな電磁石を用いてプラズマ反応領域全体に磁
界印加を行っているため、装置が大がかりになる。ま
た、プラズマ反応領域全体から見ると有効薄膜形成領域
が極めて小さく、エネルギー並びに反応ガスの利用効率
が悪い。さらに、反応域全体で高効率のプラズマ放電が
起こるため、被処理基材だけでなく反応炉壁などの不要
個所にも高速で薄膜が形成され、その結果、反応炉壁の
堆積膜のはがれに起因するフレークが発生して被処理基
材上でピンホールが発生し易くなることから、これを防
止するための装置補修の頻度も高くなり、これ等が原因
で成膜コストが大きく上昇する。
A number of thin film forming methods using the ECR (electron cyclotron resonance) -plasma CVD method generally known as a magnetic field combined plasma CVD method have been reported. However, in these magnetic field combined methods, a large electromagnet is used to apply a magnetic field to the entire plasma reaction region, so that the apparatus becomes large-scale. Further, the effective thin film formation region is extremely small when viewed from the entire plasma reaction region, and the utilization efficiency of energy and reaction gas is poor. Furthermore, since a highly efficient plasma discharge occurs in the entire reaction area, a thin film is formed at high speed not only on the substrate to be treated but also on unnecessary parts such as the reaction furnace wall, resulting in peeling of the deposited film on the reaction furnace wall. Since flakes are generated and pinholes are easily generated on the substrate to be processed, the frequency of device repairs for preventing this is also increased, which causes a significant increase in film formation cost.

【0012】本発明の方法は、かかる課題も併せて解決
したものである。即ち、本発明の方法では、被処理基材
の裏側に永久磁石を設置して電子のサイクロイド運動に
よる高密度、高効率のプラズマ放電を被処理基材の表面
近傍にのみ生じさせるので、エネルギー及び反応ガスの
浪費が少ない。また、有効薄膜形成領域でのみ高速成膜
が起こるので基材上に形成される膜量に比べて基材表面
以外の部分に形成される膜量が少なく、装置のメンテナ
ンス頻度が少なくて済む。さらに、永久磁石を基材の裏
側に追設するだけであるので、従来の簡単なプラズマC
VD装置をそのまま利用でき、装置の大型化や設備費の
増加を招かない。従って、これまでに提案されている磁
界併用型のプラズマCVD法に比べると成膜コストが大
巾に下がる。
The method of the present invention has also solved such problems. That is, in the method of the present invention, a permanent magnet is installed on the back side of the substrate to be treated to generate a high-density, high-efficiency plasma discharge due to the cycloidal motion of electrons only near the surface of the substrate to be treated. Less wasted reaction gas. Further, since high-speed film formation occurs only in the effective thin film formation region, the amount of film formed on a portion other than the substrate surface is smaller than the amount of film formed on the substrate, and the maintenance frequency of the apparatus can be reduced. Furthermore, since a permanent magnet is additionally provided on the back side of the substrate, the conventional simple plasma C
The VD device can be used as it is without increasing the size of the device or increasing the equipment cost. Therefore, the film forming cost is significantly reduced as compared with the plasma CVD method using the magnetic field combined type proposed so far.

【0013】以下に実施例を述べるが、本発明の方法及
びこの方法で作る薄膜は実施例に挙げるものに限定され
ない。
Examples will be described below, but the method of the present invention and the thin film formed by this method are not limited to the examples.

【0014】[0014]

【実施例】図1は、本発明の方法の概要を示している。
図4の従来方法との相違点は被処理基材5の裏側に永久
磁石9を設置することのみであり、使用する装置は、従
来の装置で間に合う。ここでは図4と同一の平行平板型
プラズマCVD装置を例に挙げた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 outlines the method of the present invention.
The only difference from the conventional method of FIG. 4 is that the permanent magnet 9 is installed on the back side of the substrate 5 to be processed, and the apparatus used can be the conventional apparatus. Here, the same parallel plate type plasma CVD apparatus as in FIG. 4 is taken as an example.

【0015】永久磁石9は、図2に示すように、被処理
基材5の各々に対応させてホルダ4の裏面に取付けても
よいし、また、図3に示すようにホルダ4中に埋め込む
などして被処理基材5の裏面に直接添わせるようにして
もよい。
As shown in FIG. 2, the permanent magnets 9 may be attached to the back surface of the holder 4 so as to correspond to the respective substrates 5 to be treated, or embedded in the holder 4 as shown in FIG. For example, it may be directly attached to the back surface of the substrate 5 to be processed.

【0016】この図1の平行平板型プラズマCVD装置
を用いて永久磁石を使う本発明の方法で20mm角の銅合
金基板(被処理基材)上にSiO2 膜を形成した。ま
た、比較のために、同一装置で基材裏面に永久磁石を設
置しない従来法での成膜実験も行った。
A SiO 2 film was formed on a 20 mm square copper alloy substrate (substrate to be treated) by the method of the present invention using a permanent magnet using the parallel plate type plasma CVD apparatus of FIG. For comparison, a film forming experiment was also conducted in the same apparatus by a conventional method in which a permanent magnet was not installed on the back surface of the substrate.

