JPH0553724B2 - - Google Patents

Info

Publication number
JPH0553724B2
JPH0553724B2 JP31710387A JP31710387A JPH0553724B2 JP H0553724 B2 JPH0553724 B2 JP H0553724B2 JP 31710387 A JP31710387 A JP 31710387A JP 31710387 A JP31710387 A JP 31710387A JP H0553724 B2 JPH0553724 B2 JP H0553724B2
Authority
JP
Japan
Prior art keywords
water
powder
boron
soluble
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31710387A
Other languages
Japanese (ja)
Other versions
JPH01160811A (en
Inventor
Eizo Maeda
Toshihiko Funabashi
Ryoji Uchimura
Takahisa Koshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31710387A priority Critical patent/JPH01160811A/en
Publication of JPH01160811A publication Critical patent/JPH01160811A/en
Publication of JPH0553724B2 publication Critical patent/JPH0553724B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は六方晶窒化硼素に関し、特に水可溶性
硼素化合物の少ない六方晶窒化硼素を提供するこ
とにある。 [従来の技術] 六方晶窒化硼素(以下窒化硼素をBNという)
粉末は白色で黒鉛と同様に層状構造であり種々の
特性を有している。特に熱伝導性、電気絶縁性、
化学安定性、潤滑性、耐熱性などが優れており、
これらの性質を生かして多岐の用途に供されてい
る。粉末としての用途にはプラスチツク添加剤、
潤滑剤などの使用法が多い。 最近では電子技術の進歩に従つて、BNの耐熱
性、電気絶縁性を利用した充填剤、添加剤の用途
において高純度のBNの要求が多くなつてきてい
る。 また、BNを高温高圧処理することで立方晶窒
化硼素(c−BN)が得られるためこの原料とし
ても使用される。c−BN原料としてのBNには、
高純度が要求される。また、c−BNを作る時に
は予めBNを成形するが、この成形体の密度が小
さいとc−BNの収率が低下する等の不都合があ
る。 従来高純度のBNの製造方法は、大別すると次
の2つの方法に分類される。 (1) 高温に加熱して不純物を蒸発、あるいは分解
除去する方法(特開昭58−60603号公報記載の
発明および特開昭58−181708号公報記載の発
明)。 (2) 三塩化硼素とアンモニアから次式により高純
度なBNを得る方法。 BCl3+NH3→BN+3HCl ……(1) [発明が解決しようとする問題点] 前記方法(1)によれば、BNを高温加熱すること
によつて不純物の酸素成分は分解揮発し、除去す
ることができる。しかし酸素成分は、充填層厚が
薄い少量処理の場合には簡単に試料充填層外に熱
対流、拡散により除去できるが、大量の処理では
ガス状で充填層内に残留し冷却過程で凝固しBN
表面あるいは粒子間に不純物として析出する。こ
のため前記方法(1)は大量処理が困難な方法であ
り、また高温処理のためエネルギーコストも高価
になる。 さらに、前記(2)のBCl3とNH3から高純度のBN
を製造する方法では、高純度のものは得られるが
高結晶質のBNは得難く、絶縁性、熱伝導性にお
いて劣る欠点があり、加水分解性も結晶質のBN
に比べて大きい。また、工業的に大量生産する
際、製造コストが上昇するという欠点があつた。 上記問題点を解決するために発明者らは特開昭
62−176904号公報において、水可溶性硼素化合物
の少ないBN粉およびその製造方法を開示した。
しかし、発明者らのその後の研究の結果、BN成
形体のかさ密度を上げるためには、粒径が小さい
ことが有効であることが判明した。 すなわち、水可溶性硼素化合物の少ない窒化硼
素の製造の最終工程である乾燥工程において、洗
浄により精製したBNが若干加水分解されるが、
この加水分解の度合はBN粉の粒径の細かいほ
ど、換言すれば比表面積が大きいほど多く、従つ
て、微細なBN粉を高純度にするには多くの困難
があつた。BNの加水分解を式で示すと次のよう
になる。 2BN+3H2O→B2O3+2NH3 ……(2) BN+3H2O→H3BO3+NH3 ……(3) [問題点を解決するための手段] そこで、本発明は粒径が小さく水可溶性硼素化
合物の少ないBNを得るためには、 表面の水可溶性硼素化合物を適切な分散剤と
水を使い十分に清浄除去すること、 かつ、加水分解を少量におさえるために低温
かつ短時間で乾燥させること、 が必要であることを見い出し、本発明にいたつ
た。 すなわち本発明の要旨とすることろは、比表面
積5m2/g以上の微細かつ純水で煮沸した時の抽
出水中の硼素が100μg/g−BN以下の高純度結
晶質BNであつて、水可溶性硼素の量がBNを煮
沸浸出した水中に100μg/g−BN以下である水
可溶性硼素化合物の少ない六方晶窒化硼素であ
る。次にその製造方法としては、六方晶窒化硼素
粉末を水に分散させ、水可溶性硼素化合物を繰り
返し洗浄除去した後、乾燥時間をa[時間]、乾燥
温度をb[℃]としたとき、 a/2+b≦100 を満足する条件で乾燥させることを特徴とする水
可溶性硼素化合物の少ない六方晶窒化硼素の製造
方法である。 [作用] 水可溶性硼素量はBNを純水で煮沸浸出し、そ
の抽出液中の硼素量を定量することによつて決定
されるが、水可溶性硼素は100μg/g−BNであ
ることが望ましい。100μg/g−BNより多いと
c−BNの収率の悪いばかりでなく、得られる製
品の強度も悪くなるのである。好ましくは、水可
溶性硼素が50μg/g−BN以下である。 粒径の大小は比表面積を指標として示される。
高純度BN粉の比表面積は5m2/g以下であるこ
とが望ましい。5m2/gより小さいと成形かさ密
度が小さくなりc−BNの収率が低下する。好ま
しくは7m2/g以上である。 本発明の製造方法について詳細に説明する。 通常BN粉には不純物として1〜20%の酸素が
含まれる。この酸素は硼素と結合して酸化硼素と
して存在し、また、時に酸化硼素が水和し、硼素
として存在する。これらの酸化硼素あるいは硼酸
はたいへん水に溶け易い。したがつて、水可溶性
