JPH0551525B2 - - Google Patents

Info

Publication number
JPH0551525B2
JPH0551525B2 JP31710287A JP31710287A JPH0551525B2 JP H0551525 B2 JPH0551525 B2 JP H0551525B2 JP 31710287 A JP31710287 A JP 31710287A JP 31710287 A JP31710287 A JP 31710287A JP H0551525 B2 JPH0551525 B2 JP H0551525B2
Authority
JP
Japan
Prior art keywords
water
powder
alcohol
boron
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31710287A
Other languages
Japanese (ja)
Other versions
JPH01157409A (en
Inventor
Eizo Maeda
Toshihiko Funabashi
Ryoji Uchimura
Takahisa Koshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31710287A priority Critical patent/JPH01157409A/en
Publication of JPH01157409A publication Critical patent/JPH01157409A/en
Publication of JPH0551525B2 publication Critical patent/JPH0551525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は六方晶窒化硼素に関し、特に水可溶性
硼素化合物の少ない六方晶窒化硼素の製造方法に
係わるものである。 [従来の技術] 六方晶窒化硼素(以下窒化硼素をBNという)
粉末は白色で黒鉛と同様に層状構造であり種々の
特性を有している。特に熱伝導性、電気絶縁性、
化学安定性、潤滑性、耐熱性などが優れており、
これらの性質を生かして多岐の用途に供されてい
る。粉末としての用途にはプラスチツク添加剤、
潤滑剤などの使用法が多い。 最近では電子技術の進歩に従つて、BNの耐熱
性、電気絶縁性を利用した充填剤、添加剤の用途
において高純度のBNの要求が多くなつてきてい
る。 また、BNを高温高圧処理することで立方晶窒
化硼素(c−BN)が得られるためこの原料とし
ても使用される。c−BN原料としてのBNには、
高純度が要求される。また、c−BNを作る時に
は予めBNを成形するが、この成形体の密度が小
さいとc−BNの収率が低下する等の不都合があ
る。 従来かかる用途に適する高純度のBNの製造方
法は、大別すると次の2つの方法に分類される。 (1) 高温に加熱して不純物を蒸発、あるいは分解
除去する方法(特開昭58−60603号公報記載の
発明および特開昭58−181708号公報記載の発
明)。 (2) 三塩化硼素とアンモニアから次式により高純
度なBNを得る方法。 BCl3+NH3→BN+3HCl …(1) [発明が解決しようとする問題点] 前記方法(1)によれば、BNを高温加熱すること
によつて不純物の酸素成分は分解揮発し、除去す
ることができる。しかし酸素成分は、充填層厚が
薄い少量処理の場合には簡単に試料充填層外に熱
対流、拡散により除去できるが、大量の処理では
ガス状で充填層内に残留し冷却過程で凝固しBN
表面あるいは粒子間に不純物として析出する。こ
のため前記方法(1)は大量処理が困難な方法であ
り、また高温処理のためエネルギーコストも高価
になる。 さらに、前記(2)のBCl3とNH3から高純度のBN
を製造する方法では、高純度のものは得られるが
高結晶質のBNは得難く、絶縁性、熱伝導性にお
いて劣る欠点があり、加水分解性も結晶質のBN
に比べて大きい。また、工業的に大量生産する
際、製造コストが上昇するという欠点があつた。 上記問題点を解決するために発明者らは特開昭
62−176904号公報において、水可溶性硼素化合物
の少ないBN粉およびその製造方法を開示した。
しかし、発明者らのその後の研究の結果、BN成
形体のかさ密度を上げるためには、粒径が小さい
ことが有効であることが判明した。 すなわち、水可溶性硼素化合物の少ない窒化硼
素の製造の最終工程である乾燥工程において、洗
浄により精製したBNが若干加水分解されるが、
この加水分解の度合はBN粉の粒径の細かいほ
ど、換言すれば比表面積が大きくなるほど多く、
従つて、微細なBN粉を高純度にするには多くに
困難があつた。BNの加水分解を式で示すと次の
ようになる。 2BN+3H2O→B2O3+2NH3 …(2) BN+3H2O→H3BO3+NH3 …(3) 本発明は、このような従来の問題点に着目して
改良されたものである。 [問題点を解決するための手段] そこで、本発明は、粒径が小さく水可溶性硼素
化合物の少ないBNを得るためには、 表面の水可溶性硼素化合物を適切な分散剤と
水を使い十分に洗浄除去すること、 かつ、加水分解を少量におさえるために低温
から短時間で乾燥させることが必要であり、 さらに,の操作後、粉末にアルコールを
添加し、または粉末をアルコール中に浸漬した
後、乾燥させることが一層効果的であることに
着目し、比表面積5m2/g以上の微細かつ、純
水で煮沸した時の抽出水中の硼素量が100μ
g/g−BN以下の高純度の六方晶窒化硼素で
あることをその構成となし、六方晶窒化硼素粉
末を水または熱水に分散させ水可溶性硼素化合
物を洗浄除去し、乾燥させた後、アルコールを
添加、若しくはアルコール中に浸漬し、その後
再度乾燥させることを、その解決方法としてい
る。 [作用] 水可溶性硼素量はBNを純水で煮沸浸出し、そ
の抽出液中の硼素量を定量することによつて決定
されるが、水可溶性硼素は100μg/g−BNであ
ることが望ましい。100μg/g−BNより多いと
