JPH0551640A - Method for highly densifying crystalline grain in goss direction of silic0n steel sheet - Google Patents
Method for highly densifying crystalline grain in goss direction of silic0n steel sheetInfo
- Publication number
- JPH0551640A JPH0551640A JP29099491A JP29099491A JPH0551640A JP H0551640 A JPH0551640 A JP H0551640A JP 29099491 A JP29099491 A JP 29099491A JP 29099491 A JP29099491 A JP 29099491A JP H0551640 A JPH0551640 A JP H0551640A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- annealing
- silicon steel
- grain
- oriented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は方向性珪素鋼板の製造過
程中の脱炭焼鈍に引き続く短時間の急速加熱により、最
終焼鈍中にゴス方位二次再結晶粒を優先的に生成せしめ
る技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for preferentially generating goss-oriented secondary recrystallized grains during final annealing by rapid heating for a short time following decarburizing annealing during the production of grain-oriented silicon steel sheet. ..
【0002】[0002]
【従来の技術】方向性珪素鋼板はゴスによる製造法の発
明以来、長い研究開発の歴史がある。通常、当鋼板はそ
の熱間圧延鋼板を中間焼鈍しながら1ないし2回冷間圧
延し、連続脱炭焼鈍の後にMgOを主成分とする懸濁液
が塗布され、1150から1200℃の高温で焼鈍さ
れ、製造される。最終の高温焼鈍においては、二次再結
晶と称し、ゴス方位を有する結晶粒が著しく高い速度で
成長する。そのため鋼板の圧延方向の磁気特性が著しく
優れている。このような珪素鋼板が変圧器に使用される
と、鉄心の効率が向上するため、電力の損失が著しく減
少する。それ故高密度のゴス方位結晶粒を有する珪素鋼
板の研究、開発は極めて重要であり、多数の発明が成さ
れてきた。発明の多くは最終高温焼鈍におけるゴス方位
二次再結晶粒を有効に誘発せしめるための特殊な第二相
粒子に関する。例えば特許公報昭53−28375はA
lN、特許公報昭51−13469はMnSe、US
PatNo.4096001ではBの添加によって、ゴ
ス方位二次再結晶粒の高密度化を達成しようとしてい
る。これらの技術により、方向性珪素鋼板の性能は格段
に向上したことは事実である。しかし、その性能は理論
的に可能な限界には遠く、その改善余地は多々残されて
いる。多大の努力にもかかわらず、近年では同技術の発
展は極めて少ない。元より、同技術は容易に実施出来る
ものではない。その為、極めて厳密な製造管理が要求さ
れ、製造原価の著しい上昇は免れず、主に需要量の少な
い最高級品質の方向性珪素鋼板の製造に限られる。2. Description of the Related Art Oriented silicon steel sheets have a long history of research and development since the invention of the manufacturing method by Goth. Usually, this steel sheet is cold-rolled 1 to 2 times while hot-rolling the hot-rolled steel sheet, and after continuous decarburization annealing, a suspension containing MgO as a main component is applied, and at a high temperature of 1150 to 1200 ° C. Annealed and manufactured. In the final high temperature annealing, referred to as secondary recrystallization, crystal grains having a Goss orientation grow at a remarkably high rate. Therefore, the magnetic properties of the steel sheet in the rolling direction are remarkably excellent. When such a silicon steel sheet is used in a transformer, the efficiency of the iron core is improved, and the power loss is significantly reduced. Therefore, research and development of a silicon steel sheet having a high-density Goss-oriented crystal grain is extremely important and many inventions have been made. Many of the inventions relate to special second-phase grains for effectively inducing Goss-oriented secondary recrystallized grains in final high temperature annealing. For example, Japanese Patent Publication No. 53-28375 shows A
1N, Patent Publication Sho 51-13469 is MnSe, US
PatNo. In 4096001, addition of B is attempted to achieve high density of the Goss-direction secondary recrystallized grains. It is a fact that the performance of the grain-oriented silicon steel sheet was significantly improved by these techniques. However, its performance is far from the theoretically possible limit, and there is plenty of room for improvement. Despite a great deal of effort, the development of this technology has been extremely small in recent years. Originally, the technology is not easy to implement. Therefore, extremely strict manufacturing control is required, and a significant increase in manufacturing cost cannot be avoided, and it is mainly limited to the production of the highest quality grain oriented silicon steel sheet with a small demand.