硼素化合物の少ない六方晶BNを得ようとすると
き、これら易溶解性の物質を水で洗浄除去するこ
とが有効である。 水可溶性硼素化合物を効果的に洗浄除去するた
めには、結晶質BN粉末が水または熱水中によく
分散させる必要がある。BN粉は水に漏れにくく
そのままでは水に分散せず、このため洗浄操作も
容易に進行しなくなる。水に分散させる際、分散
剤を使用すると効果的である。分散剤としては、 (1) 分子中の親水基と親油基の両者の釣り合いを
示すHLB(Hydrophile−Lipophile Balance)
値で10〜16の範囲にあるアニオン系、ノニオン
系、カチオン系いずれかの界面活性剤。 (2) あるいは水可溶性有機溶媒水溶液などが使用
できる。 界面活性剤としては、HLB値が10〜16の範囲
を示すものが洗浄効果が高く、例えば、ポリオキ
シエチレン(5)ソルビタンモノステアレート、ポリ
オキシエチレン(4)ソルビタントリオレエート、ポ
リオキシエチレングリコール400モノオレエート、
トリエタノールアミンオレエート、ポリオキシエ
チレン(9)ノニルフエノール、ポリエチレングリコ
ール400モノオレエート、トリエタノールアミン
オレエート、ポリオキシエチレン(9)ノニルフエノ
ール、ポリエチレングリコール400モノラウレー
ト、ポリオキシエチレン(4)ソルビタンモラウレー
トなどが使用できる。 界面活性剤の濃度は0.001〜5重量%の範囲が
好ましい。この理由は5重量%を越えるとそれ以
上添加しても分散効果に差がなく過剰に添加して
も経済的に好ましくないからである。また0.001
重量%未満ではその効果が十分発現されないから
である。 水可溶性有機溶媒としては、メチルアルコー
ル、エチルアルコール、グリコール、グリセリン
などのアルコール類およびアセトン、アセチルア
セトン、エチルアミン、アセトアルデヒド、フエ
ノールなどが使用できる。 水可溶性有機溶媒ではメチルアルコール、エチ
ルアルコールが価格、入手の容易さから最も適し
ている。BN粉末の洗浄液中への分散方法はまず
BN粉末を水可溶性有機溶媒、例えばメチルアル
コール、エチルアルコールなどに分散させて高濃
度のスラリー状にした後、洗浄水に添加すれば、
アルコールの使用量も少なくてよく分散性も非常
に良好であつた。また水可溶性有機溶媒と界面活
性剤の併用はさらに効果的である。 洗浄液の温度は設定しないが、高温ほど可溶性
硼素化合物の溶解は効果的となる。また、BN粉
を分散させたスラリーを十分に攪拌することで溶
解が短時間かつ、効果的に行われることから、十
分に攪拌することが望ましい。 洗浄の際のスラリー濃度は薄いほど洗浄効果は
大きいが、経済性の面から最適な範囲がある。上
限はBNが50重量%のスラリーである。これ以上
濃くなると攪拌が均一に十分行われず、攪拌イン
ペラや容器壁との摩擦も大きくなり不純物の混入
の原因になる。 下限を特定する積極的な理由は乏しいが経済性
の点から2.5重量%まで好ましい。 スラリーの攪拌は、通常攪拌、高速攪拌あるい
は剪断力に基づく分散など洗浄装置の形状に従つ
て最も効果的な方法を採用することができる。こ
のときの操作は連続式、バツチ式いずれの方法に
よつても良い。 洗浄後のスラリーは脱水することが効果的であ
る。脱水は遠心脱水、真空脱水、加圧脱水自然沈
降による脱水、あるいは濾過、吸引濾過、加圧濾
過のいずれの方法をとつても良い。 また、脱水後のBN粉を繰り返し洗浄すると一
層効果的である。 水可溶性硼素化合物の少ないBN粉を得るため
には、最終の乾燥工程を注意深く行う必要があ
る。すなわち、洗浄を十分行うことによりBN粉
からの可溶性硼素化合物は殆ど除去されるが、乾
燥時BNが加水分解され可溶性硼素化合物が増加
してしまうのである。特に、比表面積が5m2/g
より大きい微粉はこの傾向が大きいのである。 乾燥工程においてはBNの加水分解を極力おさ
えなければならない。BNの加水分解をおさえる
ためには、乾燥時間をa[時間]、乾燥温度をb
[℃]としたとき、 a/2+b≦100 とすることが望ましい。 (a/2+b)が100より大きくなると、すなわ ち、乾燥温度が高くなるか、あるいは、乾燥時間
が長くなると、水可溶性硼素化合物が増加する。
好ましくは、a/2+b≦80である。 上記条件を満足すれば、乾燥方法は特定されな
い。熱風乾燥、温風乾燥、通常乾燥、真空乾燥、
コールドドライなど各種乾燥方法が使用できる。 このようにして精製されたBNは、特に水可溶
性硼素化合物が著しく少なく、従来法では得られ
ない高純度であり、かつ、粒径が小さいため、c
−BN原料として適している。 また本発明は乾式法によらず湿式法で高純度の
BNを製造し得ることは工業的に極めて有利な方
法である。得られた水可溶性硼素の少ない高純度
BNは今後開拓が進むであろう新たな分野におい
て十分適用できる。 [実施例] 実施例 1 比表面積の異なるBNを使用し洗浄による精製
を行つた。 HLB値が14のエチレンアルコール系のアニオ
ン系界面活性剤の0.5%水溶液5を90℃に加熱
し、BN粉250gを分散させた後、攪拌しながら
1時間保持した。スラリーを真空濾過し、ケーキ
を得る。その後ケーキを水に再分散させ攪拌洗浄
後、真空濾過しケーキを得るという操作を2回繰
り返した。 ケーキを60℃、24時間熱風乾燥し、BN粉を得
た。このようにして得たBN粉末の100℃での抽
出水中の硼素量を定量した。 また、比較例として同一ケーキを100℃、24時
間熱風乾燥し、同様に抽出硼素量を定量した。 結果を第1表に示す。
[Industrial Application Field] The present invention relates to hexagonal boron nitride, and in particular, it is an object of the present invention to provide hexagonal boron nitride containing less water-soluble boron compounds. [Conventional technology] Hexagonal boron nitride (hereinafter boron nitride is referred to as BN)
The powder is white, has a layered structure similar to graphite, and has various properties. Especially thermal conductivity, electrical insulation,
It has excellent chemical stability, lubricity, heat resistance, etc.