c−BNの収率が悪いばかりでなく、得られる製
品の強度も悪くなるのである。好ましくは、水可
溶性硼素が50μg/g−BN以下である。 粒径の大小は比表面積を指標として示される。
高純度BN粉の比表面積は5m2/g以上であるこ
とが望ましい。5m2/gより小さいと成形かさ密
度が小さくなりc−BNの収率が低下する。好ま
しくは7m2/g以上である。 [実施例] 本発明の製造方法について詳細に説明する。 通常BN粉には不純物として1〜20%の酸素が
含まれる。この酸素は硼素と結合して酸化硼素と
して存在し、また、時に酸化硼素が水和し、硼酸
として存在する。これらの酸化硼素あるいは硼酸
はたいへん水に溶け易い。したがつて、水可溶性
硼素化合物の少ない六方晶BNを得ようとすると
き、これら易溶解性の物質を水で洗浄除去するこ
とが有効である。 水可溶性硼素化合物を効果的に洗浄除去するた
めには、結晶質BN粉末が水または熱水中によく
分散させる必要がある。BN粉は水に濡れにくく
そのままでは水に分散せず、このため洗浄操作も
容易に進行しなくなる。水に分散させる際、分散
剤を使用すると効果的である。分散剤としては、 (1) 分子中の親水基と親油基の両者の釣り合いを
示すHLB(Hydrophile−Lipophile Balance)
値で10〜16の範囲にあるアニオン系、ノニオン
系、カチオン系いずれかの界面活性剤。 (2) あるいは水可溶性有機溶媒水溶液などが使用
できる。 界面活性剤としては、HLB値が10〜16の範囲
を示すものが洗浄効果が高く、例えば、ポリオキ
シエチレン(5)ソルビタンモノステアレート、ポリ
オキシエチレン(4)ソルビタントリオレエート、ポ
リオキシエチレングリコール400モノオレエート、
トリエタノールアミンオレエート、ポリオキシエ
チレン(9)ノニルフエノール、ポリエチレングリコ
ール400モノオレエート、トリエタノールアミン
オレエート、ポリオキシエチレン(9)ノニルフエー
ル、ポリエチレングリコール400モノラウレート、
ポリオキシエチレン(4)ソルビタンモラウレートな
どが使用できる。 界面活性剤の濃度は0.001〜5重量%の範囲が
好ましい。この理由は5重量%を越えるとそれ以
上添加しても分散効果に差がなく過剰に添加して
も経済的に好ましくないからである。また0.001
重量%未満ではその効果が十分発現されないから
である。 水可溶性有機溶媒としては、メタルアルコー
ル、エチルアルコール、グリコール、グリセリン
などのアルコール類およびアセトン、アセチルア
セトン、エチルアミン、アセトアルデヒト、フエ
ノールなどが使用できる。 水可溶性有機溶媒ではメチルアルコール、エチ
ルアルコールが価格、入手の容易さから最も適し
ている。BN粉末の洗浄液中への分散方法はまず
BN粉末水可溶性有機溶媒、例えばメチルアルコ
ール、エチルアルコールなどに分散させて高濃度
のスラリー状にした後、洗浄水を添加すれば、ア
ルコールの使用量の少なくてよく分散性も非常に
良好であつた。また水可溶性有機溶媒と界面活性
剤の併用はさらに効果的である。 洗浄液の温度は特定しないが、高温度ほど可溶
性硼素化合物の溶解は効果的となる。また、BN
粉を分散させたスラリーを十分に撹拌することで
溶解が短時間かつ、効果的に行われることから、
十分に撹拌することが望ましい。 洗浄の際のスラリー濃度は薄いほど洗浄効果は
大きいが、経済性の面から最適な範囲がある。上
限はBNが50重量%のスラリーである。これ以上
濃くなると撹拌が均一に十分行われず、撹拌イン
ペラや容器壁との摩擦も大きくなり不純物の混入
の原因になる。 下限を特定する積極的な理由は乏しいが経済性
と脱水効率の点から2.5重量%までが好ましい。 スラリーの撹拌は、通常撹拌、高速撹拌あるい
は剪断力に基づく分散など洗浄装置の形状に従つ
て最も効果的な方法を採用することができる。こ
のときの操作は連続式、バツチ式いずれの方法に
よつても良い。 洗浄後のスラリーは脱水することが効果的であ
る。脱水は遠心脱水、真空脱水、加圧脱水自然沈
降による脱水、あるいは濾過、吸引濾過、加圧濾
過のいずれの方法をとつても良い。 また、脱水後のBN粉を繰り返し洗浄すると一
層効果的である。 水可溶性硼素化合物の少ないBN粉を得るため
には、最終の乾燥工程を注意深く行う必要があ
る。すなわち、洗浄を十分行うことによりBN粉
からの可溶性硼素化合物は殆ど除去されるが、乾
燥時BNが加水分解され可溶性硼素化合物が増加
してしまうのである。特に、比表面積が5m2/g
より大きい微粉はこの傾向が大きいのである。 乾燥工程においてはBNの加水分解を極力おさ
えなければならない。BNの加水分解をおさえる
ためには、乾燥時間をa[時間]、乾燥温度をb
[℃]としたとき、 a/2+≦100 とすることが望ましい。 (a/2+b)が100より大きくなると、すなわち、 乾燥温度は高くなるか、あるいは、乾燥時間が長
くなると、水可溶性硼素化合物が増加する。好ま
しくは、a/2+≦80である。 上記条件を満足すれば、乾燥方法は特定されな
い。熱風乾燥、温風乾燥、通常乾燥、真空乾燥、
コールドドライなど各種乾燥方法が使用できる。 こうして得られた乾燥BN粉末にアルコールを
添加し、または、粉末をアルコール中に浸漬させ
た後、再度乾燥させると、一層効果的に水可溶性
硼素化合物の減少を図ることが可能となる。 アルコールとしては、エタノール、メタノー
ル、プロパノール、ブタノール、ペンタノールな
どのアルコールの1種または2種以上の混合物が
使用できるが、沸点の低いものほど乾燥操作が容
易であるため好ましい。また、アルコールの他の
有機溶媒を添加してもかまわない。 アルコールによる水可溶性硼素化合物の除去は
次のようにおこると考えられる。すなわち、アル
コールとしてメタノールを例にとれば、 B2O3+6CH3OH→2B(OCH33+3H2O …(4) H3BO3+3CH3OH→B(OCH33+3H2O …(5) 硼酸エステル(B(OCH33など)の沸点は低
く、そのため乾燥時硼素成分は硼酸エステルとし
て揮散する。 アルコールは粉末に添加しても良いし、また、
