JPH02225648A - High strength oxide dispersion strengthened ferritic steel - Google Patents

High strength oxide dispersion strengthened ferritic steel

Info

Publication number
JPH02225648A
JPH02225648A JP4380989A JP4380989A JPH02225648A JP H02225648 A JPH02225648 A JP H02225648A JP 4380989 A JP4380989 A JP 4380989A JP 4380989 A JP4380989 A JP 4380989A JP H02225648 A JPH02225648 A JP H02225648A
Authority
JP
Japan
Prior art keywords
steel
oxide dispersion
dispersion strengthened
strength
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4380989A
Other languages
Japanese (ja)
Inventor
Shuji Tanogami
田ノ上 修二
Mutsuo Nakanishi
中西 睦夫
Kazutaka Asabe
和孝 阿佐部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4380989A priority Critical patent/JPH02225648A/en
Publication of JPH02225648A publication Critical patent/JPH02225648A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high strength oxide dispersion strengthened ferritic steel in which the defect of low transgranular-intergranular fracture transition temp. peculiar to a conventional oxide dispersion strengthened steel is dissolved and having improved high temp. strength by forming it with the compsn. contg. each prescribed amt. of Cr, Ti, Y2O3, B and the balance Fe with impurities. CONSTITUTION:The high strength oxide dispersion strengthened ferritic steel is formed with the compsn. contg., by weight, 12.5 to 25% Cr, 0.2 to 2% Ti, 0.05 to 2% Y2O3, 0.003 to 0.02% B and the balance Fe with impurities. The ferritic steel is manufactured by a powder metallurgy method. Namely, as the raw material, the one of which the mixture of alloy powder as the base compsn. excluding Y2O3 powder with Y2O3 powder is subjected to mechanical alloying is used. Next, the obtd. raw material powder is charged to a capsule, is subjected to deaeration sealing and is formed by hot extruding, HIP forging, etc. Then, in the formed substance, solution treatment is executed at 1100 to 1000 deg.C for a ferritic single-phase steel and solution treatment at 1100 to 1000 deg.C and tempering at the Ac1 transformation temp. or below are executed for a steel including a martensitic phase, by which the objective high strength oxide dispersion strengthened ferritic steel can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高温強度の高いフェライト系の酸化物分散
強化型鋼であって、特に原子炉の炉心材料として好適な
澗に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a ferrite-based oxide dispersion strengthened steel with high high temperature strength, and in particular to oak, which is suitable as a core material for a nuclear reactor.

(従来の技術) フェライト系の鋼は、オーステナイト系の鋼に比較して
中性子照射を受けた場合の耐スエリング性に優れている
ため、原子炉、特に高速増殖炉の炉心材料として注目さ
れている。しかしながら、一般にフェライト鋼は、オー
ステナイト鋼に比べて高温強度が低い、この高温強度を
高めたフェライト鋼として、例えば、特開昭60−82
96号公報に開示されているような酸化物分散強化型フ
エライトがある。
(Conventional technology) Ferritic steel is attracting attention as a core material for nuclear reactors, especially fast breeder reactors, because it has superior swelling resistance when exposed to neutron irradiation compared to austenitic steel. . However, ferritic steel generally has lower high-temperature strength than austenitic steel.
There is an oxide dispersion strengthened ferrite as disclosed in Japanese Patent No. 96.

上記の酸化物分散強化型フェライト鋼は、オーステナイ
ト調を凌ぐ高温強度をもつが、次のような難点がある。
The above-mentioned oxide dispersion strengthened ferritic steel has high-temperature strength superior to austenitic steel, but has the following drawbacks.

即ち、この種の鋼は、高温引張において650°C付近
に延性のピークを持ち、それ以上の温度では逆に延性が
低下する。これは、酸化物分散強化型合金では、粒内強
度が極めて高いために低延性の破壊が粒界で起きるから
であると考えられる。上記のような校内破壊−粒界破壊
のモードは、歪速度依存性をもち、歪速度が大きい場合
には粒界破壊から粒内破壊に移る遷移温度は高温側にあ
るが、クリープのように歪速度が極めて小さい場合には
低温側に移行する。この遷移温度が、原子炉の炉心材料
などの使用温度(およそ650″C)付近にあるため、
この温度域でのクリープi度が安定しないということに
なる。
That is, this type of steel has a ductility peak around 650° C. under high-temperature tension, and the ductility decreases at temperatures higher than that. This is thought to be because in oxide dispersion strengthened alloys, fractures with low ductility occur at grain boundaries due to extremely high intragranular strength. The intergranular fracture-grain boundary fracture mode described above is strain rate dependent, and when the strain rate is large, the transition temperature from intergranular fracture to intragranular fracture is on the high temperature side, but as with creep, When the strain rate is extremely small, the temperature shifts to the low temperature side. Since this transition temperature is near the operating temperature of nuclear reactor core materials (approximately 650"C),
This means that the creep i degree is not stable in this temperature range.

更に、酸化物分散強化型フェライト鋼は、室温延性が低
いという難点もある。そのため、原子炉の燃料被覆管等
で寸法精度を出すために必須の冷間抽伸が難しい。
Furthermore, oxide dispersion strengthened ferritic steel also has the disadvantage of low room temperature ductility. Therefore, cold drawing, which is essential for achieving dimensional accuracy in nuclear reactor fuel cladding tubes, etc., is difficult.

(発明が解決しようとする課B) 酸化物分散強化型フェライト鋼の粒内−粒界破壊遷移温
度は、その使用目的温度の650°C付近にある。この
ことは、使用温度でのクリープ強度が不安定であること
を意味し、例えば、原子炉の炉心材料として用いるとき
に、設計基準の策定に困難を来す、さらに、酸化物分散
強化型フェライト鋼の室温延性の低さは、前記のように
冷間抽伸の困難を招き製品製造上の問題を生じている。
(Problem B to be Solved by the Invention) The transgranular-intergranular fracture transition temperature of oxide dispersion strengthened ferritic steel is around 650°C, which is the intended use temperature. This means that the creep strength of ferrite is unstable at the operating temperature, making it difficult to formulate design standards when used as a core material for nuclear reactors. As mentioned above, the low room temperature ductility of steel makes cold drawing difficult and causes problems in product manufacturing.

本発明は、元来高温強度の高い酸化物分散強化型フェラ
イト鋼について、その高温強度をさらに高めるとともに
、使用目的温度域でのクリープ強度の安定化と、室温延
性を向」二させることを課題とするものである。
The present invention aims to further increase the high-temperature strength of oxide dispersion-strengthened ferritic steel, which originally has high high-temperature strength, as well as to stabilize creep strength in the intended use temperature range and improve room-temperature ductility. That is.

(課題を解決するための手段) 本発明者らは、上記の課題を解決する手段として、酸化
物分散強化型フェライト鯛の粒界の強化が最も有効であ
ると考えた。そこで、本来の高い高温強度を維持しつつ
、粒界強度を高める成分系を追求し、下記の組成をもつ
フェライ)IIが最も目的に適うことをflllWした
(Means for Solving the Problems) The present inventors believed that strengthening the grain boundaries of oxide dispersion-strengthened ferrite sea bream is the most effective means for solving the above problems. Therefore, we sought a component system that would increase the grain boundary strength while maintaining the original high temperature strength, and found that Ferrai) II having the following composition was most suitable for the purpose.

本発明の要旨は、 Φ M1%で、12゜5%から25%までのCrと、0
.2%から2%までのTiと、0.05%から2%まで
のY!0.と、0.003%から0.02%までのBと
を含有し、残部がFeおよび不純物からなる高強度酸化
物分散強化型フェライト鋼、にあり、また、 ■ 上記■の成分に加えて、それぞれ2%から4%まで
のNoとWの少なくとも一方を含む高強度酸化物分散強
化型フェライト鋼、 ■ 上記■の成分に加えて、2%までのNiを含有する
高強度酸化物分散強化型フェライト爛、■ 上記■の成
分に加えて、それぞれ2%から4%までのFIoとWの
少なくとも一方と、2%までのNiを含有する高強度酸
化物分散強化型フェライト鋼、にある。
The gist of the present invention is that Φ M1%, Cr from 12°5% to 25%, and 0
.. Ti from 2% to 2% and Y from 0.05% to 2%! 0. and 0.003% to 0.02% of B, with the balance consisting of Fe and impurities, and ■ In addition to the ingredients in ■ above, High-strength oxide dispersion-strengthened ferritic steel containing at least one of 2% to 4% of No and W, ■ High-strength oxide dispersion-strengthened steel containing up to 2% of Ni in addition to the components of ■ above. Ferrite erosion, (1) A high-strength oxide dispersion-strengthened ferritic steel containing, in addition to the components (2) above, at least one of FIo and W, each from 2% to 4%, and up to 2% Ni.

上記本発明鋼の不純物としては、約0.2%以下のC1
約1.0%以下のsi、約1.0%以下のFgnなどが
ある。なお、本明細書において、成分含有量についての
%は全て重量%を意味する。
The impurities in the steel of the present invention include about 0.2% or less of C1.
Examples include si of about 1.0% or less and Fgn of about 1.0% or less. In addition, in this specification, all % regarding component content means weight %.

(作用) 以下、本発明鋼の構成成分の含有量の限定理由をその作
用効果とともに説明する。
(Function) Hereinafter, the reason for limiting the content of the constituent components of the steel of the present invention will be explained together with its function and effect.

crは、鋼の組織をフェライトにし、耐食性、耐酸化性
を与える必須の成分である。耐食性確保のために12.
5%以上が必要である。しかし、25%を趙えると延性
が劣化するため、上限は25%までとする。
Cr is an essential component that makes the steel structure ferrite and provides corrosion resistance and oxidation resistance. 12. To ensure corrosion resistance.
5% or more is required. However, the upper limit is set to 25% because the ductility deteriorates if the tensile strength exceeds 25%.

Tiは、T80.との相互作用によって複酸化物を生成
し、またY、0.を微細化する元素で、分散強化による
高強度化に有効である。しかし、その含有量が0.2%
未満では長時間側でのクリープ強度向上の効果が乏しい
ため0.2%以上含有させる必要がある。一方、τlの
含有量が2%を趙えると延性が低下する。
Ti is T80. A double oxide is produced by interaction with Y, 0. It is an element that makes steel fine, and is effective in increasing strength through dispersion strengthening. However, its content is 0.2%
If it is less than 0.2%, the effect of improving creep strength over a long period of time is poor, so it is necessary to contain it in an amount of 0.2% or more. On the other hand, when the content of τl exceeds 2%, the ductility decreases.

YtOsは、分散強化の作用を担う重要な成分である。YtOs is an important component responsible for dispersion strengthening.

即ち、基地中に均一に分散して高温強度を高める。 0
.05%未満ではクリープ強度が不安定であるからその
含有量は0.05%以上とするのがよい。
That is, it is uniformly dispersed in the matrix and increases high-temperature strength. 0
.. If the content is less than 0.05%, the creep strength is unstable, so the content is preferably 0.05% or more.

一方、2%を趨える含有量になると、強度向上の効果は
飽和し、延性を低下させる好ましくない作用が現れる。
On the other hand, when the content exceeds 2%, the effect of improving strength is saturated and an undesirable effect of reducing ductility appears.

Bは、本発明鋼を特徴づけるものの一つで、鋼の粒界強
化の作用をもつ、即ち、Bは粒界に偏析して、粒界の強
度を高め、酸化物分散強化型鋼の特徴である粒界−粒内
破壊遷移温度を上昇させる。
B is one of the characteristics of the steel of the present invention, and has the effect of strengthening the grain boundaries of the steel. In other words, B segregates at the grain boundaries, increases the strength of the grain boundaries, and is a characteristic of oxide dispersion strengthened steel. Increase a certain grain boundary-transgranular fracture transition temperature.

このような作用は、0.003%未満では不十分である
。しかし、0.02%を超えて含有させても、それ以」
−の効果はない。
Such an effect is insufficient at less than 0.003%. However, even if the content exceeds 0.02%,
− has no effect.

lioとWは、鋼の基地に固溶して粒内強度を向上させ
るだけでなく、粒界強度の向上にも役立つ。
Lio and W not only improve the intragranular strength by forming a solid solution in the steel matrix, but also help improve the grain boundary strength.

このような効果を期待する場合、それぞれ2%以上、4
%までの範囲で、一方または両方を含有させることがで
きる。それぞれ4%を趙えると金属間化合物の析出が多
くなり靭性が劣化する弊害がある。
If such an effect is expected, 2% or more and 4%, respectively.
% of one or both. If each content is 4%, the precipitation of intermetallic compounds increases, which has the disadvantage of deteriorating toughness.

Niは、オーステナイト相を安定化させる成分であり、
その添加によって広義のフェライトll(フェライト士
マルテンサイトの2相綱)の製造を容易にする。しかし
、Niは、中性子照射で誘導放射能を帯びるので、原子
炉の炉心材料としては、その含有量は2%以下に止める
のがよい。
Ni is a component that stabilizes the austenite phase,
Its addition facilitates the production of ferrite II in a broad sense (a two-phase class of ferrite and martensite). However, since Ni takes on induced radioactivity when irradiated with neutrons, its content should be kept at 2% or less when used as a core material for a nuclear reactor.

綱に通常含有されているCは、Niと同様の作用をもつ
が、0.2%以下に抑えるのがよい、SlおよびMnも
中性子照射で誘導放射能を帯びるので、少ない方がよい
、許容上限値はそれぞれ1.0%である。
C, which is normally contained in steel, has the same effect as Ni, but it is best to keep it below 0.2%. Sl and Mn also take on induced radioactivity when irradiated with neutrons, so the less the better, the more acceptable. The upper limit values are each 1.0%.

本発明の分散強化型フェライト綱は、粉末冶金法で製造
される。その概略を説明すれば下記のとおりである。
The dispersion-strengthened ferritic steel of the present invention is manufactured by powder metallurgy. The outline is as follows.

原料としては、Y*Osを除くベース組成の合金粉末(
例えばガスアトマイズ粉末)にY、0.粉末を混合する
か、または、Fe、 Cr、 Tiなどの純金属粉末と
Y!島粉末を前記の組成になるように配合して混合し、
機械的合金化(Mechanical Alloyin
g)を行わせたものを用いる。この合金化には、通常の
ボールミルも使用できるが、高エネルギーのアトライタ
ーを用いるのが望ましい、こうして得た原料粉末をカプ
セルに入れ、脱気封入し、熱間押出し、+11P鍛造な
どで成形する。成形温度は1100〜900°Cが望ま
しい。
As a raw material, alloy powder with a base composition excluding Y*Os (
For example, gas atomized powder) with Y, 0. Mix powders or mix Y! with pure metal powders such as Fe, Cr, Ti, etc. Blend and mix the island powder to the above composition,
Mechanical Alloyin
g) is used. Although a normal ball mill can be used for this alloying, it is preferable to use a high-energy attritor.The raw material powder obtained in this way is put into a capsule, degassed and sealed, and then formed by hot extrusion, +11P forging, etc. . The molding temperature is preferably 1100 to 900°C.

熱処理は、フェライト単相鋼では1100−1000℃
での溶体化、マルテンサイト相を含む鯛の場合は110
0〜1000°Cでの溶体化と^c、変態点以下での焼
戻しを行う。
Heat treatment is 1100-1000℃ for ferritic single phase steel.
110 for sea bream containing martensitic phase.
Solution treatment at 0 to 1000°C and tempering at a temperature below the transformation point are performed.

(実施例) 下記の工程で第1表に示す26種類の合金の試験片を作
成し、高温引張試験とクリープ試験を実施した。
(Example) Test pieces of 26 types of alloys shown in Table 1 were prepared using the following steps, and a high temperature tensile test and a creep test were conducted.

■ 平均粒2z+soμ■のアルゴンガスアトマイズ法
によって製造した母合金粉末に、Y2O,の粉末(平均
粒径0.02μm)を添加してアトライターで機械的合
金化を行った。アトライターの回転数は290rpmと
し、処理時間は48時間とした。
(2) Y2O powder (average particle size: 0.02 μm) was added to a master alloy powder produced by argon gas atomization with an average particle size of 2z+soμ■, and mechanical alloying was performed using an attritor. The rotation speed of the attritor was 290 rpm, and the treatment time was 48 hours.

■ 得られた合金粉末を軟鋼製カプセル(671−径)
に充填して脱気したのち、1100℃に加熱して押出し
加工によって30−―φの丸棒とした。
■ Put the obtained alloy powder into a mild steel capsule (671-diameter)
After filling and deaerating it, it was heated to 1100°C and extruded into a 30-φ round bar.

■ 上記の丸棒を1100℃で熱間圧延して7謹磐厚の
板とし、+100°Cで溶体化処理を行った。
(2) The above round bar was hot-rolled at 1100°C to form a 7-inch thick plate, which was then solution-treated at +100°C.

■ 溶体化後の板から、2■−厚X 6mdiiX3(
1wmGLの板状引張試験片を採取し、室温、600 
’C1650°C1700°Cおよび800℃での引張
試験と、650℃でのクリープ破断試験を行った。
■ From the plate after solution treatment, 2■ - thickness x 6mdii x 3 (
A plate-shaped tensile test piece of 1wmGL was taken and heated at room temperature at 600°C.
Tensile tests at 1650°C, 1700°C and 800°C and creep rupture tests at 650°C were conducted.

第1表中に、室温での延性、高温引張試験による延性ピ
ーク温度、および650 ’CX 10’時間のクリー
プ破断強度を併記する。
In Table 1, the ductility at room temperature, the ductility peak temperature by high temperature tensile test, and the creep rupture strength at 650'CX 10' hours are also listed.

第1表に見られるとおり、Bを0.003%以上含有す
る本発明の鋼では、すべての延性ピーク温度が700℃
以上にある。Bを添加していない比較鋼(811171
のそれが650°Cであることと対照してみれば、Bの
添加によって遷移温度が50゛C以上高くなっているこ
とが明らかである。
As seen in Table 1, in the steel of the present invention containing 0.003% or more of B, all ductility peak temperatures are 700°C.
That's all for now. Comparative steel without B addition (811171
When contrasted with that of 650°C, it is clear that the addition of B increases the transition temperature by more than 50°C.

第1図は、上記のクリープ破If試験の結果から、13
Cr−1Ti  0.29YxOx系の鋼のBの含有量
と、650’CXl0’時間のクリープ破断強度との関
係を図にしたものである1図示のとおり、Bの含有量が
0.003%以上でクリープ破断強度が著しく大きくな
っている。この結果から、Bの含有量を0.003%以
上とするのが望ましいことが明らかである。
Figure 1 shows that 13
Figure 1 shows the relationship between the B content of Cr-1Ti 0.29YxOx steel and the creep rupture strength at 650'CX10' hours.As shown in the figure, the B content is 0.003% or more. The creep rupture strength is significantly increased. From this result, it is clear that it is desirable that the B content be 0.003% or more.

第1表の石2と阻19、Nl18と麹24は、それぞれ
APの添加の影響をみたものである。いずれの場合もA
tを含有しないものの方がクリープ強度が高くなってい
る。この結果から、^lの添加をしない方が望ましいと
いえる。
Table 1 shows the effects of AP addition on Ishi 2, Ike 19, Nl 18, and Koji 24. In either case A
The material not containing t has higher creep strength. From this result, it can be said that it is preferable not to add ^l.

第2図は、第1表の本発明鋼と比較鋼の室温での延性と
、650℃×103時間のクリープ破断強度との関係を
まとめたものである0図示のとおり、本発明鋼はクリー
プ強度が高いだけでなく、優れた室nag性も備えてい
る。これに対し、比較鋼はクリープ強度が全般に低く、
Ni122.25のようにクリープ強度が比較的高いも
のは室温延性が著しく劣る。なお、本発明鋼のNdI3
.15、】6は、yjo、を高めにしてMo、 Wを添
加したもので、掻めて高いクリープ強度が得られている
Figure 2 summarizes the relationship between the ductility at room temperature and the creep rupture strength at 650°C x 103 hours for the inventive steel and comparative steel in Table 1. It not only has high strength but also has excellent indoor nag properties. On the other hand, the creep strength of comparative steels is generally low;
Materials with relatively high creep strength, such as Ni122.25, have significantly poor room temperature ductility. In addition, NdI3 of the steel of the present invention
.. 15,]6 has a high yjo and has Mo and W added thereto, and has a significantly high creep strength.

(以下、余白) (発明の効果) 本発明は、従来の酸化物分散強化型鋼に特有の粒内−粒
界破壊遷移温度の低い欠点を解消し、併せて高温強度も
向上させたフェライト系の酸化物分散強化型鋼を提供す
るものである。この鯛は、フェライト調本来の優れた耐
久エリングを生かし、特に原子炉の炉心材料に用いて極
めて有用なものである。
(Hereinafter, blank spaces) (Effects of the invention) The present invention solves the drawback of low transgranular-intergranular fracture transition temperature characteristic of conventional oxide dispersion strengthened steels, and also improves high-temperature strength. The present invention provides an oxide dispersion strengthened steel. This sea bream takes advantage of the excellent durability inherent to ferrite, making it extremely useful especially for use as a core material for nuclear reactors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、13Cr  l Ti  0.29YzOs
系の鋼のBの含有量と、650℃XlO’Q間のクリー
プ破断強度との関係を示すものである。 第2図は、本発明鋼と比較鋼の室温での延性と、650
℃×103時間のクリープ破断強度との関係を示すもの
である。
Figure 1 shows 13Cr l Ti 0.29YzOs
It shows the relationship between the B content of the system steel and the creep rupture strength at 650°C XlO'Q. Figure 2 shows the ductility at room temperature of the inventive steel and comparative steel, and the 650
It shows the relationship between creep rupture strength at ℃×103 hours.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、12.5%から25%までのCrと、
0.2%から2%までのTiと、0.05%から2%ま
でのY_2O_3と、0.003%から0.02%まで
のBとを含有し、残部がFeおよび不純物からなる高強
度酸化物分散強化型フェライト鋼。
(1) Cr from 12.5% to 25% by weight;
High strength containing 0.2% to 2% Ti, 0.05% to 2% Y_2O_3, 0.003% to 0.02% B, with the balance consisting of Fe and impurities. Oxide dispersion strengthened ferritic steel.
(2)重量%で、12.5%から25%までのCrと、
0.2%から2%までのTiと、0.05%から2%ま
でのY_2O_3と、0.003%から0.02%まで
のBと、更にそれぞれ2%から4%までのMoとWの少
なくとも一方を含有し、残部がFeおよび不純物からな
る高強度酸化物分散強化型フェライト鋼。
(2) Cr from 12.5% to 25% by weight;
Ti from 0.2% to 2%, Y_2O_3 from 0.05% to 2%, B from 0.003% to 0.02%, and Mo and W from 2% to 4% each. A high-strength oxide dispersion-strengthened ferritic steel containing at least one of the following, with the remainder consisting of Fe and impurities.
(3)重量%で、12.5%から25%までのCrと、
0.2%から2%までのTiと、0.05%から2%ま
でのY_2O_3と、0.003%から0.02%まで
のBと、2%以下のNiを含有し、残部がFeおよび不
純物からなる高強度酸化物分散強化型フェライト鋼。
(3) Cr from 12.5% to 25% by weight;
Contains 0.2% to 2% Ti, 0.05% to 2% Y_2O_3, 0.003% to 0.02% B, 2% or less Ni, and the balance is Fe. High-strength oxide dispersion-strengthened ferritic steel consisting of impurities and impurities.
(4)重量%で、12.5%から25%までのCrと、
0.2%から2%までのTiと、0.05%から2%ま
でのY_2O_3と、0.003%から0.02%まで
のBと、2%以下のNiと、更にそれぞれ2%から4%
までのMoとWの少なくとも一方を含有し、残部がFe
および不純物からなる高強度酸化物分散強化型フェライ
ト鋼。
(4) Cr from 12.5% to 25% by weight;
Ti from 0.2% to 2%, Y_2O_3 from 0.05% to 2%, B from 0.003% to 0.02%, Ni below 2%, and further from 2% each. 4%
contains at least one of Mo and W, with the remainder being Fe.
High-strength oxide dispersion-strengthened ferritic steel consisting of impurities and impurities.
JP4380989A 1989-02-23 1989-02-23 High strength oxide dispersion strengthened ferritic steel Pending JPH02225648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4380989A JPH02225648A (en) 1989-02-23 1989-02-23 High strength oxide dispersion strengthened ferritic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4380989A JPH02225648A (en) 1989-02-23 1989-02-23 High strength oxide dispersion strengthened ferritic steel

Publications (1)

Publication Number Publication Date
JPH02225648A true JPH02225648A (en) 1990-09-07

Family

ID=12674072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4380989A Pending JPH02225648A (en) 1989-02-23 1989-02-23 High strength oxide dispersion strengthened ferritic steel

Country Status (1)

Country Link
JP (1) JPH02225648A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551701A (en) * 1991-08-27 1993-03-02 Nippon Steel Corp Oxide disperion strengthened ferritic heat resisting steel plate
FR2777020A1 (en) * 1998-04-07 1999-10-08 Commissariat Energie Atomique PROCESS FOR THE MANUFACTURE OF A FERRITIC - MARTENSITIC ALLOY REINFORCED BY OXIDE DISPERSION
US20150252458A1 (en) * 2014-03-05 2015-09-10 Korea Atomic Energy Research Institute Ferritic/martensitic oxide dispersion strengthened steel with enhanced creep resistance and method of manufacturing the same
CN106834883A (en) * 2017-02-20 2017-06-13 天津大学 A kind of method of residual ferrite and martensite lath structure in control 9Cr ODS steel
CN106834882A (en) * 2017-02-20 2017-06-13 天津大学 The method of residual ferrite distribution in austenite phase transformation area isothermal holding control 9Cr ODS steel
CN107058852A (en) * 2017-02-20 2017-08-18 天津大学 A kind of method for refining residual ferrite in oxide dispersion intensifying martensite steel
CN110343935A (en) * 2019-07-11 2019-10-18 中国科学院金属研究所 Oxide dispersion strengthening ferrite steel is prepared using surface oxidation+explosive compaction
CN111979469A (en) * 2020-07-31 2020-11-24 青岛理工大学 Preparation method of oxide dispersion strengthened steel based on powder forging

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551701A (en) * 1991-08-27 1993-03-02 Nippon Steel Corp Oxide disperion strengthened ferritic heat resisting steel plate
FR2777020A1 (en) * 1998-04-07 1999-10-08 Commissariat Energie Atomique PROCESS FOR THE MANUFACTURE OF A FERRITIC - MARTENSITIC ALLOY REINFORCED BY OXIDE DISPERSION
EP0949346A1 (en) * 1998-04-07 1999-10-13 Commissariat A L'energie Atomique Process of producing a dispersion strengthened ferritic-martensitic alloy
US6485584B1 (en) 1998-04-07 2002-11-26 Commissariat A L'energie Atomique Method of manufacturing a ferritic-martensitic, oxide dispersion strengthened alloy
US20150252458A1 (en) * 2014-03-05 2015-09-10 Korea Atomic Energy Research Institute Ferritic/martensitic oxide dispersion strengthened steel with enhanced creep resistance and method of manufacturing the same
US10011893B2 (en) * 2014-03-05 2018-07-03 Korea Atomic Energy Research Institute Ferritic/martensitic oxide dispersion strengthened steel with enhanced creep resistance and method of manufacturing the same
CN106834883A (en) * 2017-02-20 2017-06-13 天津大学 A kind of method of residual ferrite and martensite lath structure in control 9Cr ODS steel
CN106834882A (en) * 2017-02-20 2017-06-13 天津大学 The method of residual ferrite distribution in austenite phase transformation area isothermal holding control 9Cr ODS steel
CN107058852A (en) * 2017-02-20 2017-08-18 天津大学 A kind of method for refining residual ferrite in oxide dispersion intensifying martensite steel
CN110343935A (en) * 2019-07-11 2019-10-18 中国科学院金属研究所 Oxide dispersion strengthening ferrite steel is prepared using surface oxidation+explosive compaction
CN111979469A (en) * 2020-07-31 2020-11-24 青岛理工大学 Preparation method of oxide dispersion strengthened steel based on powder forging

Similar Documents

Publication Publication Date Title
US4075010A (en) Dispersion strengthened ferritic alloy for use in liquid-metal fast breeder reactors (LMFBRS)
US3362813A (en) Austenitic stainless steel alloy
US4963200A (en) Dispersion strengthened ferritic steel for high temperature structural use
EP0534164B1 (en) Method of manufacturing a nitride dispersed alloy and use thereof
JPH11343526A (en) Production of alloy having chromium-containing ferritic oxide-dispersion strengthened structure
US4049431A (en) High strength ferritic alloy
JP2015168883A (en) Ferrite martensitic oxide dispersion reinforced steel and manufacturing method therefor
US4581202A (en) Sintered stainless steel and production process therefor
US4818485A (en) Radiation resistant austenitic stainless steel alloys
Huet et al. Dispersion-strengthened ferritic steels as fast-reactor structural materials
US4960562A (en) Dispersion strengthened ferritic steel cladding tube for nuclear reactor and its production method
Yoshitake et al. Burst properties of irradiated oxide dispersion strengthened ferritic steel claddings
JPH02225648A (en) High strength oxide dispersion strengthened ferritic steel
Ray et al. Microcrystalline iron-base alloys made using a rapid solidification technology
JPS58174538A (en) Ni-based alloy member and manufacture thereof
RU2360992C1 (en) Low-activated heat-resistant radiation-resistant steel
JPS6325062B2 (en)
JP2013542316A (en) Processable high thermal neutron absorbing Fe-based alloy
EP3208355A1 (en) Ni-based superalloy for hot forging
JPS6057498B2 (en) molybdenum alloy
JPH01287252A (en) Sintered dispersion strengthened ferritic heat-resistant steel
JP3127759B2 (en) Oxide dispersion-strengthened ferritic steel having recrystallized structure and method for producing same
KR101769745B1 (en) Ferrite-martensitic oxide dispersion strengthened steel with excellent creep resistance and manufacturing method thereof
JP2000282101A (en) Manufacture of oxide dispersion-strengthened ferritic steel
CA2367614A1 (en) Zirconium-based alloy for elements used in nuclear reactor cores