Taking advantage of these properties, it is used for a wide variety of purposes. For powder applications, plastic additives,
It is often used as a lubricant. Recently, with advances in electronic technology, there has been an increasing demand for high-purity BN in applications such as fillers and additives that take advantage of BN's heat resistance and electrical insulation properties. In addition, cubic boron nitride (c-BN) can be obtained by subjecting BN to high-temperature and high-pressure treatment, and therefore it is also used as a raw material for this. BN as a c-BN raw material includes:
High purity is required. Furthermore, when producing c-BN, BN is molded in advance, but if the density of this molded product is low, there are disadvantages such as a decrease in the yield of c-BN. Conventional methods for producing high-purity BN can be broadly classified into the following two methods. (1) A method of evaporating or decomposing impurities by heating to a high temperature (invention described in JP-A-58-60603 and invention described in JP-A-58-181708). (2) A method to obtain high purity BN from boron trichloride and ammonia using the following formula. BCl 3 +NH 3 →BN+3HCl ...(1) [Problems to be solved by the invention] According to the method (1) above, by heating BN at a high temperature, the impurity oxygen component is decomposed and volatilized and removed. be able to. However, when processing a small amount of sample with a thin packed bed, the oxygen component can be easily removed by thermal convection and diffusion outside the sample packed bed, but when processing a large amount, it remains in the packed bed in a gaseous state and solidifies during the cooling process. BN
It precipitates as an impurity on the surface or between particles. For this reason, method (1) is difficult to process in large quantities, and energy costs are also high due to high temperature processing. Furthermore, high purity BN is obtained from BCl 3 and NH 3 in (2) above.
Although it is possible to obtain highly pure BN, it is difficult to obtain highly crystalline BN, which has the disadvantage of inferior insulation and thermal conductivity, and the hydrolyzability is lower than that of crystalline BN.
larger than. In addition, when mass-producing it industrially, there is a drawback that the manufacturing cost increases. In order to solve the above problems, the inventors
62-176904 discloses a BN powder containing less water-soluble boron compounds and a method for producing the same.
However, as a result of subsequent research by the inventors, it was found that a small particle size is effective in increasing the bulk density of a BN molded product. That is, in the drying step, which is the final step in the production of boron nitride that contains few water-soluble boron compounds, the BN purified by washing is slightly hydrolyzed;