【0003】[0003]
【発明が解決しようとする問題点】本発明は厳密な製造
管理、選定あるいは製造価格の著しい上昇もなく、比較
的容易に従来の方向性珪素鋼板あるいは先行の発明鋼板
の磁気特性を顕著に改善することを目的とする。DISCLOSURE OF THE INVENTION The present invention can improve the magnetic properties of the conventional grain-oriented silicon steel sheet or the prior invention steel sheet remarkably easily without strict production control, selection, or significant increase in production cost. The purpose is to do.
【0004】[0004]
【問題点を解決するための手段】本発明を図面にもとず
いて説明すれば次のとおりである。図1は本発明による
方向性珪素鋼板の製造工程を模式的に示す。本発明の特
徴は工程6で示されるように脱炭焼鈍後に誘導あるいは
電導による当該珪素鋼板の加熱装置の導入である。その
他の工程は従来法あるいは先行発明法と異なるところは
ない。本発明によって導入された新しい炉を急速瞬間加
熱炉と称する(以後急熱炉と略す)。次に急熱炉の金属
学的効果について説明する。表1は本発明で使用した珪
素鋼板の化学成分を示す。まず、0.18mmの冷間圧
延鋼板を800℃で6分間、再結晶および脱炭焼鈍し
た。その後、本発明の急熱炉にて当該鋼板を800℃/
minの昇温速度で種々の温度に加熱し、5秒間保持の
後400℃/minの速度で室温まで冷却した。しかる
後に、この珪素鋼板を純水素雰囲気中の最終焼鈍炉にて
7時間保持した。このような熱処理をした珪素鋼板の磁
気特性を調べた。The present invention will be described below with reference to the drawings. FIG. 1 schematically shows a manufacturing process of a grain-oriented silicon steel sheet according to the present invention. A feature of the present invention is the introduction of a heating device for the silicon steel sheet by induction or conduction after decarburization annealing as shown in step 6. The other steps are the same as the conventional method or the prior invention method. The new furnace introduced by the present invention is referred to as a rapid flash heating furnace (hereinafter abbreviated as a rapid heating furnace). Next, the metallurgical effect of the rapid heating furnace will be described. Table 1 shows the chemical composition of the silicon steel sheet used in the present invention. First, a 0.18 mm cold rolled steel sheet was recrystallized and decarburized and annealed at 800 ° C. for 6 minutes. After that, the steel plate is heated to 800 ° C./in a rapid heating furnace of the present invention.
It was heated to various temperatures at a temperature rising rate of min, held for 5 seconds, and then cooled to room temperature at a rate of 400 ° C./min. Thereafter, the silicon steel sheet was held in a final annealing furnace in a pure hydrogen atmosphere for 7 hours. The magnetic properties of the silicon steel sheet subjected to such heat treatment were investigated.
