JPH0551701A - Oxide disperion strengthened ferritic heat resisting steel plate - Google Patents

Oxide disperion strengthened ferritic heat resisting steel plate

Info

Publication number
JPH0551701A
JPH0551701A JP23895391A JP23895391A JPH0551701A JP H0551701 A JPH0551701 A JP H0551701A JP 23895391 A JP23895391 A JP 23895391A JP 23895391 A JP23895391 A JP 23895391A JP H0551701 A JPH0551701 A JP H0551701A
Authority
JP
Japan
Prior art keywords
oxide
less
steel
powder
ferritic heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23895391A
Other languages
Japanese (ja)
Other versions
JP2696624B2 (en
Inventor
Kazushi Hamada
一志 浜田
Tetsujiro Takeda
鐡治郎 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3238953A priority Critical patent/JP2696624B2/en
Publication of JPH0551701A publication Critical patent/JPH0551701A/en
Application granted granted Critical
Publication of JP2696624B2 publication Critical patent/JP2696624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide an oxide dispersion-strengthened ferritic heat resisting steel plate excellent in high temp. creep strength, ductility, and thermal fatigue characteristics and used particularly for high temp. and high pressure boiler, etc. CONSTITUTION:The steel plate is an oxide dispersion-strengthened ferritic heat resisting steel plate characterized by having a composition consisting of, by weight, <=0.08% C, 0.02-2.0% Si, <=2.0% Mn, 9.0-30.0% Cr, 0.1-2.0% Ti, 0.05-0.3% Ni, 0.1-2.0% Mo, <=0.1% Al, <=0.05% P, <=0.05% S, <=0.08% N, one or >=2 elements among Nb, V, Ta, Zr, Hf, B, and Y, and the balance Fe with inevitable impurities and also having a structure where a pretreated powder prepared by mixing the grains of an oxide of >=1500 deg.C melting point with a metal powder is added to a molten steel and the grains of 0.001-0.5mum grain size of the above oxide are incorporated by 0.25-3.0% by volume.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温クリ−プ強度、延
性、熱疲労特性に優れ、特に高温高圧ボイラ−等に用い
る酸化物分散強化フェライト系耐熱鋼板に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide dispersion strengthened ferritic heat resistant steel sheet which is excellent in high temperature creep strength, ductility and thermal fatigue properties and is particularly used for high temperature and high pressure boilers and the like.

【0002】[0002]

【従来の技術】従来、ボイラ−、圧力容器設備の安全
性、特に水圧試験時の安全性に関して十分な配慮がなさ
れ、圧力容器用鋼に対しても一定の高温クリ−プ強度、
靭性が必要とされる。その要求は当然容器を構成する溶
接部に対してもなされる。そこで、これまでの圧力容器
用鋼板に関する文献としては、例えば靭性及び溶接性に
優れた高強度フェライト系耐熱鋼としてCr−Mo系に
V,Nb,Ni,Coを添加したものとして特開昭63
−238244号公報がある。これは高Cr系鋼におい
てBとNの含有量のバランスを適切化し、かつ、Si含
有量を低減することにより、高Crフェライト系耐熱強
度、靭性及び溶接性を同時に持たせたものである。ま
た、同様の成分系として特開平1−8256号公報が知
られている。これも上記同様高Cr系鋼においてSiの
含有量及びBとNの含有量の積、さらには、Alの含有
量を適切化することにより、高温強度が極めて優れ、か
つ靭性特にクリ−プ強度の優れた鋼を得ようとするもの
である。
2. Description of the Related Art Conventionally, sufficient consideration has been given to the safety of boilers and pressure vessel equipment, especially the safety at the time of water pressure test, and a certain high temperature creep strength for steel for pressure vessels,
Toughness is required. The demand is naturally made also on the welded portion constituting the container. Therefore, as a document relating to a steel sheet for a pressure vessel up to now, for example, as a high-strength ferritic heat-resistant steel excellent in toughness and weldability, Cr-Mo system added with V, Nb, Ni, Co is disclosed in Japanese Patent Laid-Open No.
There is a publication of -238244. In the high Cr steel, the balance between the B and N contents is optimized, and the Si content is reduced, so that the high Cr ferrite heat resistance, toughness and weldability are simultaneously provided. Further, as a similar component system, JP-A-1-8256 is known. This is also similar to the above, in the high Cr steel, the high temperature strength is extremely excellent and the toughness, especially the creep strength is improved by optimizing the product of the Si content and the B and N content, and further the Al content. To obtain excellent steel.

【0003】更には、金属マトリックス中に、高温でも
安定な微細酸化物粒子を分散させた分散強化型合金とし
ては、例えば鋼をマトリックスとするものとして特開昭
63−50448号公報や特開昭57−36343号公
報に示されているように、機械的合金化法によるインコ
・アロイス社のMA957がある。MA957はCr−
Ti−Mo鋼中にY23などの酸化物を分散させること
を特徴とするものである。また、MA957の改良型と
しては、特開平1−272746号公報に示されるよう
に、Wを添加して、TiO2とY23の分散を特徴とす
る鋼がある。更には、高温強度と靭性とを有し、かつ中
性子照射を受けた際スエリングの小さい鋼を目的とし
て、特開昭63−186853号公報がある。これは高
Cr鋼にY23、粒径1μm以下の粒子を分散させた酸
化物分散強化型高クロム鋼である。
Further, as a dispersion-strengthened alloy in which fine oxide particles that are stable even at high temperature are dispersed in a metal matrix, for example, steel matrix is used, as disclosed in JP-A-63-50448 and JP-A-63-50448. As disclosed in Japanese Patent No. 57-36343, there is MA957 manufactured by Inco Alois Co., Ltd. by a mechanical alloying method. MA957 is Cr-
It is characterized in that an oxide such as Y 2 O 3 is dispersed in Ti-Mo steel. As an improved type of MA957, there is a steel characterized by dispersion of TiO 2 and Y 2 O 3 by adding W, as disclosed in JP-A-1-272746. Further, there is JP-A-63-186853 for the purpose of steel having high-temperature strength and toughness and having little swelling when irradiated with neutrons. This is an oxide dispersion strengthened high chromium steel in which Y 2 O 3 and particles having a particle diameter of 1 μm or less are dispersed in high Cr steel.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本発明
は更に高温クリ−プ強度を高めるために、従来知られて
いる鋼に加えて溶鋼過程で酸化物粒子を均一分散せしめ
た酸化物分散強化型厚板であって、しかも安価で極めて
高温クリ−プ強度の優れたフェライト系耐熱鋼板にあ
る。従って前記した特開昭63−238244号公報及
び特開平1−8256号公報のいずれにおいても、本発
明の如く酸化物分散強化によって高温クリ−プ強化を図
る技術思想は全く開示されていない。また、金属マトリ
ックス中に、高温でも安定な微細酸化物粒子を分散させ
た分散強化型合金としての特開昭63−50448号公
報や特開昭57−36343号公報並びに特開平1−2
72746号公報にあっては、いずれも、焼結体として
の酸化物分散型であって、溶鋼への均一分散による鋼と
は異なり、酸化物分散強化鋼の製造に際して、機械的合
金化中にNが大気中より混入するため、このNが鋼中で
CrやTiと結びつき、粗大な(Cr,Ti)Nを形成
する。しかし、Crは固溶強化や耐高温酸化の観点から
鋼中で単体として存在することが好ましい。また、Ti
は酸化物の均一微細分散を促進する元素であるため、酸
化物と化合して存在することが好ましいし、さらに窒化
物が粗大であることから延性も低下する、これらの問題
がある。更には、特開昭63−186853号公報にあ
っては酸化物分散強化型高Cr鋼である点は共通してい
るが、しかし該公報は高密度中性子照射の環境下で誘導
放射能を生ぜしめない目的で、Mo,Ni,Nb等の元
素を添加することを制限して、Wで高温強度を上げるた
め必須元素とし、しかも前記のように焼結体としての酸
化物分散型であるので大型鋼材として、大量の厚板を製
造することは困難な問題がある。
However, in order to further increase the high temperature creep strength, the present invention is an oxide dispersion strengthening type in which oxide particles are uniformly dispersed in the molten steel process in addition to the conventionally known steel. It is a ferritic heat-resistant steel plate that is a thick plate, is inexpensive, and has excellent extremely high temperature creep strength. Therefore, neither of the above-mentioned Japanese Patent Laid-Open Nos. 63-238244 and 1-8256 discloses the technical idea of strengthening the high temperature creep by the oxide dispersion strengthening as in the present invention. Further, as a dispersion-strengthened alloy in which fine oxide particles that are stable even at high temperature are dispersed in a metal matrix, JP-A-63-50448, JP-A-57-36343, and JP-A-1-253 / 1982.
In the publication No. 72746, all of them are oxide dispersion type as a sintered body and, unlike steel by uniform dispersion in molten steel, during mechanical alloying during production of oxide dispersion strengthened steel. Since N is mixed in from the atmosphere, this N combines with Cr and Ti in the steel to form coarse (Cr, Ti) N. However, Cr is preferably present as a simple substance in the steel from the viewpoint of solid solution strengthening and high temperature oxidation resistance. Also, Ti
Is an element that promotes uniform and fine dispersion of the oxide, and therefore it is preferable that it is present in combination with the oxide. Further, since the nitride is coarse, the ductility is also reduced, which is a problem. Further, in Japanese Patent Laid-Open No. 63-186853, there is a common point that it is an oxide dispersion strengthened high Cr steel, but this publication produces induced radioactivity in the environment of high density neutron irradiation. For the purpose of not impairing, the addition of elements such as Mo, Ni, Nb is restricted to make it an essential element for increasing the high temperature strength at W, and as described above, it is an oxide dispersion type as a sintered body. It is a difficult problem to manufacture a large number of thick plates as a large steel material.

【0005】[0005]

【課題を解決するための手段】本発明は、このような観
点から、高温クリ−プ強度、延性、熱疲労特性に優れ
た、特に高温高圧ボイラ−用厚板としての酸化物分散強
化フェライト系耐熱鋼板を提供しようとするものであ
る。その発明の要旨とするところは、 (1)重量%で、 C :0.08%以下 Si:0.02〜2.0% Mn:2.0%以下 Cr:9.0〜30.0% Ti:0.1〜2.0% Ni:0.05〜0.3% Mo:0.1〜2.0% Al:0.1%以下 P :0.05%以下 S :0.05%以下 N :0.08%以下 残部Fe及び不可避的不純物からなり、かつ、融点15
00℃以上の酸化物であって、該酸化物粒子と金属粉を
混合した予備処理粉末を溶鋼に添加して、該酸化物の粒
径0.001〜0.5μmのものを容積%で0.25〜
3.0%含ませたことを特徴とする酸化物分散強化フェ
ライト系耐熱鋼板。
From this point of view, the present invention provides an oxide-dispersion-strengthened ferrite system excellent in high-temperature creep strength, ductility, and thermal fatigue properties, particularly as a thick plate for a high-temperature high-pressure boiler. It is intended to provide heat resistant steel plates. The gist of the invention is (1)% by weight, C: 0.08% or less Si: 0.02-2.0% Mn: 2.0% or less Cr: 9.0-30.0% Ti: 0.1 to 2.0% Ni: 0.05 to 0.3% Mo: 0.1 to 2.0% Al: 0.1% or less P: 0.05% or less S: 0.05% Below N: 0.08% or less, consisting of balance Fe and unavoidable impurities, and melting point 15
A pretreatment powder obtained by mixing oxide particles and metal powder at a temperature of 00 ° C. or higher is added to molten steel, and the oxide having a particle size of 0.001 to 0.5 μm is added at 0% by volume. .25 ~
An oxide dispersion strengthened ferritic heat-resistant steel sheet characterized by containing 3.0%.

【0006】(2)重量%で、 C :0.08%以下 Si:0.02〜2.0% Mn:2.0%以下 Cr:9.0〜30.0% Ti:0.1〜2.0% Ni:0.05〜0.3% Mo:0.1〜2.0% P :0.05%以下 S :0.05%以下 Al:0.1%以下 N :0.08%以下 を基本成分とし、さらに、 Nb:0.005〜0.5% V :0.01〜1.0% Ta:0.01〜1.0% Zr:0.005〜0.5% Hf:0.01〜1.0% B :0.0002〜0.01% Y :0.02〜1.0% のうち1種または2種以上を含有し、残部Fe及び不可
避的不純物からなり、かつ、融点1500℃以上の酸化
物であって、該酸化物粒子と金属粉を混合した予備処理
粉末を溶鋼に添加して、該酸化物の粒径0.001〜
0.5μmのものを容積%で0.25〜3.0%含ませ
たことを特徴とする酸化物分散強化フェライト系耐熱鋼
板である。
(2) C: 0.08% or less Si: 0.02 to 2.0% Mn: 2.0% or less Cr: 9.0 to 30.0% Ti: 0.1% by weight 2.0% Ni: 0.05 to 0.3% Mo: 0.1 to 2.0% P: 0.05% or less S: 0.05% or less Al: 0.1% or less N: 0.08 % Or less as a basic component, and Nb: 0.005 to 0.5% V: 0.01 to 1.0% Ta: 0.01 to 1.0% Zr: 0.005 to 0.5% Hf : 0.01 to 1.0% B: 0.0002 to 0.01% Y: 0.02 to 1.0% One or more types are contained, and the balance consists of Fe and inevitable impurities. And, an oxide having a melting point of 1500 ° C. or more, and a pretreatment powder obtained by mixing the oxide particles and a metal powder is added to molten steel to obtain a particle size of 0.001 to 1 of the oxide.
It is an oxide dispersion strengthened ferritic heat resistant steel sheet characterized by containing 0.25 to 3.0% by volume of 0.5 μm.

【0007】以下本発明について詳細に説明する。本発
明においては、酸化物粒子と金属粉末を混練した予備処
理粉末を溶鋼に添加することが最大の特徴である。その
ために、先ず酸化物微粒子の比重を大きくして溶鋼への
添加を容易にし、かつ、溶鋼中への均一分散を図るため
に、鉄粉を利用して鉄粉の周りに酸化物微粒子を付着さ
せて全体の比重を大きくしようとするものである。すな
わち、鉄粉の周りに付着した形の酸化物微粒子を機械合
金化法、いわゆる鉄粉と酸化物微粒子を、高エネルギ−
ミル(アトライタ−)中で混合し、機械的圧縮、破壊、
接合を繰返しマトリックス中に酸化物微粒子が均一に分
散した粉末が生成する。そのために、金属粉末である鉄
粉の粒径を1〜1000μmと規制し、この鉄粉の表面
に機械的に付着させる前処理が必要である。鉄粉の粒径
を規制した理由は酸化物微粒子との関係から鉄粉の平均
粒径の下限は酸化物微粒子が鉄粉表面に機械的に付着し
て均一分散するために1μm以上であることが必要であ
る。また、上限については、寸法が大きくなりすぎると
酸化物微粒子と鉄粉とが不均一混合となり易いので10
00μm以下であることが望ましい。また、酸化物微粒
子を0.001〜0.5μmとした。この理由は分散強
化によるクリ−プ強度向上を図ることができない。ま
た、上限については加工時に割れが発生し易くなること
から0.5μm以下とした。
The present invention will be described in detail below. In the present invention, the greatest feature is that the pretreated powder obtained by kneading the oxide particles and the metal powder is added to the molten steel. Therefore, first, to increase the specific gravity of the oxide fine particles to facilitate addition to the molten steel and to achieve uniform dispersion in the molten steel, the iron powder is used to attach the oxide fine particles around the iron powder. It is intended to increase the overall specific gravity. That is, the oxide fine particles in the form of being attached around the iron powder are mechanically alloyed, that is, the so-called iron powder and oxide fine particles are treated with high energy.
Mixing in a mill (attritor), mechanical compression, breaking,
The bonding is repeated to form a powder in which fine oxide particles are uniformly dispersed in the matrix. Therefore, it is necessary to perform a pretreatment in which the particle size of the iron powder, which is a metal powder, is regulated to 1 to 1000 μm, and the iron powder is mechanically attached to the surface of the iron powder. The reason for regulating the particle size of the iron powder is that the lower limit of the average particle size of the iron powder is 1 μm or more because the oxide particles are mechanically attached to the surface of the iron powder and uniformly dispersed because of the relationship with the oxide particles. is necessary. Regarding the upper limit, if the size is too large, the oxide fine particles and the iron powder are likely to be non-uniformly mixed.
It is desirable that the thickness is 00 μm or less. Further, the oxide fine particles were set to 0.001 to 0.5 μm. The reason is that the creep strength cannot be improved by dispersion strengthening. Further, the upper limit is set to 0.5 μm or less because cracks easily occur during processing.

【0008】これら、酸化物微粒子を溶鋼に直接添加す
る理由は、高温高圧ボイラ−用の厚板の如く大型の製品
を連続的に大量生産することにある。また、酸化物微粒
子を単独添加しないで、混合粉として添加する理由は、
酸化物微粒子は凝集して粉体を形成し、体積が増加して
いる上に比重が溶鋼よりも小さいために単独で添加する
と浮上して溶鋼中に歩留らないためである。凝集してい
る酸化物微粒体を個々の酸化物微粒子に分離して体積を
小さくするために粉と混合させた。また、鉄粉を選定し
た理由は、溶鋼中に添加した際、分離浮上しないためで
ある。なお、鉄粉のみに限定するものではなく、Cu粉
等も良く、この効果を達成するものであれば良く、特に
限定するものではない。
The reason for directly adding the oxide fine particles to the molten steel is to continuously mass-produce large products such as thick plates for high temperature and high pressure boilers. Further, the reason for adding as a mixed powder, without adding oxide fine particles alone,
This is because oxide fine particles agglomerate to form a powder, and since the volume increases and the specific gravity is smaller than that of molten steel, when added alone, they float and do not yield in molten steel. The aggregated oxide fine particles were separated into individual oxide fine particles and mixed with powder to reduce the volume. The reason for selecting iron powder is that it does not separate and float when added to molten steel. It should be noted that the present invention is not limited to iron powder only, and Cu powder or the like may be used as long as it achieves this effect, and there is no particular limitation.

【0009】このように平均粒径0.001〜0.5μ
mの酸化物微粒子を鉄粉表面に機械的に付着させて均一
分散させるためであるが、金属粉末である鉄粉と酸化物
微粒子との重量比を100:0.5〜50とする。その
理由は鋼板への酸化物容積が0.25%〜3.0%に含
有させるため、前処理のための鉄粉表面積を大きくして
酸化物微粒子が鉄粉に付着し易い両者から定めた。ま
た、酸化物粒子の融点を1500℃以上とし、例えばA
23,Y23,Sm23等の酸化物が使用される。こ
のように融点が1500℃以上の高温酸化物粒子とした
理由は溶鋼中に添加するも溶鋼によって解けないで酸化
物の状態で存在せしめるためである。溶鋼中への添加と
しては、取鍋内溶鋼へ混合粉を添加すると溶鋼温度が高
く、酸化物粒子が溶解するおそれがあるので、混合粉の
添加場所は酸化物粒子が溶解するおそれの少ない、しか
も鉄粉が十分に溶解するタンデッシュ内及び/又はモ−
ルド内溶鋼が望ましい。
Thus, the average particle size is 0.001 to 0.5 μ
This is because the oxide fine particles of m are mechanically attached to the surface of the iron powder to be uniformly dispersed, and the weight ratio of the iron powder as the metal powder to the oxide fine particles is 100: 0.5 to 50. The reason for this is that the oxide volume in the steel sheet is contained in the range of 0.25% to 3.0%. Therefore, the surface area of the iron powder for pretreatment is increased so that the oxide fine particles easily adhere to the iron powder. .. Further, the melting point of the oxide particles is 1500 ° C. or higher, and for example, A
Oxides such as l 2 O 3 , Y 2 O 3 and Sm 2 O 3 are used. The reason why the high temperature oxide particles having a melting point of 1500 ° C. or higher are used is that they are present in an oxide state without being melted by the molten steel even if they are added to the molten steel. As the addition to the molten steel, when the mixed powder is added to the molten steel in the ladle, the molten steel temperature is high, and the oxide particles may be dissolved.Therefore, the place where the mixed powder is added is less likely to dissolve the oxide particles, Moreover, the iron powder is sufficiently dissolved in the tundish and / or the mold.
Cold molten steel is desirable.

【0010】[0010]

【作用】次に、本発明の目的とする特性を達成するため
には各々の構成元素量についても以下に述べるように適
正範囲に限定する必要がある。 C :0.08%以下 Cは強度を向上するために有効な成分であり、炭化物の
析出からクリ−プ破断強度の向上に寄与する元素である
が、0.08%を越えると逆にクリ−プに有害な粗大な
炭化物を作るため、Cは0.08%以下とした。 Si:0.02〜2.0% Siは0.02%未満では十分な強度及び溶鋼と酸化物
の濡れ性を改善し酸化物の分散を助けることが出来な
い。一方、2.0%を越えると靭性が低下すると共に溶
接性にとって悪影響を与え、かつ、溶鋼への酸化物の分
散を助ける働きも減少する。 Mn:2.0%以下 Mnは固溶強化によりクリ−プ強度を向上させるもので
あるが、しかし、2.0%を越えると、その効果がなく
なる。 Cr:9.0〜30.0% Crは耐高温酸化性、高温長時間強度の向上並びにフェ
ライトを安定にするために添加するもので、9.0%未
満ではCr炭化物による析出強化、Crの固溶強化が期
待できず、高温長時間強度が低下し、しかも、9.0%
未満では高温の耐酸化性が低下する。また、30%を越
えると割れを起し、かつ溶接性を著しく損なう。従って
Cr量は9.0〜30.0%とする。
Next, in order to achieve the desired characteristics of the present invention, it is necessary to limit the amount of each constituent element to an appropriate range as described below. C: 0.08% or less C is an effective component for improving the strength, and is an element that contributes to the improvement of creep rupture strength due to the precipitation of carbides. C was made 0.08% or less in order to produce coarse carbide which is harmful to the alloy. Si: 0.02 to 2.0% When Si is less than 0.02%, sufficient strength and wettability between molten steel and oxide cannot be improved to help disperse the oxide. On the other hand, if it exceeds 2.0%, the toughness decreases, the weldability is adversely affected, and the function of assisting the dispersion of the oxide in the molten steel also decreases. Mn: 2.0% or less Mn improves the creep strength by solid solution strengthening, but if it exceeds 2.0%, its effect disappears. Cr: 9.0 to 30.0% Cr is added to improve high temperature oxidation resistance, high temperature long-term strength, and stabilize ferrite. If it is less than 9.0%, precipitation strengthening by Cr carbide and Solid solution strengthening cannot be expected, high-temperature long-term strength declines, and 9.0%
If it is less than 1, the oxidation resistance at high temperature is lowered. Further, if it exceeds 30%, cracking occurs and the weldability is significantly impaired. Therefore, the Cr content is 9.0 to 30.0%.

【0011】Ti:0.1〜2.0% Tiは溶鋼と酸化物の濡れ性を改善し酸化物の分散を助
けると共に第2の発明であるNb,Vを含有する高Cr
鋼において、さらに、Bと一緒にTiを複合添加するこ
とにより高温クリ−プ破断強度を著しく増加する。2.
0%を越えると割れを起し、従ってTi量は0.1〜
2.0%とする。 Ni:0.05〜0.3% Niは高温での延性を改善するために添加するが0.0
5%未満では効果がなく、0.3%を越えると熱間加工
上好ましくない上に、0.3%を越えても一層の高温延
性改善効果がみられず、しかもNiは高価な元素である
ことから上限を0.3%とした。 Mo:0.1〜2.0% Moは固溶強化により高温クリ−プ強度を著しく高める
ため、耐熱鋼には不可欠の元素である。鋼中固溶化し強
化するほか、炭化物を析出してクリ−プ強度を向上させ
るが、0.1%未満ではこの効果はなく、高温強度の向
上は十分発揮されない。一方、2.0%を越えるとフェ
ライト量が増し高温強度を低下させる上に、割れが起き
ることから上限を2.0%とした。
Ti: 0.1 to 2.0% Ti improves the wettability of molten steel and oxides and helps the dispersion of oxides, and at the same time, it is a high Cr containing Nb and V according to the second invention.
In steel, the high temperature creep rupture strength is remarkably increased by further adding Ti together with B. 2.
If it exceeds 0%, cracking occurs, so the Ti content is 0.1-0.1%.
2.0%. Ni: 0.05 to 0.3% Ni is added to improve ductility at high temperature, but 0.0
If it is less than 5%, it has no effect, and if it exceeds 0.3%, it is not preferable for hot working. Further, if it exceeds 0.3%, the effect of improving high temperature ductility is not further observed, and Ni is an expensive element. Therefore, the upper limit is set to 0.3%. Mo: 0.1 to 2.0% Mo is an indispensable element for heat-resistant steel because it significantly enhances the high temperature creep strength by solid solution strengthening. In addition to solidifying and strengthening in steel, carbide is precipitated to improve creep strength, but if it is less than 0.1%, this effect does not occur and improvement in high temperature strength is not sufficiently exhibited. On the other hand, if it exceeds 2.0%, the amount of ferrite increases to lower the high temperature strength and cracks occur, so the upper limit was made 2.0%.

【0012】Al:0.1%以下 Alは脱酸剤として有効であるが、特に0.1%を越え
ると高温強度が低下するので上限を0.1%以下とし
た。 P :0.05%以下 Pは0.05を越えて含有させた場合は粒界脆化を起こ
すため0.05%以下に限定した。 S :0.05%以下 Sは低く抑えることにより水素侵食及び粒界脆化を起こ
すことを低減させることは重要であり、そのため、S量
を0.05%以下とする。 N :0.08%以下 Nは0.08%を越えるとクリ−プに有害な粗大な窒化
物を形成することから0.08%以下とした。
Al: 0.1% or less Although Al is effective as a deoxidizing agent, especially when it exceeds 0.1%, the high temperature strength decreases, so the upper limit was made 0.1% or less. P: 0.05% or less P is limited to 0.05% or less because if it exceeds 0.05, grain boundary embrittlement occurs. S: 0.05% or less It is important to suppress hydrogen attack and intergranular embrittlement by suppressing S to be low. Therefore, the S content is 0.05% or less. N: 0.08% or less N is more than 0.08%, and if it exceeds 0.08%, a coarse nitride harmful to the creep is formed, so the content was made 0.08% or less.

【0013】更に、第2発明である強度改善元素群につ
いての構成元素量の適正範囲に限定した理由を述べる。 Nb:0.005〜0.5% Nbは析出強化及び固溶強化の両面からクリ−プ強度を
向上させるものであるが、0.005%未満では、その
効果が不十分である。また、0.5%を越えると炭化物
が著しく粗大化し、クリ−プ破断強度を下げ、しかも延
性を低下させるのでNb量は0.005〜0.5%とし
た。 V,Ta,Hf:0.01〜1.0%、Zr:0.00
5〜0.5% また、V,Ta,Zr,Hfについては、Nbと同様析
出強化及び固溶強化の両面からクリ−プ強度を向上させ
るものであるが、V,Ta,Hfは0.01%未満、Z
rは0.005%未満では、その効果が不十分である。
また、V,Ta,Hfにあっては、1.0%、Zrにあ
っては、0.5%を越えると炭化物が著しく粗大化し、
クリ−プ破断強度を下げ、しかも延性を低下させるので
V,Ta,Hfのそれぞれの量は1.0%以下、Zrは
0.5%以下とした。 B :0.0002〜0.01% Bは適量のNb,Vを含有する高Cr鋼において、さら
に適量のTiと一緒にBを複合添加することにより、粒
界を強化し高温クリ−プ強度が著しく増加する。しか
し、0.01%を越えての添加は粒界割れを起すので
0.01%以下でなければならない。 Y :0.02〜1.0% Yは固溶することで、クリ−プ強度を向上させると共
に、高温酸化を防ぐものであるが、0.02%未満で
は、その効果が不十分である。また、1.0%を越える
と延性を低下させることから1.0%以下とした。
Further, the reason why the content range of the constituent elements of the strength improving element group of the second invention is limited to the proper range will be described. Nb: 0.005-0.5% Nb improves the creep strength from both sides of precipitation strengthening and solid solution strengthening, but if it is less than 0.005%, its effect is insufficient. On the other hand, if it exceeds 0.5%, the carbides are remarkably coarsened, the creep rupture strength is lowered, and the ductility is lowered. Therefore, the Nb content is set to 0.005 to 0.5%. V, Ta, Hf: 0.01 to 1.0%, Zr: 0.00
5 to 0.5% Further, regarding V, Ta, Zr, and Hf, the creep strength is improved from both sides of precipitation strengthening and solid solution strengthening similarly to Nb, but V, Ta, and Hf are 0. Less than 01%, Z
If r is less than 0.005%, the effect is insufficient.
Further, in the case of V, Ta, and Hf, if it exceeds 1.0%, and in the case of Zr, if it exceeds 0.5%, the carbides become significantly coarse,
Since the creep rupture strength is lowered and the ductility is lowered, the respective amounts of V, Ta and Hf are set to 1.0% or less and Zr is set to 0.5% or less. B: 0.0002 to 0.01% B is a high Cr steel containing appropriate amounts of Nb and V, and by adding B together with an appropriate amount of Ti, grain boundaries are strengthened and high temperature creep strength is enhanced. Is significantly increased. However, addition over 0.01% causes intergranular cracking, so it must be 0.01% or less. Y: 0.02-1.0% Y forms a solid solution to improve creep strength and prevent high temperature oxidation, but if it is less than 0.02%, the effect is insufficient. .. Further, if it exceeds 1.0%, the ductility is lowered, so the content was made 1.0% or less.

【0014】[0014]

【実施例】【Example】

実施例1(A法) 混合粉は鉄粉とY23粉体を鋼ボ−ル(SUJ−2)と
共に容器に入れて、アトライタ−で混合することにより
製造した。 そのときの鉄粉の平均粒径150〜200
μm,Y23粉体の平均粒径0.05μmを重量比1
0:1の割合で混合し、予備処理粉末を得る。一方、容
量300kgの高周波溶解炉で合金成分を調整した溶鋼
をAl脱酸した30秒後に、溶鋼:予備処理粉末=10
0:4の重量比でホスホライザ−により予備処理粉末を
溶鋼中に突っ込み2分後鋳型に出鋼する。そのときの本
発明鋼及び予備処理しない酸化物微粒子を単独添加、な
いし鋼の成分組成が外れたもの等の比較鋼を表1に示
す。これら化学成分の鋼塊を1100℃の熱間圧延で1
8mm厚みの鋼板とし、1200℃、5hr焼鈍を行っ
た。その後、クリ−プ試験は700℃で1万hrのクリ
−プ破断強度を調べた。その結果を表1に示す。この表
1からわかるように、本発明鋼である(1)〜(7)は
クリ−プ強度が高いのに対して、比較鋼である(8)〜
(13)のクリ−プ強度は低く、また、比較鋼(8)は
酸化物微粒子をそのまま添加したため歩留らず、比較鋼
(9)は酸化物微粒子が高すぎるため延性不足で同じく
破断強度が低い、比較鋼(11)はSi,Mnが多くT
i不足で酸化物微粒子が凝集した。比較鋼(12)はC
r,Niが多く、割れが生じた。また比較鋼(13)は
Mo不足のために強度が不足した。
Example 1 (Method A) A mixed powder was produced by putting iron powder and Y 2 O 3 powder in a container together with a steel ball (SUJ-2) and mixing them with an attritor. Average particle size of iron powder at that time 150-200
μm, Y 2 O 3 powder average particle size 0.05 μm, weight ratio 1
Mix at a ratio of 0: 1 to obtain a pretreated powder. On the other hand, 30 seconds after Al deoxidation of molten steel whose alloy composition was adjusted in a high-frequency melting furnace with a capacity of 300 kg, molten steel: pretreated powder = 10
The pretreated powder is thrust into the molten steel with a phosphorizer at a weight ratio of 0: 4, and after 2 minutes, the steel is tapped into the mold. Table 1 shows comparative steels such as the steel of the present invention at that time and the oxide fine particles not pretreated alone were added or the composition of the steel was deviated. 1100 ° C hot rolling of steel ingots with these chemical components
A steel plate having a thickness of 8 mm was annealed at 1200 ° C. for 5 hours. Then, in the creep test, the creep rupture strength at 700 ° C. for 10,000 hours was examined. The results are shown in Table 1. As can be seen from Table 1, the invention steels (1) to (7) have high creep strength, while the comparison steels (8) to (7) are high.
The creep strength of (13) is low, and the comparative steel (8) does not yield because the oxide fine particles are added as it is. Is low, the comparative steel (11) has a large amount of Si and Mn and T
Oxide particles were aggregated due to lack of i. Comparative steel (12) is C
There was a large amount of r and Ni, and cracking occurred. Further, the comparative steel (13) lacked strength due to lack of Mo.

【0015】実施例2(B法) 混合粉は銅粉とAl23粉体を鋼ボ−ル(SUJ−2)
と共に容器に入れて、アトライタ−で混合することによ
り製造した。そのときの鉄粉の平均粒径150〜200
μm,Al23粉体の平均粒径0.05μmを重量比1
0:1の割合で混合し、予備処理粉末を得る。一方、容
量300kgの高周波溶解炉で合金成分を調整した溶鋼
をAl脱酸した30秒後に、溶鋼:予備処理粉末=10
0:10の重量比で鋳込み途中の溶鋼流に予備処理粉末
をアルゴンガスにより噴射後、鋳型に出鋼する。そのと
きの本発明鋼は実施例1と同様、表1の実施No(4)
(5)に示す。また、その結果は実施例1と同様であ
る。
Example 2 (Method B) As the mixed powder, copper powder and Al 2 O 3 powder were used as steel balls (SUJ-2).
It was manufactured by putting it in a container together with and mixing with an attritor. Average particle size of iron powder at that time 150-200
μm, Al 2 O 3 powder average particle size 0.05 μm, weight ratio 1
Mix at a ratio of 0: 1 to obtain a pretreated powder. On the other hand, 30 seconds after Al deoxidation of molten steel whose alloy composition was adjusted in a high-frequency melting furnace with a capacity of 300 kg, molten steel: pretreated powder = 10
A pretreatment powder is injected into the molten steel flow during casting at a weight ratio of 0:10 by argon gas, and then the steel is tapped into a mold. The steel of the present invention at that time was the same as that of Example 1, and the execution No. (4)
It shows in (5). The result is the same as that of the first embodiment.

【0016】[0016]

【表1A】 [Table 1A]

【0017】[0017]

【表1B】 [Table 1B]

【0018】[0018]

【発明の効果】以上述べたように、本発明に係る高温ク
リ−プ強度に優れた酸化物分散強化フェライト系耐熱鋼
によれば、従来のフェライト系耐熱鋼に比べ、高温特に
クリ−プ破断強度が大幅に改善され、しかも、延性、熱
疲労特性に優れ、加工性も良好な鋼であり、例えば高
温、高圧環境下で使用される高温高圧ボイラ−材料、化
学プラント用耐熱鋼等に使用し、安価での製造が可能で
あり、従って工業上極めて大きな効果を奏するものであ
る。
As described above, the oxide-dispersion-strengthened ferritic heat-resistant steel excellent in high-temperature creep strength according to the present invention has a higher rupture temperature than the conventional ferritic heat-resistant steel at high temperature, especially creep rupture. Steel with significantly improved strength, excellent ductility, thermal fatigue properties, and good workability, such as high-temperature and high-pressure boiler materials used in high-temperature and high-pressure environments, heat-resistant steel for chemical plants, etc. However, it can be manufactured at a low cost, and thus has an extremely great industrial effect.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.08%以下 Si:0.02〜2.0% Mn:2.0%以下 Cr:9.0〜30.0% Ti:0.1〜2.0% Ni:0.05〜0.3% Mo:0.1〜2.0% Al:0.1%以下 P :0.05%以下 S :0.05%以下 N :0.08%以下 残部Fe及び不可避的不純物からなり、かつ、融点15
00℃以上の酸化物であって、該酸化物粒子と金属粉を
混合した予備処理粉末を溶鋼に添加して、該酸化物の粒
径0.001〜0.5μmのものを容積%で0.25〜
3.0%含ませたことを特徴とする酸化物分散強化フェ
ライト系耐熱鋼板。
1. By weight%, C: 0.08% or less Si: 0.02 to 2.0% Mn: 2.0% or less Cr: 9.0 to 30.0% Ti: 0.1 to 2 0.0% Ni: 0.05 to 0.3% Mo: 0.1 to 2.0% Al: 0.1% or less P: 0.05% or less S: 0.05% or less N: 0.08% The balance below consists of Fe and unavoidable impurities, and has a melting point of 15
A pretreatment powder obtained by mixing oxide particles and metal powder at a temperature of 00 ° C. or higher is added to molten steel, and the oxide having a particle size of 0.001 to 0.5 μm is added at 0% by volume. .25 ~
An oxide dispersion strengthened ferritic heat-resistant steel sheet characterized by containing 3.0%.
【請求項2】 重量%で、 C :0.08%以下 Si:0.02〜2.0% Mn:2.0%以下 Cr:9.0〜30.0% Ti:0.1〜2.0% Ni:0.05〜0.3% Mo:0.1〜2.0% P :0.05%以下 S :0.05%以下 Al:0.1%以下 N :0.08%以下 を基本成分とし、さらに、 Nb:0.005〜0.5% V :0.01〜1.0% Ta:0.01〜1.0% Zr:0.005〜0.5% Hf:0.01〜1.0% B :0.0002〜0.01% Y :0.02〜1.0% のうち1種または2種以上を含有し、残部Fe及び不可
避的不純物からなり、かつ、融点1500℃以上の酸化
物であって、該酸化物粒子と金属粉を混合した予備処理
粉末を溶鋼に添加して、該酸化物の粒径0.001〜
0.5μmのものを容積%で0.25〜3.0%含ませ
たことを特徴とする酸化物分散強化フェライト系耐熱鋼
板。
2. C .: 0.08% or less Si: 0.02 to 2.0% Mn: 2.0% or less Cr: 9.0 to 30.0% Ti: 0.1 to 2% by weight 0.0% Ni: 0.05 to 0.3% Mo: 0.1 to 2.0% P: 0.05% or less S: 0.05% or less Al: 0.1% or less N: 0.08% The following are the basic components, and further Nb: 0.005-0.5% V: 0.01-1.0% Ta: 0.01-1.0% Zr: 0.005-0.5% Hf: 0.01 to 1.0% B: 0.0002 to 0.01% Y: 0.02 to 1.0%, one or more of them are contained, and the balance is Fe and inevitable impurities, and A melting point of 1500 ° C. or higher, and a pretreatment powder obtained by mixing the oxide particles and metal powder is added to molten steel to obtain a particle diameter of 0.001 to 0.001 of the oxide.
An oxide dispersion strengthened ferritic heat-resistant steel sheet characterized by containing 0.25 to 3.0% by volume of 0.5 μm.
JP3238953A 1991-08-27 1991-08-27 Oxide dispersion strengthened ferritic heat-resistant steel sheet Expired - Lifetime JP2696624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3238953A JP2696624B2 (en) 1991-08-27 1991-08-27 Oxide dispersion strengthened ferritic heat-resistant steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3238953A JP2696624B2 (en) 1991-08-27 1991-08-27 Oxide dispersion strengthened ferritic heat-resistant steel sheet

Publications (2)

Publication Number Publication Date
JPH0551701A true JPH0551701A (en) 1993-03-02
JP2696624B2 JP2696624B2 (en) 1998-01-14

Family

ID=17037751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3238953A Expired - Lifetime JP2696624B2 (en) 1991-08-27 1991-08-27 Oxide dispersion strengthened ferritic heat-resistant steel sheet

Country Status (1)

Country Link
JP (1) JP2696624B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894478A (en) * 2014-03-05 2015-09-09 韩国原子力研究院 Ferritic/martensitic oxide dispersion strengthened steel with enhanced creep resistance and method of manufacturing the same
KR20210067474A (en) * 2019-11-29 2021-06-08 한국생산기술연구원 Oxide dispersion strengthened Fe-based superalloy casting material and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287252A (en) * 1988-05-11 1989-11-17 Sumitomo Metal Ind Ltd Sintered dispersion strengthened ferritic heat-resistant steel
JPH02225648A (en) * 1989-02-23 1990-09-07 Sumitomo Metal Ind Ltd High strength oxide dispersion strengthened ferritic steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287252A (en) * 1988-05-11 1989-11-17 Sumitomo Metal Ind Ltd Sintered dispersion strengthened ferritic heat-resistant steel
JPH02225648A (en) * 1989-02-23 1990-09-07 Sumitomo Metal Ind Ltd High strength oxide dispersion strengthened ferritic steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894478A (en) * 2014-03-05 2015-09-09 韩国原子力研究院 Ferritic/martensitic oxide dispersion strengthened steel with enhanced creep resistance and method of manufacturing the same
KR20210067474A (en) * 2019-11-29 2021-06-08 한국생산기술연구원 Oxide dispersion strengthened Fe-based superalloy casting material and method of manufacturing the same

Also Published As

Publication number Publication date
JP2696624B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US3865581A (en) Heat resistant alloy having excellent hot workabilities
CN108315599A (en) A kind of high cobalt nickel base superalloy and preparation method thereof
GB2219004A (en) Dispersion strengthened ferritic steel
US4227925A (en) Heat-resistant alloy for welded structures
CN110952028B (en) Cr-Ni series austenite heat-resistant steel with enhanced phase precipitated in interior and preparation method thereof
EP0839921A1 (en) Steel having improved toughness in welding heat-affected zone
WO2016184009A1 (en) Powder metallurgy wear-resistant tool steel
CN110560961A (en) Ta and Nb composite nickel-based welding wire for nuclear power equipment and welding method
JPH0459383B2 (en)
JPH0642979B2 (en) Manufacturing method of high strength steel for welding and low temperature containing titanium oxide
JPH07823B2 (en) Sinter-dispersion strengthened heat-resistant steel forming parts
JP2696624B2 (en) Oxide dispersion strengthened ferritic heat-resistant steel sheet
JP2831051B2 (en) Austenitic stainless steel welding wire
JPH093590A (en) Oxide dispersion strengthened ferritic heat resistant steel sheet and its production
CN111304555B (en) In-situ endogenously precipitated ceramic particle reinforced Cr-Mn-Ni-C-N austenitic heat-resistant steel and preparation method and application thereof
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP3403293B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP3481417B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
EP3187605B1 (en) A hybrid aluminium bronze alloy and its preparation method
JPH11138262A (en) Tig welding method and tig welding consumables
JPH07103447B2 (en) High purity heat resistant steel
JPH06271989A (en) Ferritic heat resistant steel for nuclear fusion furnace and its production
RU2803159C1 (en) NEUTRON ABSORBING ALLOY BASED ON Ni
JPH07150289A (en) Cr-series heat resistance steel excellent in high temperature strength
JP3481419B2 (en) Thick steel plate with excellent toughness of weld heat affected zone

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 14

EXPY Cancellation because of completion of term