アルコール中に粉末を浸漬しても良い。この際撹
拌を行うと効果的である。アルコールの添加また
はアルコール中への浸漬において、アルコールと
粉末の比はアルコール/粉末が0.05〜100の範囲
である。アルコール量が少ないと、粉末の表面を
十分にアルコールで濡らすことができず、未反応
の部分が残る。アルコール量が多すぎると経済的
でない。好ましくはアルコール/粉末が0.5〜20
の範囲である。 アルコールを添加またはアルコール中に浸漬さ
せる際のBNは十分乾燥していることが望まし
い。乾燥が不十分で水分が多く残つている場合、
水可溶性硼素化合物の低減は効果的に行われな
い。水分が多量に存在する場合、硼酸エステル
[B(OCH33など]の加水分解(すなわち、(4),
(5)式の逆反応)がおこるため、硼素化合物が揮散
しないものと推定される。 また、水可溶性不純物が大量に含まれるBN粉
にアルコールを添加しても、水可溶性硼素化合物
の低減は効果的には行われない。換言すれば、あ
る程度まで水可溶性硼素化合物が低減したBN粉
にアルコール処理をすることで効果的に水可溶性
硼素化合物の少ないBN粉を得ることが可能とな
るのである。これは水可溶性不純物が多量に含ま
れる場合、(4)または(5)の反応によつてH2Oが多
量に生成するため、ある程度反応が進んだところ
で反応が止まつてしまうので効率的には水可溶性
硼素化合物が低減されないものと推定される。 ある程度まで水可溶性硼素化合物が低減してい
れば、アルコール処理は十分効果をもつため、水
洗浄およびその後の乾燥の条件は前述の範囲のみ
に限定されるものではない。アルコール処理前の
水可溶性硼素量は、500ppm以下であることが望
ましい。好ましくは200ppm以下である。 アルコール添加もしくはアルコール中へ浸漬し
た後の乾燥においても、(2),(3)の反応によつて生
成した水分あるいは乾燥雰囲気中の水分によつて
BNの水和がおこるため、水洗浄処理後の乾燥と
同様の配慮および操作が望ましい。この場合にも
乾燥方法については特定されない。 このようにして精製されたBNは、特に水可溶
性硼素化合物が100μg/g−BN以下と著しく少
なく、従来法では得られない高純度であり、か
つ、比表面積5m2/gと粒径が小さいため、c−
BN原料として適している。 また本発明は乾式法によらず湿式法で高純度の
BNを製造し得ることは工業的に極めて有利な方
法である。得られた水可溶性硼素の少ない高純度
BNは今後開拓が進むであろう新たな分野におい
て十分適用できる。 [実施例] (実施例 1) 比表面積7.2m2/g不純物酸素量4.3%のBN粉
を用いた洗浄による精製を行つた。 HLB値が14のエチレンアルコール系のアニオ
ン系界面活性剤の0.5%水溶液5を90℃に加熱
し、BN粉250gを分散させたのち、撹拌しなが
ら1時間保持した。スラリーを真空濾過し、ケー
キを得る。その後ケーキを水に再分散させ撹拌洗
浄後、真空濾過しケーキを得るという操作を2回
繰り返した。 ケーキを100℃,24時間熱風乾燥しBN粉を得
た。このようにして得たBN粉の100℃での抽出
水中の硼素量を定量したところ、185μg/g−
BNであつた。 この洗浄後粉末にエタノールを1.5倍量加え、
撹拌ののち、熱風乾燥機で80℃,15時間の乾燥を
行つた。得られたBN粉の100℃での抽出水中の
硼素量を定量したところ、75μg/g−BNであ
つた。 (比較例 1) 一方、比較例1として2回水洗浄後の前述ケー
キを用い、再度水洗浄を行い、真空濾過しケーキ
を得た。このケーキを100℃,24時間で乾燥した
ところ、得られたBN粉の100℃での抽出水中の
硼素量を定量したところ141ppmであつた。 (実施例 2) 比表面積9.6m2/gのBN粉の洗浄を実施例1と
同様に行い、水洗浄3回後のケーキを得た。この
ケーキ95℃,10torr,12時間の条件で真空乾燥を
行つた。得られたBN粉の100℃での抽出水中の
硼素量は126μg/g−BNであつた。 この乾燥粉にメタノールを2倍量添加し、撹拌
した後、75℃,12時間の乾燥を行つた。得られた
BN粉の100℃での抽出水中の硼素量を定量した
ところ、73μg/g−BNであつた。 (比較例 2) 一方、比較例として、水洗浄4回後のケーキを
95℃,100torr,12時間で真空乾燥したところ、
100℃での抽出水中の硼素量は121μg/g−BN
であつた。 (実施例 3) 不純物酸素量6.3%、比表面積8.3m2/gのBN
粉を水洗浄して、100℃での抽出水中の硼素量
210μg/g−BNの乾燥したBN粉を得た。この
BN粉に同量のメタノールを加え撹拌した後、熱
風乾燥機で80℃,15時間の乾燥を行つたところ、
100℃での抽出水中の硼素量が72μg/g−BNの
BN粉が得られた。 (比較例 3) 一方、不純物酸素量6.3%、比表面積8.3m2/g
のBN粉に同量のメタノールを加え撹拌した後、
熱風乾燥機で80℃,15時間乾燥を行つたが、この
BN粉の100℃での抽出水中の硼素量は2350μg/
g−BNであつた。 (実施例 4),(比較例 4) 実施例1に準じて比表面積の異なる高純度BN
粉を製造し、その粉末を面圧1ton/cm2の圧力で成
形した。成形かさ密度と成形作業性を表1に示
す。
[Industrial Field of Application] The present invention relates to hexagonal boron nitride, and particularly to a method for producing hexagonal boron nitride containing less water-soluble boron compounds. [Conventional technology] Hexagonal boron nitride (hereinafter boron nitride is referred to as BN)
The powder is white, has a layered structure similar to graphite, and has various properties. Especially thermal conductivity, electrical insulation,