The degree of this hydrolysis increases as the particle size of the BN powder becomes finer, in other words, as the specific surface area increases, there are many difficulties in making fine BN powder highly pure. The formula for the hydrolysis of BN is as follows. 2BN+3H 2 O→B 2 O 3 +2NH 3 ...(2) BN+3H 2 O→H 3 BO 3 +NH 3 ...(3) [Means for Solving the Problems] Therefore, the present invention is designed to solve the problem by using water with a small particle size. In order to obtain BN with less soluble boron compounds, the water-soluble boron compounds on the surface must be sufficiently cleaned and removed using an appropriate dispersant and water, and the material must be dried at low temperatures and in a short time to minimize hydrolysis. They discovered that it is necessary to do this, and came up with the present invention. In other words, the gist of the present invention is to provide high-purity crystalline BN with a specific surface area of 5 m 2 /g or more and a boron content of 100 μg/g-BN or less in the extracted water when boiled with pure water. It is hexagonal boron nitride with a low amount of water-soluble boron compounds, and the amount of soluble boron in the water from which BN is boiled and leached is 100 μg/g-BN or less. Next, as a manufacturing method, hexagonal boron nitride powder is dispersed in water, water-soluble boron compounds are repeatedly washed and removed, and when the drying time is a [hours] and the drying temperature is b [℃], a This is a method for producing hexagonal boron nitride containing less water-soluble boron compounds, characterized by drying under conditions satisfying /2+b≦100. [Effect] The amount of water-soluble boron is determined by boiling and leaching BN with pure water and quantifying the amount of boron in the extract, but it is desirable that the water-soluble boron is 100 μg/g-BN. . If the amount exceeds 100 μg/g-BN, not only the yield of c-BN will be poor, but also the strength of the obtained product will be poor. Preferably, the water-soluble boron content is 50 μg/g-BN or less. The particle size is indicated using the specific surface area as an index.
It is desirable that the specific surface area of the high-purity BN powder is 5 m 2 /g or less. When it is less than 5 m 2 /g, the molded bulk density becomes small and the yield of c-BN decreases. Preferably it is 7 m 2 /g or more. The manufacturing method of the present invention will be explained in detail. Normally, BN powder contains 1 to 20% oxygen as an impurity. This oxygen combines with boron and exists as boron oxide, and sometimes boron oxide is hydrated and exists as boron. These boron oxides or boric acids are highly soluble in water. Therefore, when attempting to obtain hexagonal BN with less water-soluble boron compounds, it is effective to wash and remove these easily soluble substances with water. In order to effectively wash and remove water-soluble boron compounds, the crystalline BN powder needs to be well dispersed in water or hot water. BN powder does not easily leak into water and does not disperse in water as it is, making cleaning operations difficult. When dispersing in water, it is effective to use a dispersant. As a dispersant, (1) HLB (Hydrophile-Lipophile Balance), which indicates the balance between hydrophilic groups and lipophilic groups in the molecule;