【0017】この実験における共通の条件を下に示す。The common conditions in this experiment are shown below.

【0018】・使用基板(基材):Cu合金(Ni3.
2、Si0.7、Zn0.3wt%) ・反応ガス :SiH4 +N2 O ・反応ガス流量 :SiH4 100sccm、N2
600sccm ・反応ガス圧 :1Torr ・基板温度 :250℃ ・基板と電極間距離:30mm ・印加高周波 :周波数=13.56MHz、出力
=500W ・ホルダー面積 :400×400mm ・電極面積 :500×500mm ・成膜時間 :1時間 本発明の方法で用いた永久磁石9は、直径20mm、厚さ
5mmのSmCo磁石であり、これを被処理基材である銅
合金基板の裏側に基板1個に対してそれぞれ1個ずつ設
置した。このときの銅合金基板表面側の表面から10mm
離れた位置での磁束密度は、ガウスメータで測定したと
ころ約1000ガウスであった。
Substrate used (base material): Cu alloy (Ni3.
2, Si0.7, Zn 0.3 wt%) ・ Reaction gas: SiH 4 + N 2 O ・ Reaction gas flow rate: SiH 4 100 sccm, N 2 O
600sccm-Reaction gas pressure: 1 Torr-Substrate temperature: 250 ° C-Substrate-electrode distance: 30mm-Applied high frequency: Frequency = 13.56MHz, Output = 500W-Holder area: 400 x 400mm-Electrode area: 500 x 500mm Film time: 1 hour The permanent magnet 9 used in the method of the present invention is a SmCo magnet having a diameter of 20 mm and a thickness of 5 mm, which is provided on the back side of the copper alloy substrate which is the base material to be processed for each substrate. I installed them one by one. 10mm from the surface of the copper alloy substrate surface side at this time
The magnetic flux density at the distant position was about 1000 Gauss as measured by a Gauss meter.

【0019】本発明及び従来法で1時間成膜後に得られ
たSiO2 膜の膜厚、成膜速度、並びに膜特性評価のた
めに調べた絶縁破壊電圧値を表1に示す。
Table 1 shows the film thickness of the SiO 2 film obtained after film formation for 1 hour according to the present invention and the conventional method, the film formation speed, and the dielectric breakdown voltage value examined for film characteristic evaluation.

【0020】[0020]

【表1】 [Table 1]

【0021】同表から判るように、本発明の方法では、
反応ガス流量、反応ガス圧などについての条件を従来法
と同じにしても成膜速度が約2倍に高まっており、ま
た、この成膜の高速化にも拘らず絶縁破壊電圧は従来法
と同等の値が得られており、本発明の方法が高品質薄膜
の高速成膜を可能ならしめることが実証された。
As can be seen from the table, in the method of the present invention,
Even if the conditions of the reaction gas flow rate, the reaction gas pressure, etc. are the same as those of the conventional method, the film formation rate is doubled, and the dielectric breakdown voltage is the same as that of the conventional method in spite of the speeding up of the film formation. Equivalent values were obtained, demonstrating that the method of the present invention enables high-speed deposition of high-quality thin films.

【0022】[0022]

【発明の効果】以上説明したように、本発明の方法によ
れば、被処理基材の裏側に永久磁石を設置すると云う簡
便な方法で、ガス流量やガス圧を上げて成膜速度を速め
る場合の不具合(膜質低下、ダストの発生、ダストによ
るトラブル)を招かずに高品質薄膜を高速で形成するこ
とができ、薄膜を利用する製品の生産性向上に役立つ。
As described above, according to the method of the present invention, the gas flow rate and the gas pressure are increased to increase the film formation rate by a simple method of installing a permanent magnet on the back side of the substrate to be treated. In this case, a high-quality thin film can be formed at high speed without causing problems (deterioration of film quality, generation of dust, troubles caused by dust), which is useful for improving the productivity of products using the thin film.

【0023】また、使用する装置が従来用いられている
簡単なタイプのものでよく、さらに、薄膜の形成が有効
薄膜形成領域のみにおいて効率的に行われるので反応炉
壁等の不要個所での成膜が少なく、不要個所に生じた薄
膜に起因するフレークの発生を避けるための装置補修の
頻度も少なくて済む。加えて不要個所の成膜で浪費され
るエネルギーや反応ガス量も減少し、これ等により成膜
コストも低減する。
Further, the apparatus to be used may be a simple type conventionally used, and further, since the thin film is formed efficiently only in the effective thin film forming region, it is not necessary to form the film on unnecessary portions such as the reactor wall. The number of films is small, and the frequency of device repairs for avoiding the generation of flakes due to the thin film generated in unnecessary portions can be reduced. In addition, the amount of energy and the amount of reaction gas that are wasted in film formation at unnecessary portions are reduced, which reduces the film formation cost.

【0024】なお、本発明の方法は、平行平板型のプラ
ズマCVD装置以外の各種プラズマCVD装置を用いた
種々の薄膜の形成にも有効に利用できる。
The method of the present invention can be effectively utilized for forming various thin films using various plasma CVD apparatuses other than the parallel plate type plasma CVD apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の一具体例を示す線図FIG. 1 is a diagram showing a specific example of the method of the present invention.

【図2】永久磁石のセット方法の一例を示す図FIG. 2 is a diagram showing an example of a permanent magnet setting method.

【図3】永久磁石のセット方法の他の例を示す図FIG. 3 is a diagram showing another example of a permanent magnet setting method.

【図4】平行平板型プラズマCVD装置による従来の薄
膜形成方法を示す図
FIG. 4 is a diagram showing a conventional thin film forming method using a parallel plate plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

1 反応炉 2 ガス供給系 2a、2b 流量調節部 3 シャワー状の電極 4 ホルダ 5 被処理基材 6 ヒータ 7 高周波発振器 8 真空排気系 9 永久磁石 DESCRIPTION OF SYMBOLS 1 Reactor 2 Gas supply system 2a, 2b Flow rate controller 3 Shower-like electrode 4 Holder 5 Processed substrate 6 Heater 7 High frequency oscillator 8 Vacuum exhaust system 9 Permanent magnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被処理基材を反応炉内の接地されたホル
ダで保持し、かつ、加熱して反応炉密閉後その被処理基
材の表面部に反応ガスを均一に分配し、この反応ガスを
上記ホルダと炉内の電極間に高周波電界を印加してプラ
ズマ状態にし、上記被処理基材の表面に薄膜を生成する
プラズマCVD法において、上記被処理基材の裏側に永
久磁石を設置し、この磁石の磁界を被処理基材の表面部
に生じさせて上記高周波電界の印加を行うことを特徴と
するプラズマCVD法による薄膜の作製方法。
1. A substrate to be treated is held by a grounded holder in a reaction furnace, and after heating and sealing the reaction furnace, a reaction gas is uniformly distributed on the surface of the substrate to be treated. In a plasma CVD method in which a high-frequency electric field is applied between the holder and an electrode in a furnace to generate a thin film on the surface of the substrate to be processed, a permanent magnet is installed on the back side of the substrate to be processed. Then, the magnetic field of this magnet is generated on the surface portion of the substrate to be treated to apply the high-frequency electric field, and a method for producing a thin film by the plasma CVD method is characterized.
JP21536891A 1991-08-27 1991-08-27 Formation of thin film by plasma cvd method Pending JPH0551754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21536891A JPH0551754A (en) 1991-08-27 1991-08-27 Formation of thin film by plasma cvd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21536891A JPH0551754A (en) 1991-08-27 1991-08-27 Formation of thin film by plasma cvd method

Publications (1)

Publication Number Publication Date
JPH0551754A true JPH0551754A (en) 1993-03-02

Family

ID=16671141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21536891A Pending JPH0551754A (en) 1991-08-27 1991-08-27 Formation of thin film by plasma cvd method

Country Status (1)

Country Link
JP (1) JPH0551754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251325A (en) * 2012-05-30 2013-12-12 Taiyo Nippon Sanso Corp Silicon carbide removing device and method for removing silicon carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251325A (en) * 2012-05-30 2013-12-12 Taiyo Nippon Sanso Corp Silicon carbide removing device and method for removing silicon carbide

Similar Documents

Publication Publication Date Title
US7880392B2 (en) Plasma producing method and apparatus as well as plasma processing apparatus
JP2005005280A (en) Method for passivating semiconductor substrate
JP3327391B2 (en) Thin film manufacturing apparatus and manufacturing method
JP2970654B1 (en) Thin film forming equipment
JPS62203328A (en) Plasma cvd apparatus
US6926934B2 (en) Method and apparatus for deposited film
JP2000173985A (en) Device and method for plasma treatment
JPH0551754A (en) Formation of thin film by plasma cvd method
JP2002180257A (en) Plasma treatment apparatus, method of depositing thin film, and surface treatment apparatus
JPH01239919A (en) Method and apparatus for plasma treatment
JP2626339B2 (en) Thin film forming equipment
JP3486590B2 (en) Deposition film forming equipment
JPH09263948A (en) Formation of thin film by using plasma, thin film producing apparatus, etching method and etching device
JPS6348817A (en) Epitaxial growth method
JP2951564B2 (en) Thin film formation method
JPH0729829A (en) Method and system for dc discharge plasma processing
JP2573970B2 (en) Semiconductor thin film manufacturing equipment
JPS6383271A (en) Production of diamond-like carbon film
JP3261795B2 (en) Plasma processing equipment
JP2002030432A (en) System and method for sputtering
JP3225695B2 (en) DC discharge type plasma processing method and apparatus
JP3032316B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2810931B2 (en) Method for removing unnecessary carbon in carbon production equipment
JP2700890B2 (en) Plasma processing equipment
JP2715277B2 (en) Thin film forming equipment