It has excellent chemical stability, lubricity, heat resistance, etc.
Taking advantage of these properties, it is used for a wide variety of purposes. For powder applications, plastic additives,
It is often used as a lubricant. Recently, with advances in electronic technology, there has been an increasing demand for high-purity BN in applications such as fillers and additives that take advantage of BN's heat resistance and electrical insulation properties. In addition, cubic boron nitride (c-BN) can be obtained by subjecting BN to high-temperature and high-pressure treatment, and therefore it is also used as a raw material for this. BN as a c-BN raw material includes:
High purity is required. Furthermore, when producing c-BN, BN is molded in advance, but if the density of this molded product is low, there are disadvantages such as a decrease in the yield of c-BN. Conventional methods for producing high-purity BN suitable for such uses can be broadly classified into the following two methods. (1) A method of evaporating or decomposing impurities by heating to a high temperature (invention described in JP-A-58-60603 and invention described in JP-A-58-181708). (2) A method to obtain high purity BN from boron trichloride and ammonia using the following formula. BCl 3 +NH 3 →BN+3HCl …(1) [Problems to be solved by the invention] According to the method (1), impurity oxygen components are decomposed and volatilized and removed by heating BN at high temperature. I can do it. However, when processing a small amount of sample with a thin packed bed, the oxygen component can be easily removed by thermal convection and diffusion outside the sample packed bed, but when processing a large amount, it remains in the packed bed in a gaseous state and solidifies during the cooling process. BN
It precipitates as an impurity on the surface or between particles. For this reason, method (1) is difficult to process in large quantities, and energy costs are also high due to high temperature processing. Furthermore, high purity BN is obtained from BCl 3 and NH 3 in (2) above.
Although it is possible to obtain highly pure BN, it is difficult to obtain highly crystalline BN, which has the disadvantage of inferior insulation and thermal conductivity, and the hydrolyzability is lower than that of crystalline BN.
larger than. In addition, when mass-producing it industrially, there is a drawback that the manufacturing cost increases. In order to solve the above problems, the inventors
62-176904 discloses a BN powder containing less water-soluble boron compounds and a method for producing the same.