Anionic, nonionic, or cationic surfactants with values ranging from 10 to 16. (2) Alternatively, an aqueous solution of a water-soluble organic solvent can be used. As surfactants, those with an HLB value in the range of 10 to 16 have a high cleaning effect, such as polyoxyethylene (5) sorbitan monostearate, polyoxyethylene (4) sorbitan trioleate, and polyoxyethylene glycol. 400 monooleate,
Triethanolamine oleate, polyoxyethylene (9) nonylphenol, polyethylene glycol 400 monooleate, triethanolamine oleate, polyoxyethylene (9) nonylphenol, polyethylene glycol 400 monolaurate, polyoxyethylene (4) sorbitan molaurate Rates etc. can be used. The concentration of the surfactant is preferably in the range of 0.001 to 5% by weight. The reason for this is that if the amount exceeds 5% by weight, there is no difference in the dispersion effect even if more than 5% by weight is added, and it is economically undesirable to add too much. Also 0.001
This is because if the amount is less than % by weight, the effect will not be sufficiently expressed. As the water-soluble organic solvent, alcohols such as methyl alcohol, ethyl alcohol, glycol, and glycerin, and acetone, acetylacetone, ethylamine, acetaldehyde, and phenol can be used. Among water-soluble organic solvents, methyl alcohol and ethyl alcohol are the most suitable in terms of price and availability. First, the method for dispersing BN powder into the cleaning solution is as follows.
If BN powder is dispersed in a water-soluble organic solvent such as methyl alcohol or ethyl alcohol to form a highly concentrated slurry and then added to the cleaning water,
The amount of alcohol used was small and the dispersibility was very good. Moreover, the combination of a water-soluble organic solvent and a surfactant is even more effective. Although the temperature of the cleaning solution is not set, the higher the temperature, the more effectively the soluble boron compound can be dissolved. Further, by sufficiently stirring the slurry in which the BN powder is dispersed, dissolution can be performed effectively in a short period of time, so it is desirable to sufficiently stir the slurry. The thinner the slurry concentration during cleaning, the greater the cleaning effect, but there is an optimal range from an economic standpoint. The upper limit is a slurry containing 50% by weight of BN. If it becomes thicker than this, stirring will not be done uniformly and sufficiently, and friction with the stirring impeller and the container wall will also increase, causing contamination of impurities. Although there is little positive reason to specify the lower limit, from the point of view of economy, it is preferably up to 2.5% by weight. For stirring the slurry, the most effective method can be adopted depending