JP3127759B2 - Oxide dispersion-strengthened ferritic steel having recrystallized structure and method for producing same - Google Patents

Oxide dispersion-strengthened ferritic steel having recrystallized structure and method for producing same

Info

Publication number
JP3127759B2
JP3127759B2 JP07029320A JP2932095A JP3127759B2 JP 3127759 B2 JP3127759 B2 JP 3127759B2 JP 07029320 A JP07029320 A JP 07029320A JP 2932095 A JP2932095 A JP 2932095A JP 3127759 B2 JP3127759 B2 JP 3127759B2
Authority
JP
Japan
Prior art keywords
excess
oxide dispersion
ferritic steel
steel
yttria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07029320A
Other languages
Japanese (ja)
Other versions
JPH08225891A (en
Inventor
栄 鹿倉
重治 鵜飼
賢紀 井上
浩一 岡田
俊夫 西田
優行 藤原
隆成 奥田
和孝 阿佐部
祐義 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Kobe Special Tube Co Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Kobe Special Tube Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Kobe Special Tube Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07029320A priority Critical patent/JP3127759B2/en
Priority to FR9601939A priority patent/FR2731231B1/en
Publication of JPH08225891A publication Critical patent/JPH08225891A/en
Application granted granted Critical
Publication of JP3127759B2 publication Critical patent/JP3127759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1094Alloys containing non-metals comprising an after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化物分散強化型フェ
ライト鋼およびその製造方法に関する。より詳述すれ
ば、原子炉、特に高速増殖炉の炉心環境で長時間使用さ
れる炉心構成要素 (例えば燃料被覆管やラッパ管からな
る燃料集合体、制御棒、反射体等) や機器構造物 (例え
ば、機器容器部材、冷却系配管部材) などの優れた耐中
性子照射特性を必要とする部材用の酸化物分散強化型フ
ェライト鋼およびその製造方法に関する。
The present invention relates to an oxide dispersion strengthened ferritic steel and a method for producing the same. More specifically, core components (e.g., fuel assemblies, control rods, reflectors, etc., consisting of fuel cladding tubes and wrapper tubes) and equipment structures that are used for a long time in the core environment of nuclear reactors, especially fast breeder reactors The present invention relates to an oxide dispersion-strengthened ferritic steel for members requiring excellent neutron irradiation resistance such as (e.g., equipment container members and cooling system piping members) and a method for producing the same.

【0002】[0002]

【従来の技術】従来より高速増殖炉の炉心構成部材とし
ては、SUS316、あるいはSUS316の耐照射特性を改善した
オーステナイト系鋼の改良鋼 (以下、PNC316と呼ぶ)
や、その高Ni化を図った鋼( 例えば、PNC1520 のような
15Cr−20Ni鋼) が用いられている。なお、高速増殖炉の
原型炉『もんじゅ』ではPNC316が用いられている。
2. Description of the Related Art Conventionally, as a core component of a fast breeder reactor, SUS316 or an improved austenitic steel (hereinafter referred to as PNC316) having improved irradiation resistance characteristics of SUS316 has been used.
Or steel with high Ni (for example, PNC1520
15Cr-20Ni steel). The prototype fast breeder reactor "Monju" uses PNC316.

【0003】しかし、オーステナイト系鋼は高温強度は
優れているが、耐スエリング性や照射クリープ特性など
高速中性子に対する耐久性に限界があり、実用炉に必要
な燃料の長寿命化を達成するには適していないことが明
らかになっている。現在、オーステナイト系鋼の耐中性
子照射特性の改善のための材料開発の努力がなされてい
る。
However, although austenitic steels have excellent high-temperature strength, their durability against high-speed neutrons such as swelling resistance and irradiation creep characteristics is limited. It has proven unsuitable. At present, efforts are being made to develop materials for improving the neutron irradiation resistance of austenitic steels.

【0004】一方、フェライト系鋼は耐中性子照射特性
に優れているものの、高温強度が劣っており、原子炉の
燃料被覆管のような高温かつ高負荷 (内圧応力) が加わ
る部材には適していないことがわかっている。
On the other hand, although ferritic steel has excellent neutron irradiation resistance, it is inferior in high-temperature strength, and is suitable for a member to which a high temperature and a high load (internal pressure stress) are applied, such as a fuel cladding tube of a nuclear reactor. I know there isn't.

【0005】そこでフェライト系鋼の高温強度を改善す
るためにフェライト系鋼中に微細な酸化物粒子を分散さ
せた酸化物分散強化型フェライト鋼が優れた耐中性子性
と高温強度を有する材料として期待され、研究開発がな
されている。現状ではMA957(14Cr−0.3 Mo−1Ti−0.25
Y2O3) や PNC−ODS(13Cr−3W−0.5 Ti−0.35Y2O3)が
開発されている。しかし、加工性や機械的特性 (延性、
内圧クリープ破断強度等) に問題がある。
Therefore, in order to improve the high-temperature strength of ferritic steel, an oxide dispersion-strengthened ferritic steel in which fine oxide particles are dispersed in ferritic steel is expected as a material having excellent neutron resistance and high-temperature strength. Has been researched and developed. At present, MA957 (14Cr-0.3 Mo-1Ti-0.25
Y 2 O 3) and PNC-ODS (13Cr-3W- 0.5 Ti-0.35Y 2 O 3) has been developed. However, workability and mechanical properties (ductility,
Internal pressure creep rupture strength).

【0006】[0006]

【発明が解決しようとする課題】酸化物分散強化型フェ
ライト鋼は、鋼中に微細な酸化物粒子 (例えば、Y2O3)
を分散させた鋼である。この微細な酸化物粒子が転位の
動きを抑制することにより優れた高温強度を得ている。
しかしながら、このような微細な酸化物粒子は転位の動
きを抑えているために同時に回復および再結晶を起こし
にくい性質も有している。
SUMMARY OF THE INVENTION Oxide dispersion strengthened ferritic steel contains fine oxide particles (for example, Y 2 O 3 ) in the steel.
Is a steel in which is dispersed. These fine oxide particles obtain excellent high-temperature strength by suppressing the movement of dislocations.
However, such fine oxide particles also have the property of hardly causing recovery and recrystallization at the same time because they suppress the movement of dislocations.

【0007】従って、加工すればするほど加工硬化し、
十分な回復が行われず加工困難となる。このため、従来
鋼 (PNC −ODS, MA957等) では、被覆管のような管に加
工する場合、温間加工を適用しなければならなかった。
しかも、温間加工を適用しても製造時には割れが多発
し、試作した被覆管には傷が多く、歩留まりは非常に低
い。
Therefore, the harder the work, the harder the work
Sufficient recovery is not performed and processing becomes difficult. For this reason, in the case of conventional steel (PNC-ODS, MA957, etc.), when working into a pipe such as a cladding pipe, warm working had to be applied.
In addition, even when warm working is applied, cracks frequently occur during manufacturing, and the prototype cladding tube has many scratches and the yield is very low.

【0008】また、このように時間と費用をかけて被覆
管を製作しても、再結晶を起こさないため加工と共に結
晶粒は非常に伸張し、例えば図4(a) 、(b) の顕微鏡組
織写真に示すように竹のような繊維状組織となる。な
お、図4(a) 、(b) はそれぞれ倍率が違うだけで同一の
組織の写真である。このような繊維状組織 (以下、竹状
組織という) を有する被覆管ではクリープ破断強度の異
方性 (単軸クリープ破断強度と内圧クリープ破断強度の
差) が大きいことがわかっている。すなわち、単軸クリ
ープ破断強度は非常に優れているが、内圧クリープ破断
強度は単軸クリープ破断強度の半分程度である。さらに
このような被覆管の周方向一様伸びは400℃付近で低下
し、被覆管のような原子力用の管材には改善が必要であ
ることが明らかとなっている。
[0008] Even if the cladding tube is manufactured in such a time-consuming manner and at a high cost, recrystallization does not occur, so that the crystal grains become extremely elongated together with the processing. For example, the microscope shown in FIGS. 4 (a) and 4 (b) is used. A fibrous structure like bamboo is obtained as shown in the structure photograph. 4 (a) and 4 (b) are photographs of the same tissue except for the magnification. It has been found that a cladding tube having such a fibrous structure (hereinafter referred to as a bamboo structure) has a large anisotropy in creep rupture strength (difference between uniaxial creep rupture strength and internal pressure creep rupture strength). That is, the uniaxial creep rupture strength is very good, but the internal pressure creep rupture strength is about half of the uniaxial creep rupture strength. Furthermore, the uniform elongation in the circumferential direction of such a cladding tube decreases at around 400 ° C., and it is clear that improvement is required for nuclear pipe materials such as cladding tubes.

【0009】本発明は、以上のような問題点を解決し、
耐スエリング性と高温内圧クリープ強度 (650 ℃、1000
0h破断強度:190MPa以上) に優れ、400 ℃付近の周方向
延性(800℃以下の周囲方向一様伸び:1%以上) を有す
る酸化物分散強化型フェライト鋼とその製造方法を提供
することを目的とする。
The present invention solves the above problems,
Swelling resistance and high temperature internal pressure creep strength (650 ℃, 1000
0h rupture strength: 190 MPa or more) and an oxide dispersion-strengthened ferritic steel having a circumferential ductility around 400 ° C. (uniform elongation in the circumferential direction at 800 ° C. or less: 1% or more) and a method for producing the same. Aim.

【0010】[0010]

【課題を解決するための手段】本発明者が、種々の試作
および評価を行い、それらを基に鋭意研究した結果、問
題となっている酸化物分散強化型フェライト鋼の内圧ク
リープ破断強度は、加工により伸張した竹状組織に起因
することをつきとめ、方向性の少ない再結晶組織とする
ことで解決を図ることができることを知った。
Means for Solving the Problems The present inventor has conducted various trial productions and evaluations, and as a result of intensive research based on the results, the internal pressure creep rupture strength of the problematic oxide dispersion strengthened ferritic steel is as follows: I found out that it was caused by the bamboo-like structure elongated by processing, and found that a solution could be achieved by using a recrystallized structure with less directivity.

【0011】さらに、本発明者は、酸化物分散強化型フ
ェライト鋼は複合酸化物の形成を通してTiと酸素が重要
な役割を演じており、このTiと酸素およびY2O3量が加工
性や再結晶特性に大きく影響を及ぼすことに着目した。
そして過剰酸素濃度とY2O3量に注目し、1300℃以下とい
う従来と比較してかなり低い温度で再結晶組織が生成可
能な範囲を特定できることを知り、本発明を完成した。
Furthermore, the present inventors have found that in oxide dispersion strengthened ferritic steel, Ti and oxygen play an important role through the formation of a composite oxide, and the amounts of Ti, oxygen and Y 2 O 3 depend on workability and We focused on the fact that it greatly affects the recrystallization characteristics.
By paying attention to the excess oxygen concentration and the amount of Y 2 O 3 , the present inventors have found that a range in which a recrystallized structure can be generated at a considerably lower temperature of 1300 ° C. or lower than the conventional one can be specified, and completed the present invention.

【0012】もちろん、そのように特定した領域の範囲
外においても1350℃以上の高温度で熱処理を行えば再結
晶可能であるが、その場合、酸化物粒子が粗大化し、酸
化物による分散強化の機能が著しく低下するので、再結
晶組織とした意義が失われる。望ましくは再結晶熱処理
は1250℃以下で行うのが良い。ここに、本発明は、下記
の通りである。
Of course, recrystallization can be achieved by heat treatment at a high temperature of 1350 ° C. or more even outside the range of the region specified as above. In this case, however, the oxide particles are coarsened, and the oxide enhances the dispersion. Since the function is significantly reduced, the significance of the recrystallized structure is lost. Desirably, the recrystallization heat treatment is performed at 1250 ° C. or less. Here, the present invention is as follows.

【0013】(1) 重量%で、Cr:7〜18%、1/2W+Mo:
0.1 〜3%、Ti:0.10〜1.0 %、残部がFeおよび不可避
不純物からなるFe−Crを主体とするフェライト系金属母
相内にイットリアを分散させた酸化物分散強化型フェラ
イト鋼において、イットリアと過剰酸素量 (Excess O)
が、重量%で、 0.10 %< Y2O3 ≦ 0.30 % 0.03 %≦ Excess O ≦ 0.15 % Excess O ≦0.25−0.5 ×Y2O3 (%) の範囲にあり、かつ、再結晶組織を有することを特徴と
する酸化物分散強化型フェライト鋼。
(1) In weight%, Cr: 7 to 18%, 1 / 2W + Mo:
An oxide dispersion-strengthened ferritic steel in which yttria is dispersed in a ferrite-based metal matrix mainly composed of Fe—Cr mainly containing Fe and unavoidable impurities, with the content being 0.1 to 3% and Ti: 0.10 to 1.0%. Excess O
Is in the range of 0.10% <Y 2 O 3 ≦ 0.30% 0.03% ≦ Excess O ≦ 0.15% Excess O ≦ 0.25−0.5 × Y 2 O 3 (%) by weight and has a recrystallized structure An oxide dispersion-strengthened ferritic steel, characterized in that:

【0014】ここで、過剰酸素量とは全酸素量 (Total
O)からイットリア (Y2O3) としてイットリウムと結合し
ている酸素 (O in Y2O3)を計算上除いた酸素量 ([Exces
s O]=[Total O] −[O in Y2O3])を云う。
Here, the excess oxygen amount is the total oxygen amount (Total oxygen amount).
O) from which the oxygen (O in Y 2 O 3 ) which is bound to yttrium as yttria (Y 2 O 3 ) is excluded from (O) ((Exces
s O] = [Total O] − [O in Y 2 O 3 ]).

【0015】(2) 重量%で、Cr:7〜18%、1/2W+Mo:
0.1 〜3%、Ti:0.10〜1.0 %、残部がFeおよび不可避
不純物からなるFe−Crを主体とするフェライト系金属母
相内にイットリアを分散させた酸化物分散強化型フェラ
イト鋼の製造方法において、イットリアと過剰酸素量
(Excess O) を、重量%で、 0.10 %< Y2O3 ≦ 0.30 % 0.03 %≦ Excess O ≦ 0.15 % Excess O ≦0.25−0.5 ×Y2O3 (%) の範囲に調整するとともに1300℃以下で再結晶熱処理を
行うことを特徴とする内圧クリープ強度と延性に優れた
酸化物分散強化型フェライト鋼の製造方法。
(2) By weight%, Cr: 7 to 18%, 1 / 2W + Mo:
A method for producing an oxide dispersion-strengthened ferritic steel in which yttria is dispersed in a ferrite-based metal matrix mainly composed of Fe-Cr mainly containing 0.1 to 3%, Ti: 0.10 to 1.0%, and the balance being Fe and unavoidable impurities. , the range of yttria and excess oxygen amount (excess O), in weight%, 0.10% <Y 2 O 3 ≦ 0.30% 0.03% ≦ excess O ≦ 0.15% excess O ≦ 0.25-0.5 × Y 2 O 3 (%) A method for producing an oxide dispersion-strengthened ferritic steel having excellent internal pressure creep strength and ductility, wherein the ferrite steel is subjected to recrystallization heat treatment at a temperature of 1300 ° C. or lower and at the same time.

【0016】ここで、過剰酸素量とは(1) で定義する通
りである。
Here, the excess oxygen amount is as defined in (1).

【0017】[0017]

【作用】次に、本発明について詳細に説明する。なお、
本明細書において、特にことわりがないかぎり、「%」
は「重量%」である。本発明にかかる鋼は、Fe−Cr−Y2
O3系フェライト鋼を主体とし、過剰酸素量を制限し、組
織を再結晶組織とすることを特徴としている。
Next, the present invention will be described in detail. In addition,
In the present specification, unless otherwise specified, "%"
Is "% by weight". The steel according to the present invention is Fe-Cr-Y 2
The main feature is that it is made mainly of O 3 ferrite steel, the amount of excess oxygen is limited, and the structure is a recrystallized structure.

【0018】図1は、後述する実施例に示す各種酸化物
分散強化型フェライト鋼について過剰酸素量とY2O3量と
の関係において1300℃以下で熱処理したときの再結晶組
織の領域を示すグラフであり、図中、斜線領域が再結晶
組織の領域である。
FIG. 1 shows regions of recrystallized structures of various oxide dispersion-strengthened ferritic steels shown in Examples which will be described later when subjected to heat treatment at 1300 ° C. or less in relation to excess oxygen amount and Y 2 O 3 amount. It is a graph, and in the figure, a hatched region is a region of a recrystallized structure.

【0019】従来は、過剰酸素量との概念さらにそれと
再結晶現象との関連は全く知られることはなかったが、
過剰酸素量は0.15%超であった。なお、本発明において
「過剰酸素量」および「Y2O3量」はいずれもイットリウ
ム(Y) 分析値から求めた計算値である。
Conventionally, the concept of excess oxygen and the relationship between the concept and the recrystallization phenomenon have not been known at all.
Excess oxygen content was greater than 0.15%. In the present invention, “excess oxygen amount” and “Y 2 O 3 amount” are both calculated values obtained from yttrium (Y) analysis values.

【0020】Y2O3は分散強化の主役であり、重要な添加
物である。多く添加すればするほど加工方向の強度は高
くなるが、反面、回復や再結晶を起こしにくくなり、ま
た、加工性も低下する。0.30%超のY2O3を添加した材料
を加工すると、加工とともに結晶粒は伸張し、竹状組織
となる。この竹状組織を有する酸化物分散強化型フェラ
イト鋼(ODSフェライト鋼) は、強度の異方性が大きく、
加工方向と直角な方向(例えば被覆管の場合は内圧クリ
ープ破断強度) では強度が向上しない。
Y 2 O 3 plays a leading role in strengthening dispersion and is an important additive. The more the addition, the higher the strength in the working direction, but on the other hand, the harder it is to cause recovery and recrystallization, and the lower the workability. When a material to which more than 0.30% of Y 2 O 3 is added is processed, the crystal grains elongate with the processing, forming a bamboo-like structure. This oxide dispersion-strengthened ferritic steel (ODS ferrite steel) having a bamboo-like structure has large anisotropy in strength,
The strength does not improve in the direction perpendicular to the processing direction (for example, in the case of a cladding tube, the internal pressure creep rupture strength).

【0021】従って、Y2O3は再結晶するような量に制限
する必要がある。0.30%以下であれば再結晶可能である
のでこれを上限とする。また、0.10%以下の場合、比較
的再結晶は容易であるが、分散強化の効果が小さく、強
度が低い。したがって、本発明において下限を0.10%超
とする。
Therefore, it is necessary to limit the amount of Y 2 O 3 so as to recrystallize. If it is 0.30% or less, recrystallization is possible, so this is the upper limit. When the content is 0.10% or less, recrystallization is relatively easy, but the effect of dispersion strengthening is small and the strength is low. Therefore, in the present invention, the lower limit is set to more than 0.10%.

【0022】過剰酸素量はTiと同様、酸化物粒子の微細
化に重要な役割を果たす。複合酸化物 (Y2Ti2O7, Y2TiO
5)を形成する際にTiだけでなく、酸素も必要とされるか
らである。しかし、酸化物粒子の微細化とともに酸化物
の粒子数は増加し、転位の動きを抑制するので、再結晶
もしにくくなる。また、余分な介在物の原因にもなり、
加工性を低下させる。過剰酸素量が0.15%以下の範囲で
あれば再結晶可能であるのでこれを上限とする。好まし
くは0.13%以下である。一方、0.03%未満であると強度
がでないためこれを下限とする。より好ましくは0.04〜
0.11%である。
The amount of excess oxygen plays an important role in refining oxide particles as in Ti. Complex oxide (Y 2 Ti 2 O 7 , Y 2 TiO
This is because when forming 5 ), not only Ti but also oxygen is required. However, the number of oxide particles increases as the oxide particles become finer, and the movement of dislocations is suppressed, so that recrystallization becomes difficult. It can also cause extra inclusions,
Decreases workability. If the amount of excess oxygen is within the range of 0.15% or less, recrystallization is possible, so this is the upper limit. Preferably it is 0.13% or less. On the other hand, if it is less than 0.03%, the strength is not obtained, so this is set as the lower limit. More preferably 0.04 ~
0.11%.

【0023】しかしながら、Y2O3量が0.20〜0.30%の範
囲内にあっては、Excess O≦0.25−0.5 ×Y2O3の範囲を
外れると1300℃以下の加熱処理では再結晶組織を得るこ
とができないため、上記式を満足する範囲内とする。
However, if the amount of Y 2 O 3 is in the range of 0.20 to 0.30%, the recrystallized structure will not be obtained by the heat treatment at 1300 ° C. or lower if the amount of Y 2 O 3 is out of the range of Excess O ≦ 0.25−0.5 × Y 2 O 3. Since it cannot be obtained, it is set within the range satisfying the above expression.

【0024】このように、本発明にあって過剰酸素量と
Y2O3量とが上述の範囲に限定されるが、そのときの母相
の金属成分は、重量%で、Cr:7〜18%、1/2W+Mo:0.
1 〜3%、Ti:0.10〜1.0 %、残部がFeおよび不可避不
純物から成る。
Thus, in the present invention, the excess oxygen amount
The amount of Y 2 O 3 is limited to the above range, but the metal component of the parent phase at that time is, in terms of% by weight, Cr: 7 to 18%, 1 / 2W + Mo: 0.
1 to 3%, Ti: 0.10 to 1.0%, the balance being Fe and unavoidable impurities.

【0025】その他の成分としてC、Si、Mnなどが考え
られるが、それらは通常不純物量として存在し、所望に
よりそれらを添加する場合にあってもそれぞれ、0.1 %
以下、0.5 %以下、そして1.0 %以下程度であれば十分
である。以下、本発明において母相鋼組成を上述のよう
に限定する理由について説明する。
As other components, C, Si, Mn and the like can be considered, but they are usually present as impurities, and even if they are added as required, they are added in 0.1% respectively.
Below, 0.5% or less and about 1.0% or less are sufficient. Hereinafter, the reason for limiting the composition of the matrix steel as described above in the present invention will be described.

【0026】Cは、ある程度は不可避的に存在するとと
もに機械的合金化処理の際に鋼球や容器等から混入す
る。一方、Cはフェライト鋼においても強度改善効果を
果たす場合もあって積極的に添加することがあり、その
ためにはCは、0.1 %程度までは許容されるが、通常は
不純物として可及的少量とする。
C is inevitably present to some extent and is mixed in from a steel ball or a container during the mechanical alloying treatment. On the other hand, C may be positively added to ferritic steels in some cases because it may also improve the strength. To this end, C is allowed up to about 0.1%, but usually as little as possible as an impurity. And

【0027】Siは、所望により脱酸剤として添加される
が、その場合にも0.5 %を越えると照射中に有害な金属
間化合物が析出しやすくなり、脆化をもたらす。また、
酸化物粒子 (Y2O3) と反応し、酸化物粒子を凝集させ、
強度を著しく低下させる。従って、0.5 %以下とする。
好ましくは0.1 %以下である。
If necessary, Si is added as a deoxidizing agent. However, if it exceeds 0.5%, harmful intermetallic compounds are liable to precipitate during irradiation, resulting in embrittlement. Also,
Reacts with oxide particles (Y 2 O 3 ) to aggregate oxide particles,
Significantly reduces strength. Therefore, it is set to 0.5% or less.
Preferably it is 0.1% or less.

【0028】Mnは、脱酸剤として、また熱間加工性を改
善するために必要により添加するが、1.0 %を超えて添
加すると硬化相を形成し、靱性、加工性を損なう。した
がって、Mn含有量は1.0 %以下とする。
Mn is added as a deoxidizing agent and as necessary for improving hot workability. However, if added in excess of 1.0%, a hardened phase is formed, and toughness and workability are impaired. Therefore, the Mn content is set to 1.0% or less.

【0029】Crは、耐ナトリウム腐食性、脱炭抵抗性を
向上させるために不可欠な成分であり、そのためには7
%以上が必要である。しかし、18%を越えると、組織を
不安定にし、高温長時間の時効処理では脆化しやすくな
る。特に、中性子照射下ではCrを主体とするα' 相によ
り脆化することが知られている。従って、Cr量は7〜18
%の範囲とする。好ましくは7〜14%である。
Cr is an essential component for improving sodium corrosion resistance and decarburization resistance.
% Or more is required. However, if it exceeds 18%, the structure becomes unstable, and the aging treatment at a high temperature for a long time tends to cause embrittlement. In particular, it is known that under neutron irradiation, embrittlement is caused by the α 'phase mainly composed of Cr. Therefore, the Cr content is 7 to 18
% Range. Preferably it is 7 to 14%.

【0030】MoとWは、固溶強化元素として重要であ
る。そのためにはMo当量 (Mo+1/2W)で0.1 %以上を必
要とするが、しかし、3.0 %超添加するとμ相[Fe6(Mo,
W)7]やラーベス[Fe2(Mo,W)] 相が生じ、延性を低下させ
る。従って、 (Mo+1/2W) 量は、0.1 %以上3.0 %以下
とする。
Mo and W are important as solid solution strengthening elements. For this purpose, the Mo equivalent (Mo + 1 / 2W) needs to be 0.1% or more. However, if more than 3.0% is added, the μ phase [Fe 6 (Mo,
W) 7 ] and Laves [Fe 2 (Mo, W)] phase are formed, and the ductility is reduced. Therefore, the amount of (Mo + 1 / 2W) should be 0.1% or more and 3.0% or less.

【0031】TiはY2O3の分散強化に重要な役割を果た
す。TiはY2O3と反応して Y2Ti2O7または Y2TiO5 という
複合酸化物を形成し、酸化物粒子を微細化させる働きが
ある。この作用はTiが1.0 %超で飽和する傾向があるた
め、1.0 %を上限とする。また、0.10%未満では微細化
作用が小さいため0.10%を下限とする。
Ti plays an important role in strengthening the dispersion of Y 2 O 3 . Ti reacts with Y 2 O 3 to form a composite oxide called Y 2 Ti 2 O 7 or Y 2 TiO 5 , and has a function of reducing oxide particles. Since this effect tends to saturate when Ti exceeds 1.0%, the upper limit is 1.0%. If it is less than 0.10%, the effect of miniaturization is small, so 0.10% is made the lower limit.

【0032】Niは靱性を向上させるのに有効であり、必
要により添加される。しかし、2.0%超添加すると照射
中にオーステナイトに変化し、その部分がスエリングす
る。従ってNiの添加は本発明において2.0 %以下に制限
される。
Ni is effective for improving toughness, and is added as necessary. However, if added over 2.0%, it changes to austenite during irradiation, and that portion swells. Therefore, the addition of Ni is limited to 2.0% or less in the present invention.

【0033】本発明にかかる酸化物分散強化型フェライ
ト鋼の製造に際しては、過剰酸素量およびイットリア量
を前述の通り規定するとともに1300℃以下の再結晶処理
を行う限りにおいて特定の方法に制限されないが、例え
ばそれぞれの原料粉末を用意してからいわゆるメカニカ
ルアロイングによって酸化物の形成、あるいは合金化を
図って粉末組成を調整してから、次いで、成形、焼結の
工程を経てから1300℃以下で再結晶処理して製造され
る。このような製造方法については従来技術に従えばよ
い。
In the production of the oxide dispersion-strengthened ferritic steel according to the present invention, the method is not limited to a specific method as long as the excess oxygen amount and the yttria amount are specified as described above and the recrystallization treatment at 1300 ° C. or lower is performed. For example, after preparing the respective raw material powders, forming oxides by so-called mechanical alloying, or adjusting the powder composition by alloying, and then, through a molding and sintering process, at 1300 ° C. or less It is manufactured by recrystallization treatment. Such a manufacturing method may follow a conventional technique.

【0034】ところで、従来にあっても、冷間加工で仕
上げることにより耐スエリング性を改善できることが知
られており、例えばPNC316においても20%程度の冷間加
工が施されている。しかし、本発明の場合、特に圧下率
で50%超の冷間加工はクリープ破断強度の異方性を増加
させるので、従って、50%以下の加工率の冷間加工で仕
上げられた酸化物分散強化型フェライト鋼は特に耐スエ
リング性の点で優れている。次に、実施例によって本発
明の作用効果をさらに具体的に説明する。
By the way, it is known that swelling resistance can be improved by finishing by cold working even in the past. For example, about 20% of cold working is applied to PNC316. However, in the case of the present invention, in particular, cold working with a rolling reduction of more than 50% increases the anisotropy of creep rupture strength, and therefore, oxide dispersion finished by cold working with a working rate of 50% or less. Reinforced ferritic steel is particularly excellent in swelling resistance. Next, the operation and effect of the present invention will be described more specifically with reference to examples.

【0035】[0035]

【実施例】【Example】

(実施例1)合金粉末と酸化物粉末(Y2O3)、また、過剰酸
素量を調整するためにFe2O3 粉末を機械的合金化処理
(メカニカル・アロイング) し、押出用カプセルに充填
した後、400 ℃にて脱気・密封し、1150℃で熱間押出し
た。押出された棒材は、60%冷間加工し、1200℃で熱処
理した。本発明鋼の場合は1200℃でも再結晶が行われ
た。供試材および比較材(PNC−ODS, MA957) の成分を表
1に示す。
(Example 1) Mechanical alloying treatment of alloy powder and oxide powder (Y 2 O 3 ), and Fe 2 O 3 powder to adjust excess oxygen amount
(Mechanical alloying), the mixture was filled in an extrusion capsule, degassed and sealed at 400 ° C., and hot extruded at 1150 ° C. The extruded bar was cold worked 60% and heat treated at 1200 ° C. In the case of the steel of the present invention, recrystallization was performed even at 1200 ° C. Table 1 shows the components of the test material and the comparative material (PNC-ODS, MA957).

【0036】図2に 650℃でのクリープ破断試験特性を
示す。1200℃では再結晶しない PNC−ODS1, PNC −ODS
2, MA957 はクリープ破断強度の異方性が著しく大き
い。一方、発明鋼1は1200℃で再結晶が行われたためク
リープ破断強度の異方性が従来材よりも低く、かつ、被
覆管の性能の1つの指標となる内圧クリープ破断強度は
従来鋼より酸化物粉末(Y2O3)量が少ないにもかかわらず
高くなっている。
FIG. 2 shows the creep rupture test characteristics at 650 ° C. Does not recrystallize at 1200 ℃ PNC-ODS1, PNC-ODS
2, MA957 has remarkably large anisotropy in creep rupture strength. On the other hand, invention steel 1 was recrystallized at 1200 ° C, so that the anisotropy of creep rupture strength was lower than that of the conventional material, and the internal pressure creep rupture strength, which is one index of the performance of the cladding tube, was oxidized more than that of the conventional steel. It is high despite the small amount of material powder (Y 2 O 3 ).

【0037】図3は周方向一様伸びの試験結果を示し、
これからも分かるように被覆管として必要とされる周方
向一様伸びは従来材では400 ℃付近で低下しているのに
対し、本発明鋼では400 ℃においても良好な延性を有し
ていることがわかる。
FIG. 3 shows the test results of uniform elongation in the circumferential direction.
As can be seen, the uniform elongation in the circumferential direction required for a cladding tube is reduced at around 400 ° C for the conventional material, while the steel of the present invention has good ductility even at 400 ° C. I understand.

【0038】(実施例2)実施例1と同様な方法にて分散
強化型フェライト鋼を作製し、過剰酸素量とY2O3量との
関係を調べた。ただし、熱処理温度は1300℃以下とし
た。1350℃以上では0.30%以上の酸化物添加量でも再結
晶するが、酸化物粒子が粗大化し、強度が極端に低下す
るからである。
Example 2 A dispersion-strengthened ferritic steel was produced in the same manner as in Example 1, and the relationship between the excess oxygen amount and the Y 2 O 3 amount was examined. However, the heat treatment temperature was 1300 ° C. or less. At 1350 ° C. or more, recrystallization occurs even with an oxide addition amount of 0.30% or more, but the oxide particles are coarsened and the strength is extremely reduced.

【0039】成分分析値と結果を表2および表3、なら
びに図1に示す。ただし、この中には実施例1の本発明
鋼1の結果を含んでいる。これらの結果より、重量%
で、 0.10%< Y2O3 ≦ 0.30 % 0.03%≦ Excess O ≦ 0.15 % Excess O≦0.25−0.5 ×Y2O3 (%) の範囲においては1300℃以下の温度で再結晶可能である
ことがわかる。
The component analysis values and results are shown in Tables 2 and 3, and FIG. However, this includes the results of the inventive steel 1 of Example 1. From these results, the weight%
In, 0.10% <it in a range of Y 2 O 3 ≦ 0.30% 0.03 % ≦ Excess O ≦ 0.15% Excess O ≦ 0.25-0.5 × Y 2 O 3 (%) can be recrystallized from a temperature of 1300 ° C. or less I understand.

【0040】図4は、それぞれ金属組織写真であり、図
4(a) は、従来の竹状組織、図4(b) はその拡大図、図
4(c) は本発明にかかる発明鋼2の再結晶組織、そして
図4(d) はその拡大図である。本発明によれば従来の竹
状組織が消え、再結晶組織が形成されることから、クリ
ープ破断強度の異方性が解消されるのが分かる。
FIG. 4 is a photograph of the metal structure, FIG. 4 (a) is a conventional bamboo structure, FIG. 4 (b) is an enlarged view thereof, and FIG. 4 (c) is an inventive steel 2 according to the present invention. 4 (d) is an enlarged view of FIG. According to the present invention, since the conventional bamboo-like structure disappears and a recrystallized structure is formed, it is understood that the anisotropy of the creep rupture strength is eliminated.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】以上のように、本発明によれば優れた耐
スエリング性と優れた内圧クリープ破断強度、周方向一
様伸びを共に有する酸化物分散強化型フェライト鋼が提
供できることから、高速増殖炉用の部材、特に、燃料被
覆管のような700 ℃程度の高温で、しかも高い応力下で
使用される部材の長寿命化を達成できる。
As described above, according to the present invention, an oxide dispersion-strengthened ferritic steel having both excellent swelling resistance, excellent internal pressure creep rupture strength and uniform elongation in the circumferential direction can be provided. Furnace members, particularly members used at high temperatures of about 700 ° C. and under high stress, such as fuel cladding tubes, can be extended in life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】過剰酸素量とY2O3により再結晶可能な領域を示
した説明図である。
FIG. 1 is an explanatory diagram showing a region that can be recrystallized by an excess oxygen amount and Y 2 O 3 .

【図2】従来鋼と発明鋼のクリープ破断強度を比較した
グラフである。
FIG. 2 is a graph comparing the creep rupture strengths of a conventional steel and an inventive steel.

【図3】従来鋼と発明鋼の周方向一様伸びを比較したグ
ラフである。
FIG. 3 is a graph comparing the circumferential uniform elongation of the conventional steel and the inventive steel.

【図4】従来材と発明材の光学顕微鏡による顕微鏡金属
組織図であり、図4(a) は、従来の竹状組織、図4(b)
はその拡大図、図4(c) は本発明にかかる再結晶組織、
そして図4(d) はその拡大図である。
4 is a microscopic metallographic view of a conventional material and an inventive material by an optical microscope. FIG. 4 (a) shows a conventional bamboo-like structure, and FIG. 4 (b)
Is an enlarged view thereof, FIG. 4 (c) is a recrystallized structure according to the present invention,
FIG. 4D is an enlarged view of FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鵜飼 重治 茨城県東茨城郡大洗町成田町4002 動力 炉・核燃料開発事業団大洗工学センター 内 (72)発明者 井上 賢紀 茨城県東茨城郡大洗町成田町4002 動力 炉・核燃料開発事業団大洗工学センター 内 (72)発明者 岡田 浩一 茨城県東茨城郡大洗町成田町4002 動力 炉・核燃料開発事業団大洗工学センター 内 (72)発明者 西田 俊夫 茨城県東茨城郡大洗町成田町4002 動力 炉・核燃料開発事業団大洗工学センター 内 (72)発明者 藤原 優行 兵庫県加古川市尾上町池田2222−1 株 式会社神戸製鋼所鉄鋼技術研究所内 (72)発明者 奥田 隆成 兵庫県加古川市尾上町池田2222−1 株 式会社神戸製鋼所鉄鋼技術研究所内 (72)発明者 阿佐部 和孝 大阪市中央区北浜4丁目5番33号 住友 金属工業株式会社内 (72)発明者 山本 祐義 大阪市中央区北浜4丁目5番33号 住友 金属工業株式会社内 (56)参考文献 特開 平1−287252(JP,A) 特開 昭63−186853(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C22C 33/02 103 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shigeharu Ukai 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki Power reactor and nuclear fuel development corporation Oarai Engineering Center (72) Inventor Kenki Inoue Oarai-cho, Higashiibaraki-gun, Ibaraki 4002 Narita-cho, Oarai Engineering Center, Power Reactor and Nuclear Fuel Development Corp. (72) Koichi Okada 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki Pref. 4002 Narita-cho, Oarai-cho, Higashiibaraki-gun, Japan Power reactor and nuclear fuel development corporation Oarai Engineering Center (72) Inventor: Yasuyuki Fujiwara 2222-1 Ikeda, Ogami-cho, Kakogawa-shi, Hyogo Pref. Inventor Takanari Okuda 2222-1 Ikeda, Onoe-cho, Kakogawa City, Hyogo Prefecture Inside Kobe Steel, Ltd. 72) Inventor Kazutaka Asabe 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Sumitomo Metal Industries, Ltd. (72) Inventor Yuyoshi Yamamoto 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Sumitomo Metal Industries, Ltd. ( 56) References JP-A-1-287252 (JP, A) JP-A-63-186853 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60 C22C 33/02 103

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、Cr:7〜18%、1/2W+Mo:0.
1 〜3%、Ti:0.10〜1.0 %、残部Feおよび不可避不純
物からなるFe−Crを主体とするフェライト系金属母相内
にイットリアを分散させた酸化物分散強化型フェライト
鋼において、イットリアと過剰酸素量(Excess O) が、
重量%で、 0.10 %< Y2O3 ≦ 0.30 % 0.03 %≦ Excess O ≦ 0.15 % Excess O ≦0.25−0.5 ×Y2O3 (%) の範囲にあり、かつ、再結晶組織を有することを特徴と
する内圧クリープ強度と延性に優れた酸化物分散強化型
フェライト鋼。ここで、過剰酸素量とは全酸素量 (Tota
l O)からイットリア (Y2O3) としてイットリウムと結合
している酸素 (O in Y2O3)を計算上除いた酸素量 ([Exc
ess O]=[Total O] −[O in Y2O3])を云う。
(1) In weight%, Cr: 7 to 18%, 1 / 2W + Mo: 0.
1 to 3%, Ti: 0.10 to 1.0%, the balance between yttria and yttria in an oxide dispersion-strengthened ferritic steel in which yttria is dispersed in a ferrite-based metal matrix mainly composed of Fe-Cr composed of Fe and unavoidable impurities. The amount of oxygen (Excess O)
In weight percent, in the range of 0.10% <Y 2 O 3 ≦ 0.30% 0.03% ≦ Excess O ≦ 0.15% Excess O ≦ 0.25-0.5 × Y 2 O 3 (%), and that it has a recrystallized structure Oxide dispersion strengthened ferritic steel with excellent internal pressure creep strength and ductility. Here, the excess oxygen amount is the total oxygen amount (Tota
l O) from which the oxygen (O in Y 2 O 3 ), which is bound to yttrium as yttria (Y 2 O 3 ), is excluded from calculation ([Exc
ess O] = [Total O] − [O in Y 2 O 3 ]).
【請求項2】 重量%で、Cr:7〜18%、1/2W+Mo:0.
1 〜3%、Ti:0.10〜1.0 %、残部Feおよび不可避不純
物からなるFe−Crを主体とするフェライト系金属母相内
にイットリアを分散させた酸化物分散強化型フェライト
鋼の製造方法において、イットリアと過剰酸素量(Exce
ss O) を重量%で 0.10 %< Y2O3 ≦ 0.30 % 0.03 %≦ Excess O ≦ 0.15 % Excess O ≦0.25−0.5 ×Y2O3 (%) の範囲に調整するとともに1300℃以下で再結晶熱処理を
行うことを特徴とする内圧クリープ強度と延性に優れた
酸化物分散強化型フェライト鋼の製造方法。ここで、過
剰酸素量とは請求項1で定義する通りである。
2. In weight%, Cr: 7 to 18%, 1 / 2W + Mo: 0.
1 to 3%, Ti: 0.10 to 1.0%, and a method for producing an oxide dispersion-strengthened ferritic steel in which yttria is dispersed in a ferritic metal matrix mainly composed of Fe-Cr composed of Fe and unavoidable impurities. Yttria and excess oxygen (Exce
Re at 1300 ° C. or less while adjusting the range of ss O) 0.10% by weight percent of <Y 2 O 3 ≦ 0.30% 0.03% ≦ Excess O ≦ 0.15% Excess O ≦ 0.25-0.5 × Y 2 O 3 (%) A method for producing an oxide dispersion-strengthened ferritic steel having excellent internal pressure creep strength and ductility characterized by performing a crystal heat treatment. Here, the excess oxygen amount is as defined in claim 1.
JP07029320A 1995-02-17 1995-02-17 Oxide dispersion-strengthened ferritic steel having recrystallized structure and method for producing same Expired - Lifetime JP3127759B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07029320A JP3127759B2 (en) 1995-02-17 1995-02-17 Oxide dispersion-strengthened ferritic steel having recrystallized structure and method for producing same
FR9601939A FR2731231B1 (en) 1995-02-17 1996-02-16 FERRITIC STEEL REINFORCED BY OXIDE DISPERSION AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07029320A JP3127759B2 (en) 1995-02-17 1995-02-17 Oxide dispersion-strengthened ferritic steel having recrystallized structure and method for producing same

Publications (2)

Publication Number Publication Date
JPH08225891A JPH08225891A (en) 1996-09-03
JP3127759B2 true JP3127759B2 (en) 2001-01-29

Family

ID=12272937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07029320A Expired - Lifetime JP3127759B2 (en) 1995-02-17 1995-02-17 Oxide dispersion-strengthened ferritic steel having recrystallized structure and method for producing same

Country Status (2)

Country Link
JP (1) JP3127759B2 (en)
FR (1) FR2731231B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3672903B2 (en) 2002-10-11 2005-07-20 核燃料サイクル開発機構 Manufacturing method of oxide dispersion strengthened ferritic steel pipe
JP3753248B2 (en) 2003-09-01 2006-03-08 核燃料サイクル開発機構 Method for producing martensitic oxide dispersion strengthened steel with residual α grains and excellent high temperature strength
JP5339503B2 (en) * 2008-09-12 2013-11-13 国立大学法人京都大学 Super ODS steel
KR20150104348A (en) * 2014-03-05 2015-09-15 한국원자력연구원 Ferrite/martensitic oxide dispersion strengthened steel with excellent creep resistance and manufacturing method thereof
JP2020056106A (en) * 2018-09-27 2020-04-09 株式会社アテクト Method for manufacturing heat resistant member made of nickel-based alloy or iron-based alloy
CN113789494B (en) * 2021-08-31 2023-11-14 昆明理工大学 Preparation method of oxide dispersion strengthening steel nuclear fuel cladding tube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963200A (en) * 1988-04-25 1990-10-16 Doryokuro Kakunenryo Kaihatsu Jigyodan Dispersion strengthened ferritic steel for high temperature structural use
JPH0652307B2 (en) * 1988-11-19 1994-07-06 動力炉・核燃料開発事業団 Dispersion strengthened ferritic steel cladding tube for nuclear reactor and method of manufacturing the same

Also Published As

Publication number Publication date
FR2731231A1 (en) 1996-09-06
JPH08225891A (en) 1996-09-03
FR2731231B1 (en) 1998-01-09

Similar Documents

Publication Publication Date Title
US4963200A (en) Dispersion strengthened ferritic steel for high temperature structural use
Kimura et al. High burnup fuel cladding materials R&D for advanced nuclear systems: nano-sized oxide dispersion strengthening steels
JP4099493B2 (en) Zirconium alloy composition with excellent creep resistance
JP4007241B2 (en) Austenitic stainless steel excellent in high-temperature strength and corrosion resistance, heat-resistant pressure-resistant member made of this steel, and manufacturing method thereof
JP3950651B2 (en) Zirconium alloy with excellent corrosion resistance and mechanical properties
JPS608296B2 (en) Dispersion-strengthened ferrite-type alloy for liquid metal fast neutron breeder reactors
JP3127759B2 (en) Oxide dispersion-strengthened ferritic steel having recrystallized structure and method for producing same
JPH0652307B2 (en) Dispersion strengthened ferritic steel cladding tube for nuclear reactor and method of manufacturing the same
CN111394663A (en) Heat-resistant iron-based alloy and preparation method thereof
US7037464B2 (en) Dispersed oxide reinforced martensitic steel excellent in high temperature strength and method for production thereof
US11603584B2 (en) Ferritic alloy and method of manufacturing nuclear fuel cladding tube using the same
CN112962010A (en) Aluminum-rich high-entropy alloy and preparation method and application thereof
CN102586686B (en) Clean corrosion-resistant steel for ocean engineering and manufacturing method thereof
JPH07823B2 (en) Sinter-dispersion strengthened heat-resistant steel forming parts
JP3467740B2 (en) Manufacturing method of oxide dispersion strengthened ferritic steel
JP2831051B2 (en) Austenitic stainless steel welding wire
CN113736966A (en) FeCrAl-based alloy with dual heterostructure and preparation method thereof
JP2002266026A (en) Method for producing chromium-containing oxide dispersion strengthened ferritic iron alloy tube
JPH02225648A (en) High strength oxide dispersion strengthened ferritic steel
JPH0518897B2 (en)
JPH08165545A (en) Structural member used under neutron irradiation
KR100754477B1 (en) Zr-based Alloys Having Excellent Creep Resistance
JP2546549B2 (en) Method for producing B-containing austenitic stainless steel
JPH0248613B2 (en)
CN115216690B (en) High-boron austenitic stainless steel, second phase content control method and application thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001010

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term