【0005】[0005]
【表1】 [Table 1]
【0006】図2は最終焼鈍後の当該鋼板の磁気オリエ
ンテーションパーセントと急熱炉における温度との関係
をしめす。脱炭焼鈍のまま最終焼鈍した鋼の磁気オリエ
ンテーションは低いが、急加熱処理を施した鋼のそれは
その温度の増加とともに著しく上昇している。これは脱
炭焼鈍後の多数の一次再結晶粒のうちゴス方位結晶粒が
急熱炉処理により二次再結晶粒の成長核として著しく活
性化されたことに起因する。この活性化は理論的には高
温に加熱されるほど顕著になるはずであるが、事実上9
10℃への急加熱により磁気特性は最高となり、これ以
上の高温度への加熱は磁気特性の低下をきたす。著しい
高温への急加熱は逆に有害となる。これは急熱炉の温度
上昇にともない、MnSなどの第二相粒子が粗大化し、
またその数が減少するため、最終高温焼鈍における二次
再結晶に必要な正常結晶粒成長の抑止力が低下し、ゴス
方位二次再結晶粒を生成させるための駆動力が消失する
からである。図2中の曲線1および2は急加熱中にそれ
ぞれ5%および10%の引っ張り加工を鋼板に導入した
場合の最終焼鈍後の磁気オリエンテーションと急加熱温
度との関係を示す。この場合の磁気特性も急加熱温度の
上昇とともに増加している。その効果の存在する温度範
囲は加工しない場合に比べて拡大している。FIG. 2 shows the relationship between the magnetic orientation percentage of the steel sheet after the final annealing and the temperature in the rapid heating furnace. The magnetic orientation of the final annealed steel with decarburization annealing is low, but that of the steel subjected to the rapid heat treatment increases remarkably as the temperature increases. This is because of the large number of primary recrystallized grains after decarburization annealing, the Goss-oriented crystal grains were remarkably activated as the growth nuclei of the secondary recrystallized grains by the rapid heating furnace treatment. This activation should theoretically become more pronounced at higher temperatures, but in practice 9
Rapid heating to 10 ° C. maximizes the magnetic properties, and heating to higher temperatures causes deterioration of the magnetic properties. Rapid heating to extremely high temperatures is detrimental. This is because the second phase particles such as MnS are coarsened as the temperature of the rapid heating furnace increases.
In addition, since the number decreases, the force for suppressing the growth of normal grains necessary for secondary recrystallization in the final high temperature annealing decreases, and the driving force for generating Goss-oriented secondary recrystallized grains disappears. .. Curves 1 and 2 in FIG. 2 show the relationship between the magnetic orientation after the final annealing and the rapid heating temperature when 5% and 10% tensile work was introduced into the steel sheet during rapid heating, respectively. The magnetic characteristics in this case also increase as the rapid heating temperature rises. The temperature range in which the effect exists is expanded as compared with the case where no processing is performed.
【0007】[0007]
【作用】表2には表1に示した珪素鋼に脱炭焼鈍後本発
明法である910℃で10秒間の急加熱処理を施した最
終製品の磁気特性を従来法鋼のそれと比較して示す。In Table 2, the magnetic properties of the final product obtained by decarburizing and annealing the silicon steel shown in Table 1 and subjecting it to rapid heating at 910 ° C. for 10 seconds as compared with those of the conventional method steel are shown in Table 2. Show.
【0008】[0008]
【表2】 [Table 2]
【0009】発明法による珪素鋼板の磁気特性は従来法
鋼に比べて、著しく優れている事が分かる。結論とし
て、本発明による脱炭焼鈍直後の急速瞬間加熱の適用は
珪素鋼製品の磁気特性を顕著に向上させる。なお、本発
明は脱炭焼鈍温度を通常より上昇せしめることを規定し
ているUK.Pat.1521680と混同される恐れ
がある。その発明が示したことは脱炭焼鈍温度の上昇に
より軽微の磁気特性の向上が得られ、JIS規格G10
程度の中品質の珪素鋼板の製造に適用されうるにすぎな
い。また、同法は確実に有効な方法として一般には使用
されていないことは周知の事実である。これは脱炭が完
了する以前に温度を上昇させても正常結晶粒の成長があ
まねく促進されるだけで、特定のゴス方位結晶粒を活性
化することにはならないからである。脱炭を確実に完了
し、しかる後に急速に本発明の温度範囲に加熱、保持す
ることが肝要である。また、本発明では脱炭焼鈍温度は
UK.Pat.1521680とは逆に低く規定してい
る。これは脱炭後の平均結晶粒径の増加を抑止するもの
である。なぜならば、平均結晶粒が小さい方が急加熱に
よるゴス方位結晶粒の活性化がより顕著になるからであ
る。It can be seen that the magnetic properties of the silicon steel sheet according to the invented method are remarkably superior to those of the conventional method steel. In conclusion, the application of rapid flash heating immediately after decarburization annealing according to the invention significantly improves the magnetic properties of silicon steel products. The present invention specifies that the decarburization annealing temperature is set higher than usual. Pat. May be confused with 1521680. The invention showed that a slight improvement in magnetic characteristics was obtained by increasing the decarburization annealing temperature.
It can only be applied to the production of moderate quality silicon steel sheets. Moreover, it is a well-known fact that this method is not generally used as a surely effective method. This is because even if the temperature is raised before the decarburization is completed, the growth of normal crystal grains is generally promoted, and the specific Goss-oriented crystal grains are not activated. It is essential that decarburization be completed without fail, and then rapidly heated and maintained within the temperature range of the present invention. Further, in the present invention, the decarburization annealing temperature is UK. Pat. Contrary to 1521680, it is specified as low. This suppresses an increase in the average crystal grain size after decarburization. This is because the smaller the average crystal grain is, the more marked the activation of the Goss-oriented crystal grain due to rapid heating becomes.
【0010】[0010]
【発明の効果】本発明は従来法あるいは先行発明法によ
って製造される方向性珪素鋼板のいかんに拘らず、最終
高温焼鈍においてゴス方位二次再結晶粒の優先成長を容
易成らしめ、その磁気特性を著しく改善するものであ
る。また、本発明法の効果は生来磁気特性の低い珪素鋼
に対してより顕著である。そのため、製品内での磁気特
性変動の減少すなわち品質の安定化および品質管理の容
易化に寄与するところが極めて大きい。本発明の設備で
ある急速瞬間加熱炉はスズメッキ鋼板のリフロウー炉に
見られるように安価であり、容易に既存設備への付加も
可能である。INDUSTRIAL APPLICABILITY The present invention facilitates preferential growth of Goss-oriented secondary recrystallized grains in the final high temperature annealing regardless of the grain size of the grain-oriented silicon steel sheet produced by the conventional method or the prior invention method, and its magnetic properties. Is remarkably improved. Further, the effect of the method of the present invention is more remarkable with respect to silicon steel, which inherently has low magnetic properties. Therefore, it greatly contributes to the reduction of magnetic property variation in the product, that is, the stabilization of quality and the facilitation of quality control. The rapid instantaneous heating furnace which is the equipment of the present invention is inexpensive as seen in the tin-plated steel sheet reflow furnace, and can be easily added to existing equipment.
【図1】本発明の急速瞬間加熱炉の設置位置を模式的に
示す。工程1は熱間圧延珪素鋼帯の均質化焼鈍、工程2
は第一次冷間圧延、工程3は中間焼鈍、工程4は第二次
冷間圧延、工程5は脱炭焼鈍、工程6は本発明の急速瞬
間加熱、工程7は最終高温焼鈍を示す。FIG. 1 schematically shows an installation position of a rapid instantaneous heating furnace of the present invention. Step 1 is homogenization annealing of hot rolled silicon steel strip, Step 2
Indicates primary cold rolling, step 3 indicates intermediate annealing, step 4 indicates secondary cold rolling, step 5 indicates decarburizing annealing, step 6 indicates rapid instantaneous heating of the present invention, and step 7 indicates final high temperature annealing.
【図2】本発明の急速瞬間加熱の金属学的効果を示す。
曲線1,2および3は加熱中にそれぞれ引き張り歪みを
0%,5%,および10%”付加した珪素鋼板の磁気オ
リエンテーシヨンと5秒間の急速瞬間加熱温度との関係
を示す。曲線4は曲線1で示される0%の引張り歪みを
付加した珪素鋼の二次再結晶粒の粒度番号(原寸のま
ま)を急速瞬間加熱炉の温度の関数として示す。FIG. 2 shows the metallurgical effect of rapid flash heating of the present invention.
Curves 1, 2 and 3 show the relationship between the magnetic orientation of a silicon steel sheet having tensile strains of 0%, 5%, and 10% added during heating and the rapid instantaneous heating temperature for 5 seconds. Shows the grain size number (as-is) of the secondary recrystallized grains of silicon steel added with 0% tensile strain shown in curve 1 as a function of the temperature of the rapid flash heating furnace.
Claims (1)
板を製造するにあたり、1ないし2回の冷間圧延後、7
50から850℃での脱炭焼鈍に引き続いて、誘導ある
いは通電により、鋼板を20℃/min以上の加熱速度
で10%以下の引っ張り歪みを与えながら860から9
80℃に加熱し、60秒間以内保持後、10℃/min
以上の速度で冷却することにより、その後の最終高温焼
鈍において、高密度のゴス方位二次再結晶粒を生成さ
せ、高磁束密度方向性珪素鋼板を製造する方法。1. In producing a grain-oriented silicon steel sheet containing about 3% of silicon, after cold rolling once or twice, 7
Following decarburization annealing at 50 to 850 ° C, induction or energization gives 860 to 9 while applying a tensile strain of 10% or less to the steel sheet at a heating rate of 20 ° C / min or more.
After heating to 80 ° C and holding for 60 seconds, 10 ° C / min
A method for producing a high-flux-density grain-oriented silicon steel sheet by producing high-density Goss-oriented secondary recrystallized grains in the subsequent final high-temperature annealing by cooling at the above rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29099491A JPH0551640A (en) | 1991-08-19 | 1991-08-19 | Method for highly densifying crystalline grain in goss direction of silic0n steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29099491A JPH0551640A (en) | 1991-08-19 | 1991-08-19 | Method for highly densifying crystalline grain in goss direction of silic0n steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0551640A true JPH0551640A (en) | 1993-03-02 |
Family
ID=17763086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29099491A Pending JPH0551640A (en) | 1991-08-19 | 1991-08-19 | Method for highly densifying crystalline grain in goss direction of silic0n steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0551640A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0606884A1 (en) * | 1993-01-12 | 1994-07-20 | Nippon Steel Corporation | Grain-oriented electrical steel sheet with very low core loss and method of producing the same |
-
1991
- 1991-08-19 JP JP29099491A patent/JPH0551640A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0606884A1 (en) * | 1993-01-12 | 1994-07-20 | Nippon Steel Corporation | Grain-oriented electrical steel sheet with very low core loss and method of producing the same |
US5833768A (en) * | 1993-01-12 | 1998-11-10 | Nippon Steel Corporation | Grain-oriented electrical steel sheet with very low core loss and method of producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5668460B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP5842400B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5991484B2 (en) | Manufacturing method of low iron loss grain oriented electrical steel sheet | |
JP2983128B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP2019119933A (en) | Low iron loss directional electromagnetic steel sheet and manufacturing method therefor | |
CN111417737B (en) | Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same | |
JPH0241565B2 (en) | ||
JP4385960B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JPH059580A (en) | Production of grain-oriented silicon steel sheet extremely excellent in magnetic property | |
KR950002895B1 (en) | Ultrahigh-silicon directional electrical steel sheet and production thereof | |
JP3369443B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPH0551640A (en) | Method for highly densifying crystalline grain in goss direction of silic0n steel sheet | |
JPH0784615B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent magnetic flux density | |
JPH0580527B2 (en) | ||
JP2717009B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties | |
JP2883224B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH03223424A (en) | Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property | |
JP2574583B2 (en) | Method for manufacturing oriented silicon steel sheet with good iron loss | |
JPS6296615A (en) | Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling | |
JP3020810B2 (en) | Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties | |
WO2022210503A1 (en) | Production method for grain-oriented electrical steel sheet | |
WO2022210504A1 (en) | Method for manufacturing grain-oriented electromagnetic steel sheet | |
JPH0798976B2 (en) | Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss | |
JP3621712B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JPS6114208B2 (en) |