on the shape of the cleaning device, such as normal stirring, high-speed stirring, or dispersion based on shear force. The operation at this time may be either a continuous method or a batch method. It is effective to dehydrate the slurry after washing. Dehydration may be performed by centrifugal dehydration, vacuum dehydration, pressure dehydration, dehydration by natural sedimentation, filtration, suction filtration, or pressure filtration. Moreover, it is more effective to repeatedly wash the BN powder after dehydration. In order to obtain BN powder with a low content of water-soluble boron compounds, the final drying process must be carefully performed. That is, although most of the soluble boron compounds from the BN powder are removed by thorough washing, the BN is hydrolyzed during drying and the soluble boron compounds increase. In particular, the specific surface area is 5 m 2 /g
This tendency is greater for larger fine particles. In the drying process, hydrolysis of BN must be suppressed as much as possible. In order to suppress the hydrolysis of BN, the drying time should be set to a [hour] and the drying temperature to be set to b.
When it is [°C], it is desirable that a/2+b≦100. When (a/2+b) becomes larger than 100, that is, when the drying temperature becomes high or the drying time becomes long, the amount of water-soluble boron compounds increases.
Preferably, a/2+b≦80. If the above conditions are satisfied, the drying method is not specified. Hot air drying, hot air drying, normal drying, vacuum drying,
Various drying methods such as cold drying can be used. The BN purified in this way has a significantly lower content of water-soluble boron compounds, has a high purity that cannot be obtained by conventional methods, and has a small particle size.
-Suitable as BN raw material. In addition, the present invention uses a wet method instead of a dry method to achieve high purity.
Being able to produce BN is an industrially extremely advantageous method. High purity obtained with less water-soluble boron
BN can be fully applied to new fields that will be developed in the future. [Examples] Example 1 Purification by washing was performed using BNs with different specific surface areas. A 0.5% aqueous solution 5 of an ethylene alcohol-based anionic surfactant having an HLB value of 14 was heated to 90°C, 250 g of BN powder was dispersed therein, and the mixture was held for 1 hour while stirring. Vacuum filter the slurry to obtain a cake. Thereafter, the cake was redispersed in water, stirred and washed, and vacuum filtered to obtain a cake. This procedure was repeated twice. The cake was dried with hot air at 60°C for 24 hours to obtain BN powder. The amount of boron in the extraction water of the BN powder thus obtained at 100°C was determined. Further, as a comparative example, the same cake was dried with hot air at 100°C for 24 hours, and the amount of extracted boron was determined in the same manner. The results are shown in Table 1.

【表】 表から明らかなように本発明になる方法によつ
て抽出水中B量が100ppm以下の微細なBN粉を
得ることが可能となる。 実施例 2 実施例1に準じて比表面積の異なる高純度BN
粉を製造し、その粉末を面圧1ton/cm2の圧力で成
形した。成形かさ密度と成形作業性を表2に示
す。
[Table] As is clear from the table, the method of the present invention makes it possible to obtain fine BN powder with an amount of B in the extraction water of 100 ppm or less. Example 2 High purity BN with different specific surface area according to Example 1
A powder was produced, and the powder was compacted under a surface pressure of 1 ton/cm 2 . Table 2 shows the molding bulk density and molding workability.

【表】 表から明らかなように、本発明になるBN粉の
成形かさ密度は上昇しており、成形も容易であ
る。 実施例 3 比表面積9.6m2/gのBN粉を実施例1と同様に
洗浄し、ケーキを得た。乾燥条件を変えてこのケ
ーキの乾燥し、同様に抽出硼素量を測定した。 結果を第1図に示す。中の数字はそれぞれの乾
燥条件で得られた粉末の抽出硼素量を示す。図か
ら本発明になる方法によつて抽出硼素量100ppm
以下の微細BN粉を得ることができることが明ら
かになる。 実施例 4 比表面積6.5m2/gのBN粉を実施例1に準じて
洗浄を行い、水洗浄4回後のケーキを得た。真空
乾燥機を用い、このケーキを50℃、7時間で乾燥
を終了させた。このようにして得たBN粉の100
℃での抽出水中の硼素量を定量したところ9μ
g/g−BNであつた。 [発明の効果] 以上の説明から明らかなように、本発明にあつ
ては、水可溶性硼素化合物の含有量を低くしたこ
とにより、c−BNの収率を向上し、また、得ら
れる製品の強度も向上させる効果がある。 また、本発明によれば六方晶窒化硼素の粒径を
小さくでき、比表面積を大きくしたことにより、
BN成形体の密度を上げることが可能となり、従
来のものに比して製造コストを低くできる効果が
ある。
[Table] As is clear from the table, the molded bulk density of the BN powder according to the present invention is increased, and molding is easy. Example 3 BN powder having a specific surface area of 9.6 m 2 /g was washed in the same manner as in Example 1 to obtain a cake. This cake was dried under different drying conditions, and the amount of extracted boron was measured in the same manner. The results are shown in Figure 1. The numbers inside indicate the amount of boron extracted from the powder obtained under each drying condition. From the figure, the amount of boron extracted by the method of the present invention is 100ppm.
It becomes clear that the following fine BN powder can be obtained. Example 4 BN powder having a specific surface area of 6.5 m 2 /g was washed according to Example 1 to obtain a cake after washing with water four times. This cake was dried using a vacuum dryer at 50° C. for 7 hours. 100 of the BN powder thus obtained
The amount of boron in the extracted water at ℃ was determined to be 9μ.
g/g-BN. [Effects of the Invention] As is clear from the above explanation, in the present invention, by lowering the content of water-soluble boron compounds, the yield of c-BN is improved and the resulting product is improved. It also has the effect of improving strength. In addition, according to the present invention, the particle size of hexagonal boron nitride can be reduced and the specific surface area can be increased.
It is possible to increase the density of the BN molded body, which has the effect of lowering manufacturing costs compared to conventional products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る六方晶窒化硼素の製造方
法の第3実施例において抽出硼素量を測定した結
果を示すグラフである。
FIG. 1 is a graph showing the results of measuring the amount of extracted boron in the third example of the method for producing hexagonal boron nitride according to the present invention.

【特許請求の範囲】[Claims]

1 弗化水素及び二弗化酸素を含有する三弗化窒
素ガスから弗化水素を100ppm以下となるまで除
去した後、または弗化水素含有量が100ppm以下
である三弗化窒素ガスを用いて、該三弗化窒素ガ
スをチオ硫酸ナトリウム、ヨウ化水素、硫化ナト
リウムからなる群より選ばれた少なくとも1種の
水溶液に接触させることを特徴とする三弗化窒素
ガスの精製方法。
1 After removing hydrogen fluoride from nitrogen trifluoride gas containing hydrogen fluoride and oxygen difluoride until it becomes 100 ppm or less, or using nitrogen trifluoride gas with a hydrogen fluoride content of 100 ppm or less A method for purifying nitrogen trifluoride gas, which comprises bringing the nitrogen trifluoride gas into contact with at least one aqueous solution selected from the group consisting of sodium thiosulfate, hydrogen iodide, and sodium sulfide.

JP31710387A 1987-12-15 1987-12-15 Production of hexagonal boron nitride Granted JPH01160811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31710387A JPH01160811A (en) 1987-12-15 1987-12-15 Production of hexagonal boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31710387A JPH01160811A (en) 1987-12-15 1987-12-15 Production of hexagonal boron nitride

Publications (2)

Publication Number Publication Date
JPH01160811A JPH01160811A (en) 1989-06-23
JPH0553724B2 true JPH0553724B2 (en) 1993-08-10

Family

ID=18084472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31710387A Granted JPH01160811A (en) 1987-12-15 1987-12-15 Production of hexagonal boron nitride

Country Status (1)

Country Link
JP (1) JPH01160811A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670100B2 (en) * 2006-03-01 2011-04-13 独立行政法人物質・材料研究機構 Method for purifying boron nitride nanotubes
JP6313707B2 (en) * 2012-09-28 2018-04-18 水島合金鉄株式会社 Highly water-repellent and oil-absorbing boron nitride powder for cosmetics, method for producing the same, and cosmetics
CN104684844B (en) * 2012-09-28 2016-11-09 水岛合金铁株式会社 Hydrophily/high oil-absorbing boron nitride powder and manufacture method thereof and cosmetic preparation

Also Published As

Publication number Publication date
JPH01160811A (en) 1989-06-23

Similar Documents

Publication Publication Date Title
US4543341A (en) Synthesis and processing of monosized oxide powders
Kevorkijan et al. Low-temperature synthesis of sinterable SiC powders by carbothermic reduction of colloidal SiO 2
US4520114A (en) Production of metastable tetragonal zirconia
US4853196A (en) Water-soluble boron containing impurity reduced hexagonally crystalline boron nitride and process for production thereof
JP7165070B2 (en) Hexagonal boron nitride powder and method for producing the same
CN1030393A (en) Mixed metal oxide powders manufacture method and mixed metal oxide powders
JP2634210B2 (en) Method for producing powdery barium titanate
CN101973578A (en) Water-based sol-gel method for preparing high-purity monodisperse barium titanate nanopowder
KR100481419B1 (en) Cerium and zirconium oxides, mixed oxides and solid solutions having improved thermal stability for catalysis of exhaust gas systems and methods of producing
CN111825093B (en) Preparation method of SiC nano powder particles
CN109264680A (en) The method for preparing high-purity ultra-fine aluminum nitride powder based on aluminium alcoholates Hydrolyze method
CN113200567A (en) High-sintering-activity zirconium oxide powder and preparation method thereof
AU609280B2 (en) Process for preparing submicronic powders of zirconium oxide stabilized with yttrium oxide
Kutty et al. Preparation of CaTiO3 fine powders by the hydrothermal method
JP2634211B2 (en) Method for producing titanium dioxide powder
US4756482A (en) Process for the manufacture of sinterable silicon carbide and/or boron carbide powders
JPH0553724B2 (en)
US4997633A (en) Water-soluble boron containing impurity reduced hexagonally crystalline boron nitride
JPH0653564B2 (en) Method for purifying hexagonal boron nitride
CN113247940A (en) Method for preparing neodymium oxide nanoparticles with small size by solid-phase sintering
CN1168785C (en) Process for preparing nano zirconium oxide powder
JPH0551525B2 (en)
Bhattacharyya et al. Preparation of tetragonal ZrO 2-Gd 2 O 3 powders
CN108101532B (en) Predictive SrTiO3/CaTiO3Preparation method of composite energy storage ceramic
JPH03141115A (en) Production of fine yttrium oxide powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees