JPH0550238B2 - - Google Patents

Info

Publication number
JPH0550238B2
JPH0550238B2 JP60186092A JP18609285A JPH0550238B2 JP H0550238 B2 JPH0550238 B2 JP H0550238B2 JP 60186092 A JP60186092 A JP 60186092A JP 18609285 A JP18609285 A JP 18609285A JP H0550238 B2 JPH0550238 B2 JP H0550238B2
Authority
JP
Japan
Prior art keywords
speed
signal
motor
feedback signal
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60186092A
Other languages
Japanese (ja)
Other versions
JPS6248284A (en
Inventor
Masayuki Nashiki
Satoshi Eguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP60186092A priority Critical patent/JPS6248284A/en
Publication of JPS6248284A publication Critical patent/JPS6248284A/en
Publication of JPH0550238B2 publication Critical patent/JPH0550238B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は電動機の制御方法に関し、殊に電動
機の速度制御性能を改善するのに好適な制御方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to a control method for an electric motor, and particularly to a control method suitable for improving the speed control performance of an electric motor.

従来技術 電動機を制御する方法として、電動機の出力を
測定し、該測定値と目標値との偏差が零となるよ
うに電動機の駆動電力を制御するフイードバツク
制御方法が知られている。例えば、電動機の回転
速度をタコジエネレータ等の速度検出器で計測し
て速度帰還信号を得、更に電動機の回転子位置を
パルスジエネレータ等の位置検出器で検出して位
置帰還信号を得る2重フイードバツク制御方法が
これである。また上記の速度検出器を省略し、位
置検出器からの信号の一定時間当りの変化量から
電動機の速度を算出し、これから速度帰還信号を
得るフイードバツク制御方法もある。これを第2
図を参照して説明する。
Prior Art As a method for controlling an electric motor, a feedback control method is known in which the output of the electric motor is measured and the driving power of the electric motor is controlled so that the deviation between the measured value and a target value becomes zero. For example, a double feedback method is used in which the rotational speed of the motor is measured with a speed detector such as a tachogenerator to obtain a speed feedback signal, and the rotor position of the motor is further detected with a position detector such as a pulse generator to obtain a position feedback signal. This is the control method. There is also a feedback control method in which the speed detector is omitted, the speed of the motor is calculated from the amount of change in the signal from the position detector per fixed time, and a speed feedback signal is obtained from this. This is the second
This will be explained with reference to the figures.

第2図において、例えばブラシレス3相交流電
動機1の3相電流の各々は、乗算器2,3,4か
ら出力される電流指令から、電流検出器5,6,
7の検出信号である電流帰還を減算器8,9,1
0にて減算し、更に増幅器11,12,13で電
力増幅して電動機1に供給するようになつてい
る。
In FIG. 2, for example, each of the three-phase currents of the brushless three-phase AC motor 1 is determined from the current command output from the multipliers 2, 3, 4 by the current detectors 5, 6,
The current feedback which is the detection signal of 7 is sent to subtracters 8, 9, 1
The power is subtracted by 0, the power is amplified by amplifiers 11, 12, and 13, and the power is supplied to the motor 1.

この電動機1には位置検出器14が機械的に連
結され、この位置検出器14から出力される位置
帰還信号は、減算器15、速度検出回路16およ
び3相正弦波発生器17に夫々入力される。減算
器15は回転子位置指令から位置帰還を減算して
速度指令を出力し、減算器18はこの速度指令に
よつて、速度検出回路16から出力される速度帰
還を減算する。この減算器18の出力をPiD補償
器19で増幅し、3相正弦波発生器17から出力
される位相が1/3ずつ異なる正弦波と、PiD補償
器19から出力される電流指令値とを前記の各乗
算器2,3,4に入力している。
A position detector 14 is mechanically connected to the electric motor 1, and a position feedback signal output from the position detector 14 is input to a subtracter 15, a speed detection circuit 16, and a three-phase sine wave generator 17, respectively. Ru. The subtracter 15 subtracts the position feedback from the rotor position command and outputs a speed command, and the subtracter 18 subtracts the speed feedback output from the speed detection circuit 16 based on this speed command. The output of the subtracter 18 is amplified by the PiD compensator 19, and the sine waves output from the three-phase sine wave generator 17 whose phases differ by 1/3 are combined with the current command value output from the PiD compensator 19. It is input to each of the multipliers 2, 3, and 4 mentioned above.

第3図は、位置検出器の一例であるレゾルバの
説明図である。レゾルバは、電気的に90゜の位置
に同じ巻線を配置した2相の1次巻線20,21
と、1相の2次巻線22とを有している。そして
1次巻線20に角周波数をω、電圧最大値をV1
とする瞬間電圧値=V1sinωtの交流正弦波を与
え、1次巻線21にこれと90゜移相した瞬間電圧
値=V1cosωtの交流余弦波を与えると、2次巻線
22に誘起される出力信号は、電圧最大値をV2
レゾルバの回転角をθとすると、 V2sinωt・cosθ+V2cosωt・sin(−θ)=V2si
n(ωt−θ)……(1) の正弦波信号が得られる。これは、1次巻線の励
磁信号に対して、位相が「θ」だけずれた信号で
ある。
FIG. 3 is an explanatory diagram of a resolver, which is an example of a position detector. The resolver consists of two-phase primary windings 20 and 21 with the same windings placed electrically at 90 degrees.
and a one-phase secondary winding 22. Then, the angular frequency is ω and the maximum voltage is V 1 in the primary winding 20.
When an AC sine wave with an instantaneous voltage value = V 1 sinωt is applied to the primary winding 21, and an AC cosine wave with an instantaneous voltage value = V 1 cosωt that is phase shifted by 90 degrees from this is applied to the primary winding 21, the secondary winding 22 The induced output signal has a voltage maximum of V 2 ,
If the rotation angle of the resolver is θ, then V 2 sinωt・cosθ+V 2 cosωt・sin(−θ)=V 2 si
A sine wave signal of n(ωt−θ)……(1) is obtained. This is a signal whose phase is shifted by "θ" with respect to the excitation signal for the primary winding.

従つてレゾルバの回転角、すなわち電動機1の
回転子位置は、1次巻線の励磁信号と2次巻線の
出力信号との位相差で検出され、電動機1の速度
νは、第4図に示すタイミングT1とT2とにおけ
るレゾルバの回転角が夫々θ1,θ2である場合、第
2図の速度検出回路16で ν=θ2−θ1/T2−T1 ……(2) の算出式に基づいて求められる。
Therefore, the rotation angle of the resolver, that is, the rotor position of the motor 1, is detected by the phase difference between the excitation signal of the primary winding and the output signal of the secondary winding, and the speed ν of the motor 1 is shown in FIG. When the rotation angles of the resolver at timings T 1 and T 2 shown in FIG. 2 are θ 1 and θ 2 respectively, the speed detection circuit 16 of FIG . ) is calculated based on the calculation formula.

発明が解決すべき課題 このように従来のフイードバツク制御では、速
度情報を電動機の出力側から得ているので、その
速度情報は現時点での実際の速度に対して過去の
情報となる。このためフイードバツク制御では、
必然的に応答遅れが生ずるものである。特に、速
度情報を位置検出器から間接的に検出する場合に
は、更に算出時間等の要素が加わるため、速度制
御性能が劣化してしまう欠点がある。
Problems to be Solved by the Invention As described above, in conventional feedback control, speed information is obtained from the output side of the motor, so that speed information is past information relative to the current actual speed. Therefore, in feedback control,
This inevitably causes a delay in response. In particular, when speed information is detected indirectly from a position detector, factors such as calculation time are added, which has the disadvantage of deteriorating speed control performance.

発明の目的 本発明は、前述した従来技術に内在している欠
点に鑑み、これを好適に解決するべく提案された
ものであつて、その目的とするところは、速度制
御性能が優れた新規な電動機の制御方法を提供す
るにある。
Purpose of the Invention The present invention has been proposed in view of the drawbacks inherent in the prior art described above, and has been proposed to suitably solve the problems. The present invention provides a method for controlling an electric motor.

課題を解決するための手段 前記課題を克服し、所期の目的を好適に達成す
るため本発明は、制御対象としての電動機に位置
検出器を設け、この位置検出器から出力される位
置帰還信号を速度検出回路と減算器に分岐入力
し、この速度検出回路からの速度帰還信号を前記
減算器から出力される速度指令信号で減算して、
前記電動機へのトルク指令値を得るようにした電
動機の制御回路において、 前記トルク指令値を時間積分処理をして電動機
速度を得、更にハイパスフイルタ処理をして、高
周波成分だけからなる推測の電動機速度信号を
得、 一方前記速度検出回路からの速度帰還信号をロ
ーパスフイルタ処理して、低周波成分だけからな
る速度帰還信号を得、 前記高周波成分だけからなる推測の電動機速度
信号と、前記低周波成分だけからなる速度帰還信
号とを加算した出力をもつて、前記電動機の速度
帰還信号とすることを特徴とする。
Means for Solving the Problems In order to overcome the above problems and suitably achieve the intended purpose, the present invention provides a position detector for an electric motor as a controlled object, and a position feedback signal output from the position detector. is branched into a speed detection circuit and a subtracter, and the speed feedback signal from this speed detection circuit is subtracted by the speed command signal output from the subtracter.
In the motor control circuit configured to obtain a torque command value for the electric motor, the torque command value is subjected to time integration processing to obtain the motor speed, and is further subjected to high-pass filter processing to obtain an estimated motor speed consisting only of high frequency components. Obtaining a speed signal; On the other hand, low-pass filtering the speed feedback signal from the speed detection circuit to obtain a speed feedback signal consisting only of low frequency components, and generating an estimated motor speed signal consisting only of the high frequency components and the low frequency component. The speed feedback signal of the motor is characterized in that the output obtained by adding the speed feedback signal consisting of only the components is used as the speed feedback signal of the electric motor.

作 用 上記の構成とすることにより、電動機の速度変
化を事前に推測して電流指令値を速度変化に応じ
て適切に制御することができ、制御系の速度制御
性能が良好に向上する。
Effect With the above configuration, it is possible to estimate the speed change of the electric motor in advance and appropriately control the current command value according to the speed change, and the speed control performance of the control system is favorably improved.

実施例 次に本発明に係る電動機の制御方法につき、そ
の一実施例を挙げて、第1図を参照しながら説明
する。なお第1図において、第2図に関連して既
に示した装置と同じ装置については、同一符号を
付してその説明を省略し、異なる部分についての
み説明する。
Embodiment Next, a method for controlling an electric motor according to the present invention will be described with reference to FIG. 1, using an embodiment thereof. In FIG. 1, devices that are the same as those already shown in connection with FIG. 2 are given the same reference numerals, and their explanation will be omitted, and only the different parts will be explained.

本実施例では、速度検出回路16で位置帰還信
号から求めた速度検出信号をローパスフイルタ
(LDF)25を通して高周波成分を漉去し、これ
を加算器26に加えている。そしてPiD補償器1
9から出力される電流指令値(トルク指令値)を
積分器27を通して積分し、次に増幅器28で増
幅した後、この増幅した信号から低周波成分をハ
イパスフイルタ(HPF)29で漉去して加算器
26に加えている。またこの加算器26の出力信
号は、速度帰還信号として減算器18の減算側に
入力している。なおハイパスフイルタ29の代り
に、バンドパスフイルタを使用してもよい。
In this embodiment, the speed detection signal obtained from the position feedback signal by the speed detection circuit 16 is passed through a low pass filter (LDF) 25 to remove high frequency components, and is added to an adder 26. and PiD compensator 1
The current command value (torque command value) output from 9 is integrated through an integrator 27, and then amplified by an amplifier 28, and then low frequency components are filtered out from this amplified signal by a high pass filter (HPF) 29. It is added to the adder 26. Further, the output signal of the adder 26 is inputted to the subtraction side of the subtracter 18 as a speed feedback signal. Note that a band pass filter may be used instead of the high pass filter 29.

一般に電動機の出力トルクTと、電動機の回転
角速度ωとの間には、次の関係式が成立する。
Generally, the following relational expression holds between the output torque T of the electric motor and the rotational angular velocity ω of the electric motor.

T=Jdω/dt+D・ω+K ……(3) ここに、J:電動機ロータおよび負荷のイナー
シヤ D:粘性抵抗 K:摩擦トルク この第(3)式の右辺第2項、第3項に現われる粘
性抵抗Dと摩擦抵抗Kは、一般に小さな値である
ため、出力トルクTは、 T≒Jdω/dt ……(4) と近似される。また出力トルクTは、電動機トル
ク定数KTと電流Iにより T=KT・I ……(5) と表わされる。この第(4)式と第(5)式とにより角速
度ωは Jdω/dt≒KT・I ∴ω≒KT/J∫Idt ……(6) と表現される。
T=Jdω/dt+D・ω+K...(3) Here, J: Inertia of the motor rotor and load D: Viscous resistance K: Friction torque The viscous resistance that appears in the second and third terms on the right side of equation (3) Since D and frictional resistance K are generally small values, the output torque T is approximated as T≈Jdω/dt (4). Further, the output torque T is expressed by the motor torque constant K T and the current I as T=K T ·I (5). From these equations (4) and (5), the angular velocity ω is expressed as Jdω/dt≒K T ·I ∴ω≒K T /J∫Idt (6).

第1図において、PiD補償器19の出力(電流
指令値)以後の電流制御系が高精度な電流制御を
行なえる場合、第(6)式の電流Iを電流指令値とし
て代用できる。従つて、電流指令値を積分器27
で積分し、更に増幅率KT/Jの増幅器28で増
幅した信号は、電動機1の時間遅れのない(リア
ルタイム)速度情報となる。なお本実施例では、
第(6)式に基づき電流指令値Iを積分処理して速度
情報を得ているが、リアルタイムな速度情報とみ
なすことろできる値が得られるのであれば、積分
相当処理あるいは他の演算処理を電流指令値Iに
施して速度情報を得てもよい。また第(3)式の粘性
抵抗D等が無視できない電動機では、それ相応の
演算回路を用いて速度情報を求める必要がある。
In FIG. 1, if the current control system after the output (current command value) of the PiD compensator 19 can perform highly accurate current control, the current I in equation (6) can be substituted for the current command value. Therefore, the current command value is
The signal which is integrated by , and further amplified by the amplifier 28 with the amplification factor K T /J becomes speed information of the electric motor 1 without time delay (real time). In this example,
Speed information is obtained by integrating the current command value I based on equation (6), but if a value that can be considered as real-time speed information is obtained, an integral equivalent process or other arithmetic processing is performed. The current command value I may be subjected to speed information. In addition, for electric motors in which the viscous resistance D, etc. in equation (3) cannot be ignored, it is necessary to obtain speed information using a corresponding arithmetic circuit.

本実施例では、このリアルタイムな速度情報
を、速度検出回路16の出力信号、すなわち前述
の第(2)式により求めた速度検出信号に加算器26
で加算し、速度帰還信号としている。このとき、
増幅器28からの出力信号を利得1のハイパスフ
イルタ29を通し、リアルタイムな速度情報のう
ち高周波成分、すなわち急峻な変化分を取出して
使用している。また位置検出値から間接的に検出
した速度検出回路16の速度検出信号を、利得1
のローパスフイルタ25に通し、該速度検出信号
を検出する際に生ずる遅れ時間の影響を除外し、
かつ加算後の速度帰還信号を実際の電動機速度通
りに利得1で得ることができるようにしている。
In this embodiment, the adder 26 adds this real-time speed information to the output signal of the speed detection circuit 16, that is, the speed detection signal obtained by the above-mentioned equation (2).
is added as a speed feedback signal. At this time,
The output signal from the amplifier 28 is passed through a high-pass filter 29 with a gain of 1, and high frequency components, that is, steep changes, of the real-time speed information are extracted and used. In addition, the speed detection signal of the speed detection circuit 16 indirectly detected from the position detection value is
pass through a low-pass filter 25 to exclude the influence of delay time that occurs when detecting the speed detection signal,
Moreover, the speed feedback signal after the addition can be obtained with a gain of 1 according to the actual motor speed.

このように電動機の電流指令値(トルク指令
値)を積分して得られる速度情報を速度帰還信号
として使用することにより、速度検出遅れ時間が
なくなり、速度制御性能が向上する。また本実施
例のように、電流指令値を積分して得られる速度
情報を、位置検出器からの位置帰還信号により間
接的に得た速度検出信号に補助的に加算した信号
を速度帰還信号として使用することにより、速度
検出信号の検出(算出)時間遅れが減少する。ま
た本発明の制御方法を、位置検出器としてパルス
ジエネレータを使用し、速度検出回路としてF/
V変換器等により構成したフイードバツク制御系
に適用した場合でも、パルスジエネレータの出力
であるパルス周波数の確立までの遅れ時間や、
F/V変換器自身の応答遅れによつて生ずる速度
検出の時間遅れが減少する。
By using the speed information obtained by integrating the current command value (torque command value) of the electric motor as the speed feedback signal in this way, speed detection delay time is eliminated and speed control performance is improved. In addition, as in this embodiment, a signal obtained by supplementarily adding speed information obtained by integrating the current command value to a speed detection signal indirectly obtained by a position feedback signal from a position detector is used as a speed feedback signal. By using this, the detection (calculation) time delay of the speed detection signal is reduced. Furthermore, the control method of the present invention may be implemented by using a pulse generator as a position detector and using an F/F as a speed detection circuit.
Even when applied to a feedback control system configured with a V converter, etc., the delay time until the pulse frequency that is the output of the pulse generator is established,
The time delay in speed detection caused by the response delay of the F/V converter itself is reduced.

なお位置帰還信号から間接的に速度検出信号を
得るのではなく、電動機にタコジエネレータ等の
速度検出器を機械的に連結し、この速度検出器の
出力信号を第1図の回路16の出力信号の代りに
使用した場合でも、本発明の制御方法を併用すれ
ば、タコジエネレータ等の速度検出時間遅れが是
正される。
Note that instead of obtaining the speed detection signal indirectly from the position feedback signal, a speed detector such as a tachogenerator is mechanically connected to the motor, and the output signal of this speed detector is converted into the output signal of the circuit 16 in FIG. Even when used instead, if the control method of the present invention is used in combination, the speed detection time delay of the tachogenerator, etc. can be corrected.

上述した実施例の説明では、ブラシレス3相電
動機に本発明の制御方法を適用した場合について
述べたが、本発明はこれに限定されるものではな
く、直流電動機等の他の電動機の制御にも適用で
きることは云うまでもない。また位置帰還信号か
ら速度検出信号を得るために速度検出回路を使用
し、積分演算処理を行なうために積分回路を用い
て例を説明したが、マイクロプロセツサを用い
て、これ等の演算処理をソフト的に行なう構成に
してもよい。
In the description of the embodiments described above, a case has been described in which the control method of the present invention is applied to a brushless three-phase motor, but the present invention is not limited to this, and can also be applied to control of other motors such as a DC motor. Needless to say, it can be applied. In addition, an example has been explained in which a speed detection circuit is used to obtain a speed detection signal from a position feedback signal, and an integration circuit is used to perform integral calculation processing, but a microprocessor can be used to perform these calculation processing. It may be configured to be performed by software.

発明の効果 本発明に係る電動機の制御方法によれば、速度
検出遅れ時間が小さくなり、従つて速度制御性能
が向上する有益な利点が得られる。
Effects of the Invention According to the method for controlling an electric motor according to the present invention, the speed detection delay time is reduced, and therefore speed control performance is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電動機の制御方法を好適
に適用し得る一実施例としての3相電動機制御装
置の構成図、第2図は従来の3相電動機制御装置
の構成図、第3図は位置検出器の一例であるレゾ
ルバの説明図、第4図は第3図に示したレゾルバ
の入力信号と出力信号の波形図である。 1……ブラシレス3相電動機、14……位置検
出器、15,18……減算器、16……速度検出
回路、19……PiD補償器、25……ローパスフ
イルタ、26……加算器、27……積分器、28
……増幅器、29……ハイパスフイルタ。
FIG. 1 is a configuration diagram of a three-phase motor control device as an example to which the electric motor control method according to the present invention can be suitably applied, FIG. 2 is a configuration diagram of a conventional three-phase motor control device, and FIG. 4 is an explanatory diagram of a resolver which is an example of a position detector, and FIG. 4 is a waveform diagram of an input signal and an output signal of the resolver shown in FIG. 3. 1... Brushless 3-phase motor, 14... Position detector, 15, 18... Subtractor, 16... Speed detection circuit, 19... PiD compensator, 25... Low pass filter, 26... Adder, 27 ...integrator, 28
...Amplifier, 29...High-pass filter.

Claims (1)

【特許請求の範囲】 1 制御対象としての電動機1に位置検出器14
を設け、この位置検出器14から出力される位置
帰還信号を速度検出回路16と減算器15に分岐
入力し、この速度検出回路16からの速度帰還信
号を前記減算器15から出力される速度指令信号
で減算して、前記電動機1へのトルク指令値を得
るようにした電動機の制御回路において、 前記トルク指令値を時間積分処理をして電動機
速度を得、更にハイパスフイルタ処理をして、高
周波成分だけからなる推測の電動機速度信号を
得、 一方前記速度検出回路16からの速度帰還信号
をローパスフイルタ処理して、低周波成分だけか
らなる速度帰還信号を得、 前記高周波成分だけからなる推測の電動機速度
信号と、前記低周波成分だけからなる速度帰還信
号とを加算した出力をもつて、前記電動機1の速
度帰還信号とする ことを特徴とする電動機の制御方法。
[Claims] 1. A position detector 14 is provided on the electric motor 1 as a controlled object.
The position feedback signal output from the position detector 14 is branched into the speed detection circuit 16 and the subtracter 15, and the speed feedback signal from the speed detection circuit 16 is used as the speed command output from the subtracter 15. In the motor control circuit that obtains the torque command value for the electric motor 1 by subtracting the signal, the torque command value is subjected to time integration processing to obtain the motor speed, and is further subjected to high-pass filter processing to obtain the high frequency signal. Obtain an estimated motor speed signal consisting only of components, and process the speed feedback signal from the speed detection circuit 16 with a low-pass filter to obtain a speed feedback signal consisting only of low frequency components, and obtain an estimated motor speed signal consisting only of the high frequency components. A method for controlling an electric motor, characterized in that an output obtained by adding a motor speed signal and the speed feedback signal consisting only of low frequency components is used as a speed feedback signal for the electric motor 1.
JP60186092A 1985-08-24 1985-08-24 Control for motor Granted JPS6248284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60186092A JPS6248284A (en) 1985-08-24 1985-08-24 Control for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60186092A JPS6248284A (en) 1985-08-24 1985-08-24 Control for motor

Publications (2)

Publication Number Publication Date
JPS6248284A JPS6248284A (en) 1987-03-02
JPH0550238B2 true JPH0550238B2 (en) 1993-07-28

Family

ID=16182225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60186092A Granted JPS6248284A (en) 1985-08-24 1985-08-24 Control for motor

Country Status (1)

Country Link
JP (1) JPS6248284A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139495U (en) * 1989-04-25 1990-11-21
WO1997018282A1 (en) * 1995-11-13 1997-05-22 Japan Energy Corporation Lubricating oil for internal combustion engine
GB2354087B (en) 1999-05-14 2003-04-02 Mitsubishi Electric Corp Servo control apparatus
JP2009071930A (en) * 2007-09-11 2009-04-02 Psc Kk Current drive type actuator drive control unit
DE102016210443A1 (en) * 2016-06-13 2017-12-14 Robert Bosch Gmbh A method for adjusting an amplitude of a voltage injection of a rotating, multi-phase, electrical machine powered by a PWM-controlled inverter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123388A (en) * 1982-01-08 1983-07-22 シ−メンス・アクチエンゲゼルシヤフト Speed controller for drive system
JPS59106893A (en) * 1982-12-10 1984-06-20 Fuji Electric Co Ltd Speed controller for dc motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123388A (en) * 1982-01-08 1983-07-22 シ−メンス・アクチエンゲゼルシヤフト Speed controller for drive system
JPS59106893A (en) * 1982-12-10 1984-06-20 Fuji Electric Co Ltd Speed controller for dc motor

Also Published As

Publication number Publication date
JPS6248284A (en) 1987-03-02

Similar Documents

Publication Publication Date Title
JP3312472B2 (en) Magnetic pole position detection device for motor
EP1470988B1 (en) Electric power steering apparatus
JP3282541B2 (en) Motor control device
EP2980984A2 (en) Motor control device, and method and device for estimating magnetic flux of electric motor
US20110241586A1 (en) Control apparatus for permanent magnet motor
JP3914108B2 (en) DC brushless motor control device
JP3914107B2 (en) DC brushless motor control device
US4510430A (en) Vector control method and system for an induction motor
JPH0550238B2 (en)
JPH05308793A (en) Control circuit for power conversion device
EP0121792B1 (en) Vector control method and system for an induction motor
JP2634959B2 (en) Speed sensorless speed control method
JP2856950B2 (en) Control device for synchronous motor
JP3160778B2 (en) Inverter-driven motor speed estimation method and device, and motor vector control device using the speed estimation method
JP3124019B2 (en) Induction motor control device
JPH0254039B2 (en)
JPS5913708B2 (en) Resolver detection method
JP2946157B2 (en) Induction motor speed control device
JPS6334719B2 (en)
JPS6277894A (en) Controlling device for induction motor
JPS6035914B2 (en) Control method of induction motor
JPH0548078B2 (en)
JPH0793839B2 (en) Induction motor controller
JP2536994B2 (en) Induction motor torque control device
JPH0785672B2 (en) Three-phase synchronous motor speed controller