However, as a result of subsequent research by the inventors, it was found that a small particle size is effective in increasing the bulk density of a BN molded product. That is, in the drying step, which is the final step in the production of boron nitride that contains few water-soluble boron compounds, the BN purified by washing is slightly hydrolyzed;
The degree of this hydrolysis increases as the particle size of the BN powder becomes finer, in other words, as the specific surface area increases.
Therefore, there were many difficulties in making fine BN powder highly pure. The formula for the hydrolysis of BN is as follows. 2BN+ 3H2OB2O3 + 2NH3 ... (2) BN+ 3H2OH3BO3 + NH3 ...(3) The present invention has been improved by focusing on such conventional problems. [Means for Solving the Problems] Therefore, in order to obtain BN with a small particle size and a small amount of water-soluble boron compounds, the present invention aims to sufficiently remove the water-soluble boron compounds on the surface using an appropriate dispersant and water. It is necessary to wash and remove the powder, and to dry it at a low temperature for a short time to keep hydrolysis to a minimum. Focusing on the fact that drying is more effective, we developed a microorganism with a specific surface area of 5 m 2 /g or more, and an amount of boron in the extracted water of 100μ when boiled with pure water.
The composition is hexagonal boron nitride with a high purity of g/g-BN or less, and after dispersing the hexagonal boron nitride powder in water or hot water, washing and removing water-soluble boron compounds, and drying, The solution is to add alcohol or immerse it in alcohol and then dry it again. [Effect] The amount of water-soluble boron is determined by boiling and leaching BN with pure water and quantifying the amount of boron in the extract, but it is desirable that the amount of water-soluble boron is 100 μg/g-BN. . If the amount exceeds 100 μg/g-BN, not only the yield of c-BN will be poor, but also the strength of the obtained product will be poor. Preferably, the water-soluble boron content is 50 μg/g-BN or less. The particle size is indicated using the specific surface area as an index.
It is desirable that the specific surface area of the high purity BN powder is 5 m 2 /g or more. When it is smaller than 5 m 2 /g, the molded bulk density becomes small and the yield of c-BN decreases. Preferably it is 7 m 2 /g or more. [Example] The manufacturing method of the present invention will be described in detail. Normally, BN powder contains 1 to 20% oxygen as an impurity. This oxygen combines with boron and exists as boron oxide, and sometimes boron oxide is hydrated and exists as boric acid. These boron oxides or boric acids are highly soluble in water. Therefore, when attempting to obtain hexagonal BN containing less water-soluble boron compounds, it is effective to wash and remove these easily soluble substances with water. In order to effectively wash and remove water-soluble boron compounds, the crystalline BN powder needs to be well dispersed in water or hot water. BN powder is difficult to wet with water and will not be dispersed in water as it is, so cleaning operations will not proceed easily. When dispersing in water, it is effective to use a dispersant. As a dispersant, (1) HLB (Hydrophile-Lipophile Balance), which indicates the balance between hydrophilic groups and lipophilic groups in the molecule;
Anionic, nonionic, or cationic surfactants with values ranging from 10 to 16. (2) Alternatively, an aqueous solution of a water-soluble organic solvent can be used. As surfactants, those with an HLB value in the range of 10 to 16 have a high cleaning effect, such as polyoxyethylene (5) sorbitan monostearate, polyoxyethylene (4) sorbitan trioleate, and polyoxyethylene glycol. 400 monooleate,
Triethanolamine oleate, polyoxyethylene (9) nonylphenol, polyethylene glycol 400 monooleate, triethanolamine oleate, polyoxyethylene (9) nonylphenol, polyethylene glycol 400 monolaurate,
Polyoxyethylene (4) sorbitan molaurate and the like can be used. The concentration of the surfactant is preferably in the range of 0.001 to 5% by weight. The reason for this is that if the amount exceeds 5% by weight, there is no difference in the dispersion effect even if more than 5% by weight is added, and it is economically undesirable to add too much. Also 0.001
This is because if the amount is less than % by weight, the effect will not be sufficiently expressed. As the water-soluble organic solvent, alcohols such as metal alcohol, ethyl alcohol, glycol, and glycerin, and acetone, acetylacetone, ethylamine, acetaldehyde, and phenol can be used. Among water-soluble organic solvents, methyl alcohol and ethyl alcohol are the most suitable in terms of price and availability. First, the method for dispersing BN powder into the cleaning solution is as follows.
If BN powder is dispersed in a water-soluble organic solvent such as methyl alcohol or ethyl alcohol to form a highly concentrated slurry and then washing water is added, the amount of alcohol used can be reduced and the dispersibility is very good. Ta. Moreover, the combination of a water-soluble organic solvent and a surfactant is even more effective. Although the temperature of the cleaning solution is not specified, the higher the temperature, the more effectively the soluble boron compound can be dissolved. Also, BN
By sufficiently stirring the slurry in which the powder is dispersed, dissolution can be carried out quickly and effectively.
It is desirable to stir thoroughly. The thinner the slurry concentration during cleaning, the greater the cleaning effect, but there is an optimal range from an economic standpoint. The upper limit is a slurry containing 50% by weight of BN. If it becomes thicker than this, stirring will not be done uniformly and sufficiently, and friction with the stirring impeller and container wall will increase, causing impurities to be mixed in. Although there is no positive reason to specify the lower limit, it is preferably up to 2.5% by weight from the point of view of economy and dewatering efficiency. For stirring the slurry, the most effective method can be adopted depending on the shape of the cleaning device, such as normal stirring, high-speed stirring, or dispersion based on shear force. The operation at this time may be either a continuous method or a batch method. It is effective to dehydrate the slurry after washing. Dehydration may be performed by centrifugal dehydration, vacuum dehydration, pressure dehydration, dehydration by natural sedimentation, filtration, suction filtration, or pressure filtration. Moreover, it is more effective to repeatedly wash the BN powder after dehydration. In order to obtain BN powder with a low content of water-soluble boron compounds, the final drying process must be carefully performed. That is, although most of the soluble boron compounds from the BN powder are removed by thorough washing, the BN is hydrolyzed during drying and the soluble boron compounds increase. In particular, the specific surface area is 5 m 2 /g
This tendency is greater for larger fine particles. In the drying process, hydrolysis of BN must be suppressed as much as possible. In order to suppress the hydrolysis of BN, the drying time should be set to a [hour] and the drying temperature to be set to b.
When it is [°C], it is desirable that a/2+≦100. When (a/2+b) becomes larger than 100, that is, when the drying temperature becomes higher or the drying time becomes longer, the amount of water-soluble boron compounds increases. Preferably, a/2+≦80. If the above conditions are satisfied, the drying method is not specified. Hot air drying, hot air drying, normal drying, vacuum drying,
Various drying methods such as cold drying can be used. By adding alcohol to the dry BN powder obtained in this way, or by immersing the powder in alcohol and then drying it again, it becomes possible to reduce water-soluble boron compounds more effectively. As the alcohol, one type or a mixture of two or more types of alcohols such as ethanol, methanol, propanol, butanol, and pentanol can be used, and alcohols with lower boiling points are preferable because drying operations are easier. Further, organic solvents other than alcohol may be added. Removal of water-soluble boron compounds by alcohol is thought to occur as follows. That is, taking methanol as an example of alcohol, B 2 O 3 +6CH 3 OH→2B(OCH 3 ) 3 +3H 2 O…(4) H 3 BO 3 +3CH 3 OH→B(OCH 3 ) 3 +3H 2 O… (5) Boric acid esters (such as B(OCH 3 ) 3 ) have a low boiling point, so the boron component evaporates as boric ester when drying. Alcohol may be added to the powder, or
The powder may also be soaked in alcohol. It is effective to stir at this time. Upon addition of alcohol or immersion in alcohol, the ratio of alcohol to powder ranges from 0.05 to 100 alcohol/powder. If the amount of alcohol is small, the surface of the powder cannot be sufficiently wetted with alcohol, and unreacted portions remain. Too much alcohol is not economical. Preferably alcohol/powder is 0.5-20
is within the range of It is desirable that BN be sufficiently dry when adding alcohol or immersing it in alcohol. If drying is insufficient and a lot of moisture remains,
Reduction of water-soluble boron compounds is not performed effectively. In the presence of large amounts of water, hydrolysis of boric acid esters [B(OCH 3 ) 3, etc.] (i.e., (4),
It is presumed that the boron compound does not volatilize because the reverse reaction of equation (5) occurs. Furthermore, even if alcohol is added to BN powder that contains a large amount of water-soluble impurities, water-soluble boron compounds are not effectively reduced. In other words, by treating BN powder with a reduced amount of water-soluble boron compounds to a certain extent with alcohol, it is possible to effectively obtain BN powder with a reduced amount of water-soluble boron compounds. This is because when a large amount of water-soluble impurities are contained, a large amount of H 2 O is produced by the reaction (4) or (5), and the reaction stops after it has progressed to a certain extent, making it less efficient. It is assumed that water-soluble boron compounds are not reduced. Alcohol treatment is sufficiently effective as long as water-soluble boron compounds are reduced to a certain extent, so the conditions for water washing and subsequent drying are not limited to the above-mentioned ranges. The amount of water-soluble boron before alcohol treatment is preferably 500 ppm or less. Preferably it is 200 ppm or less. Even during drying after addition of alcohol or immersion in alcohol, water generated by the reactions (2) and (3) or water in the drying atmosphere may
Since hydration of BN occurs, it is desirable to take the same precautions and operations as drying after water washing. In this case as well, the drying method is not specified. The BN purified in this way has extremely low water-soluble boron compounds of less than 100 μg/g-BN, has a high purity that cannot be obtained with conventional methods, and has a small particle size with a specific surface area of 5 m 2 /g. Because, c-
Suitable as BN raw material. In addition, the present invention uses a wet method instead of a dry method to achieve high purity.
Being able to produce BN is an industrially extremely advantageous method. High purity obtained with less water-soluble boron
BN can be fully applied to new fields that will be developed in the future. [Example] (Example 1) Purification was carried out by washing using BN powder having a specific surface area of 7.2 m 2 /g and an impurity oxygen content of 4.3%. A 0.5% aqueous solution 5 of an ethylene alcohol-based anionic surfactant having an HLB value of 14 was heated to 90°C, 250 g of BN powder was dispersed therein, and the mixture was maintained for 1 hour while stirring. Vacuum filter the slurry to obtain a cake. Thereafter, the cake was redispersed in water, stirred and washed, and vacuum filtered to obtain a cake. This procedure was repeated twice. The cake was dried with hot air at 100°C for 24 hours to obtain BN powder. When the amount of boron in the extraction water of the BN powder obtained in this way was determined at 100℃, it was found to be 185μg/g-
It was BN. After washing, add 1.5 times the amount of ethanol to the powder,
After stirring, it was dried in a hot air dryer at 80°C for 15 hours. When the amount of boron in the extraction water of the obtained BN powder at 100°C was determined, it was 75 μg/g-BN. (Comparative Example 1) On the other hand, as Comparative Example 1, the above-mentioned cake after being washed with water twice was used, and the cake was washed with water again and filtered under vacuum to obtain a cake. This cake was dried at 100°C for 24 hours, and the amount of boron in the extraction water of the obtained BN powder at 100°C was determined to be 141 ppm. (Example 2) BN powder having a specific surface area of 9.6 m 2 /g was washed in the same manner as in Example 1, and a cake was obtained after washing three times with water. This cake was vacuum dried at 95°C, 10 torr, and 12 hours. The amount of boron in the extraction water of the obtained BN powder at 100°C was 126 μg/g-BN. Two times the amount of methanol was added to this dry powder, stirred, and then dried at 75°C for 12 hours. obtained
When the amount of boron in the water extracted from the BN powder at 100°C was determined, it was 73 μg/g-BN. (Comparative Example 2) On the other hand, as a comparative example, the cake after washing with water four times was
After vacuum drying at 95℃, 100torr for 12 hours,
The amount of boron in the extraction water at 100℃ is 121μg/g-BN
It was hot. (Example 3) BN with impurity oxygen content of 6.3% and specific surface area of 8.3 m 2 /g
The amount of boron in the extracted water after washing the powder with water at 100℃
A dried BN powder having a concentration of 210 μg/g-BN was obtained. this
After adding the same amount of methanol to the BN powder and stirring it, we dried it in a hot air dryer at 80℃ for 15 hours.
The amount of boron in the extraction water at 100℃ is 72μg/g-BN.
BN powder was obtained. (Comparative example 3) On the other hand, impurity oxygen content 6.3%, specific surface area 8.3m 2 /g
After adding the same amount of methanol to the BN powder and stirring,
I dried it in a hot air dryer at 80℃ for 15 hours, but this
The amount of boron in the extraction water of BN powder at 100℃ is 2350μg/
It was g-BN. (Example 4), (Comparative Example 4) High purity BN with different specific surface areas according to Example 1
A powder was produced, and the powder was compacted under a surface pressure of 1 ton/cm 2 . Table 1 shows the molding bulk density and molding workability.

【表】 表から明らかなように、本発明になるBN粉の
成形かさ密度は上昇しており、成形も容易であ
る。 (実施例 5) 比表面積6.0m2/g、不純物酸素量5.2%のBN
粉を用い、洗浄による精製を行つた。実施例1に
準じて洗浄を行い、水洗浄4回後のケーキを得
た。真空乾燥機を用い、このケーキを60℃10時間
で乾燥を終了させた。このようにして得られた
BN粉の100℃での抽出水中の硼素量は23μg/g
−BNであつた。 抽出硼素量23μg/g−BNの粉末1重量部に
対し、3重量部のエタノールを加え撹拌後、熱風
乾燥機を用い、50℃,6時間で乾燥させ、精製
BN粉を得た。この精製BN粉の100℃での抽出水
中の硼素量は7μg/g−BNであつた。 [発明の効果] 以上の説明から明らかなように、本発明にあつ
ては、水可溶性硼素化合物の含有量を低くしたこ
とにより、c−BNの収率を向上し、また、得ら
れる製品の強度も向上させる効果がある。 また、本発明によれば六方晶窒化硼素の粒径を
小さくでき、比表面積を大きくしたことにより、
BN成形体の密度を上げることが可能となり、従
来のものに比して製造コストを低くできる効果が
ある。
[Table] As is clear from the table, the molded bulk density of the BN powder according to the present invention is increased, and molding is easy. (Example 5) BN with specific surface area 6.0m 2 /g and impurity oxygen content 5.2%
The powder was used for purification by washing. Washing was carried out according to Example 1, and a cake was obtained after washing with water four times. This cake was dried at 60° C. for 10 hours using a vacuum dryer. obtained in this way
The amount of boron in the extraction water of BN powder at 100℃ is 23μg/g
-It was BN. 3 parts by weight of ethanol was added to 1 part by weight of BN powder with an extracted boron content of 23 μg/g, and after stirring, it was dried using a hot air dryer at 50°C for 6 hours to purify it.
Obtained BN powder. The amount of boron in the extraction water of this purified BN powder at 100°C was 7 μg/g-BN. [Effects of the Invention] As is clear from the above explanation, in the present invention, by lowering the content of water-soluble boron compounds, the yield of c-BN can be improved, and the resulting product can be improved. It also has the effect of improving strength. In addition, according to the present invention, the particle size of hexagonal boron nitride can be reduced and the specific surface area can be increased.
It is possible to increase the density of the BN molded body, which has the effect of lowering manufacturing costs compared to conventional products.

Claims (1)

【特許請求の範囲】[Claims] 1 比表面積が5m2/g以上の六方晶窒化硼素を
水または熱水に分散させ、水可溶性硼素化合物を
洗浄除去し、乾燥させた後、アルコールを添加
し、若しくはアルコール中に浸漬し、然る後再度
乾燥して得られた窒化硼素であつて、純水で煮沸
浸出した時の抽出水の硼素量が100μg/g−BN
以下であることを特徴とする六方晶窒化硼素の製
造方法。
1 Disperse hexagonal boron nitride with a specific surface area of 5 m 2 /g or more in water or hot water, wash and remove water-soluble boron compounds, dry it, then add alcohol or immerse it in alcohol, and The boron nitride obtained by drying again after boiling with pure water has a boron content of 100μg/g-BN in the extracted water.
A method for producing hexagonal boron nitride, characterized by the following:
JP31710287A 1987-12-15 1987-12-15 Hexagonal system boron nitride and its production Granted JPH01157409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31710287A JPH01157409A (en) 1987-12-15 1987-12-15 Hexagonal system boron nitride and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31710287A JPH01157409A (en) 1987-12-15 1987-12-15 Hexagonal system boron nitride and its production

Publications (2)

Publication Number Publication Date
JPH01157409A JPH01157409A (en) 1989-06-20
JPH0551525B2 true JPH0551525B2 (en) 1993-08-02

Family

ID=18084459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31710287A Granted JPH01157409A (en) 1987-12-15 1987-12-15 Hexagonal system boron nitride and its production

Country Status (1)

Country Link
JP (1) JPH01157409A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0424094A1 (en) * 1989-10-17 1991-04-24 The Carborundum Company Process for producing a stable, purified boron nitride powder and product produced thereby
JP4518216B2 (en) * 1999-03-26 2010-08-04 三菱瓦斯化学株式会社 Method for cleaning granular solids by vacuum filtration
JP6060060B2 (en) * 2012-10-11 2017-01-11 水島合金鉄株式会社 High oil-absorbing boron nitride powder and cosmetics with excellent heat dissipation

Also Published As

Publication number Publication date
JPH01157409A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
JPH0550442B2 (en)
US4520114A (en) Production of metastable tetragonal zirconia
CN1030393A (en) Mixed metal oxide powders manufacture method and mixed metal oxide powders
Kevorkijan et al. Low-temperature synthesis of sinterable SiC powders by carbothermic reduction of colloidal SiO 2
JP7165070B2 (en) Hexagonal boron nitride powder and method for producing the same
EP0391447B1 (en) Method for production of inorganic oxide particles
CN109641752A (en) Method for obtaining graphene oxide
CN109264680A (en) The method for preparing high-purity ultra-fine aluminum nitride powder based on aluminium alcoholates Hydrolyze method
JP2634211B2 (en) Method for producing titanium dioxide powder
US4756482A (en) Process for the manufacture of sinterable silicon carbide and/or boron carbide powders
US4997633A (en) Water-soluble boron containing impurity reduced hexagonally crystalline boron nitride
JPH0551525B2 (en)
JPH0653564B2 (en) Method for purifying hexagonal boron nitride
JPH0553724B2 (en)
JPS5939366B2 (en) Manufacturing method of zirconium oxide fine powder
CN1029094C (en) Super fine copper powder and its preparation technology
CN108101532B (en) Predictive SrTiO3/CaTiO3Preparation method of composite energy storage ceramic
JPH04164805A (en) Production of high-purity hexagonal boron nitride powder
US4774068A (en) Method for production of mullite of high purity
US4526772A (en) Basic aluminum sulfate and process for production thereof
JPS6291409A (en) Production of easy-to-sinter boron nitride powder
CN108910947B (en) Thin-sheet micro-nano (K, Na) NbO3Crystal and method for producing same
CN1342609A (en) Process for preparing high-purity nm or submicron alumina particles in losse form
CN1112323C (en) Method for producing high-purity mangano-manganic oxide
JPH09278443A (en) Titanium oxide particulates and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees