JP3312472B2 - Magnetic pole position detection device for motor - Google Patents

Magnetic pole position detection device for motor

Info

Publication number
JP3312472B2
JP3312472B2 JP05502594A JP5502594A JP3312472B2 JP 3312472 B2 JP3312472 B2 JP 3312472B2 JP 05502594 A JP05502594 A JP 05502594A JP 5502594 A JP5502594 A JP 5502594A JP 3312472 B2 JP3312472 B2 JP 3312472B2
Authority
JP
Japan
Prior art keywords
motor
magnetic pole
pole position
detecting
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05502594A
Other languages
Japanese (ja)
Other versions
JPH07245981A (en
Inventor
隆司 藍原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05502594A priority Critical patent/JP3312472B2/en
Publication of JPH07245981A publication Critical patent/JPH07245981A/en
Application granted granted Critical
Publication of JP3312472B2 publication Critical patent/JP3312472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気的突極性を持つ電
動機、例えば同期電動機やリラクタンスモータの回転子
の磁極位置をセンサレスにて検出するための磁極位置検
出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic pole position detecting device for detecting a magnetic pole position of a rotor of an electric motor having an electric saliency, for example, a synchronous motor or a reluctance motor, without using a sensor.

【0002】[0002]

【従来の技術】同期電動機(例えばブラシレスモータ)
やリラクタンスモータを駆動する際には、所望のトルク
を発生させるために、回転子の磁極位置に対応した適切
な位相で電流を供給する必要がある。これらの電動機に
対する従来の駆動装置においては、図7(a)に示すよ
うな方法により回転子の磁極位置を検出していた。すな
わち、電動機1の回転子軸1aに磁極位置センサ2を取
り付け、更に精度が必要な場合にはこの磁極位置センサ
2とパルスエンコーダ3とを併用するなどしていた。な
お、図7(b)は磁極位置センサ2の各相分の出力信
号、図7(c)はパルスエンコーダ3の出力信号の一例
である。
2. Description of the Related Art Synchronous motors (eg, brushless motors)
When driving a motor or a reluctance motor, it is necessary to supply a current with an appropriate phase corresponding to the magnetic pole position of the rotor in order to generate a desired torque. In a conventional driving device for these motors, the magnetic pole position of the rotor is detected by a method as shown in FIG. That is, the magnetic pole position sensor 2 is attached to the rotor shaft 1a of the electric motor 1, and when more accuracy is required, the magnetic pole position sensor 2 and the pulse encoder 3 are used in combination. FIG. 7B shows an example of an output signal of each phase of the magnetic pole position sensor 2, and FIG. 7C shows an example of an output signal of the pulse encoder 3.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術において
は、磁極位置を検出するために磁極位置センサ2やパル
スエンコーダ3を用いているので、センサ自体やその出
力信号の配線及び受信回路等を設ける分、コスト高にな
るという問題があった。また、センサへの電源供給や出
力信号を伝達するための配線距離を長くすると、配線抵
抗による電圧降下が大きくなってセンサの動作に支障を
生じるため、配線距離上の制約があるほか、その配線接
続において誤配線や断線等のトラブルが発生する不都合
があった。
In the above prior art, since the magnetic pole position sensor 2 and the pulse encoder 3 are used for detecting the magnetic pole position, the sensor itself, the wiring of the output signal thereof, the receiving circuit and the like are provided. There was a problem that the cost was high. Also, if the wiring distance for supplying power to the sensor or transmitting the output signal is increased, the voltage drop due to the wiring resistance will increase, which will hinder the operation of the sensor. In the connection, there was a problem that troubles such as erroneous wiring and disconnection occurred.

【0004】本発明は上記種々の問題を解決するために
なされたもので、その目的とするところは、磁極位置検
出用の各種センサ自体やその電源、出力等の配線を不要
とし、コストの低減を図ると共に配線に伴う不都合を解
消した磁極位置検出装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned various problems, and an object of the present invention is to eliminate the need for various kinds of sensors for detecting the position of magnetic poles and the wiring of power supplies and outputs thereof, thereby reducing costs. SUMMARY OF THE INVENTION It is an object of the present invention to provide a magnetic pole position detecting device which solves the problem associated with wiring while solving the problem.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、第1の発明は、電気的突極性を有する電動機の磁極
位置を検出し、この電動機をインバータ等の可変電圧・
可変周波数電源としての駆動装置により駆動するシステ
ムにおいて、電動機に交番電圧を印加する交番電圧印加
手段と、電動機電流を検出する手段と、検出した電動機
電流を、印加している交番電圧に対する平行成分及び直
交成分に分離するベクトル変換手段と、前記電動機電流
の平行成分及び直交成分のうち少なくとも一方に基づい
て電動機の磁極位置を検出する磁極位置検出手段とを備
える。
In order to achieve the above object, a first aspect of the present invention is to detect a magnetic pole position of a motor having an electric saliency and to connect the motor to a variable voltage such as an inverter.
In a system driven by a driving device as a variable frequency power supply, an alternating voltage applying unit that applies an alternating voltage to the motor, a unit that detects the motor current, and a detected motor current that has a parallel component with respect to the applied alternating voltage and Vector conversion means for separating into orthogonal components, and magnetic pole position detection means for detecting the magnetic pole position of the motor based on at least one of the parallel component and the orthogonal component of the motor current.

【0006】第2の発明は、回転子の磁束軸推定位置と
同方向の交番電圧を電動機に印加する交番電圧印加手段
と、電動機電流を検出する手段と、検出した電動機電流
の平行成分及び直交成分のうち少なくとも一方に基づ
き、回転子の磁束軸推定位置を磁束軸実際位置に一致さ
せるべく調節器により磁束軸推定位置を変化させ、前記
磁束軸推定位置をもって磁極位置を検出する磁極位置検
出手段とを備える。
According to a second aspect of the present invention, there is provided an alternating voltage applying means for applying an alternating voltage in the same direction as the estimated position of the magnetic flux axis of the rotor to the motor, a means for detecting the motor current, a parallel component and a quadrature of the detected motor current. Magnetic pole position detecting means for changing a magnetic flux axis estimated position by an adjuster so as to match a magnetic flux axis estimated position of the rotor with a magnetic flux axis actual position based on at least one of the components, and detecting a magnetic pole position based on the magnetic flux axis estimated position. And

【0007】第3の発明は、電動機に交番電流を印加す
る交番電流印加手段と、電動機端子電圧を検出する手段
と、検出した電動機端子電圧を印加している交番電流に
対する平行成分及び直交成分に分離するベクトル変換手
段と、前記電動機端子電圧の平行成分及び直交成分のう
ち少なくとも一方に基づいて電動機の磁極位置を検出す
る磁極位置検出手段とを備える。
A third aspect of the present invention provides an alternating current applying means for applying an alternating current to the motor, a means for detecting the motor terminal voltage, and a parallel component and a quadrature component with respect to the alternating current applying the detected motor terminal voltage. Vector conversion means for separating the motor; and magnetic pole position detection means for detecting a magnetic pole position of the motor based on at least one of a parallel component and a quadrature component of the motor terminal voltage.

【0008】第4の発明は、回転子の磁束軸推定位置と
同方向の交番電流を電動機に印加する交番電流印加手段
と、電動機端子電圧を検出する手段と、電動機端子電圧
の平行成分及び直交成分のうち少なくとも一方に基づ
き、回転子の磁束軸推定位置を磁束軸実際位置に一致さ
せるべく調節器により磁束軸推定位置を変化させ、前記
磁束軸推定位置をもって磁極位置を検出する磁極位置検
出手段とを備える。
According to a fourth aspect of the present invention, there is provided an alternating current applying means for applying an alternating current in the same direction as an estimated position of a magnetic flux axis of a rotor to a motor, a means for detecting a motor terminal voltage, a parallel component and a quadrature of the motor terminal voltage. Magnetic pole position detecting means for changing a magnetic flux axis estimated position by an adjuster so as to match a magnetic flux axis estimated position of the rotor with a magnetic flux axis actual position based on at least one of the components, and detecting a magnetic pole position based on the magnetic flux axis estimated position. And

【0009】第5の発明は、上記第1ないし第4の発明
において、電動機を駆動するための電圧指令値または電
流指令値から印加交番電圧または交番電流の周波数成分
を除去する手段を備える。
In a fifth aspect based on the first to fourth aspects, there is provided means for removing a frequency component of the applied alternating voltage or alternating current from a voltage command value or a current command value for driving the motor.

【0010】[0010]

【作用】電動機に交番電圧ベクトルまたは交番電流ベク
トルを印加すると、印加ベクトルと回転子磁束軸とが平
行または直交しているとき以外は、印加ベクトルに対し
直交する方向にも電流または電圧が発生し、その大きさ
は印加ベクトルと磁束軸との間の相差角の2倍の角度の
sin関数となる。また、印加ベクトルに対し平行方向
に発生する電流または電圧の大きさは、印加ベクトルと
磁束軸との間の相差角の2倍の角度のcos関数にオフ
セットを与えたものとなる。
When an alternating voltage vector or an alternating current vector is applied to a motor, a current or a voltage is also generated in a direction orthogonal to the applied vector unless the applied vector and the rotor magnetic flux axis are parallel or orthogonal. , The magnitude of which is a sine function of twice the phase difference angle between the applied vector and the magnetic flux axis. Further, the magnitude of the current or the voltage generated in the direction parallel to the applied vector is obtained by giving an offset to the cos function of twice the phase difference angle between the applied vector and the magnetic flux axis.

【0011】従って、電動機に印加している交番電圧ベ
クトルまたは交番電流ベクトルに対し、平行成分及び直
交成分の電流(電動機電流)ベクトルまたは電圧(電動
機端子電圧)ベクトルを検出し、各成分のうち少なくと
も一方から、印加ベクトルと磁束軸との間の相差角を検
出することができる。そして上記相差角から磁極位置を
直接検出することもできるし、この相差角がゼロになる
ように印加ベクトルの位相を調節することで間接的に磁
極位置を検出することもできる。また、各成分の双方を
用いる場合には、各成分の大きさの比のtanの逆関数
をとることにより求めた角度に基づいて、上記相差角を
検出することができる。
Therefore, a current (motor current) vector or a voltage (motor terminal voltage) vector of a parallel component and a quadrature component is detected with respect to the alternating voltage vector or the alternating current vector applied to the motor, and at least one of the components is detected. From one side, the phase difference angle between the applied vector and the magnetic flux axis can be detected. The magnetic pole position can be directly detected from the phase difference angle, or the magnetic pole position can be indirectly detected by adjusting the phase of the applied vector so that the phase difference angle becomes zero. When both components are used, the phase difference angle can be detected based on the angle obtained by taking the inverse function of tan of the ratio of the magnitude of each component.

【0012】更に、印加ベクトルに対し直交方向に発生
する電流ベクトルまたは電圧ベクトルのみを検出し、こ
れらの電流ベクトルまたは電圧ベクトルがゼロになるよ
うに印加ベクトルの位相を調節することにより、間接的
に磁極位置を検出することもできる。
Further, only the current vector or the voltage vector generated in the direction orthogonal to the applied vector is detected, and the phase of the applied vector is adjusted so that the current vector or the voltage vector becomes zero. The magnetic pole position can also be detected.

【0013】加えて、電動機駆動のための電圧指令値ま
たは電流指令値に印加交番電圧または電流の周波数成分
が含まれないように、適切な場所にノッチフィルタを挿
入することで磁極位置検出の目的以外の励磁を除去する
ことができる。逆に検出側では、印加交番周波数のみを
通過させるフィルタを用いるか、あるいはフーリエ積分
等によって印加交番周波数成分を抽出することで不要な
信号を除去し、これにより電動機の駆動中においても磁
極位置を検出することが可能となる。
In addition, a notch filter is inserted at an appropriate location so that the voltage command value or the current command value for driving the motor does not include the frequency component of the applied alternating voltage or current. Excitation other than the above can be eliminated. Conversely, on the detection side, a filter that passes only the applied alternating frequency is used, or unnecessary signals are removed by extracting the applied alternating frequency component by Fourier integration or the like, whereby the magnetic pole position can be determined even during driving of the motor. It becomes possible to detect.

【0014】[0014]

【実施例】以下、図に沿って各発明の実施例を説明す
る。まず、電気的突極性を持つ電動機の電圧・電流方程
式を、この電動機側の座標軸上で表現すると数式1とな
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. First, a voltage / current equation of a motor having an electric saliency is expressed on a coordinate axis on the motor side as Equation 1.

【0015】[0015]

【数1】 (Equation 1)

【0016】数式1において、添字のdは電動機の磁束
軸、qはd軸に直交する軸を示し、Vd,Vq,Id
q,Ld,Lqは各々電動機の一次電圧、一次電流、漏
れインダクタンスのd軸成分、q軸成分を示す。また、
Rは電動機の巻線抵抗、Pは微分演算子、ψfは同期電
動機の場合に存在する界磁磁束であってリラクタンスモ
ータの場合にはゼロである。
In equation (1), the subscript d indicates the magnetic flux axis of the motor, q indicates the axis orthogonal to the d axis, and V d , V q , I d ,
I q , L d , and L q represent the d-axis component and the q-axis component of the primary voltage, primary current, and leakage inductance of the motor, respectively. Also,
R is winding resistance of the motor, P is a differential operator, in the case of the reluctance motor a field flux present when the [psi f is the synchronous motor is zero.

【0017】ここで、インバータ等の駆動装置側の座標
軸(dc−qc軸)から観測したときに得られる電圧・電
流方程式を考える。いま、電動機側のd−q軸と駆動装
置側のdc−qc軸とが図5の関係にあり、両者間には相
差角θが存在するとする。この場合、d−q軸上の物理
量とdc−qc軸上の物理量とは、数式2の関係となる。
Here, a voltage / current equation obtained when observed from the coordinate axes (d c -q c axes) on the drive device side such as an inverter is considered. Now, d-q axes of the motor side and the d c -q c-axis of the drive side have a relationship of FIG. 5, and in between them there is θ phase difference angle. In this case, the physical quantity on the dq axis and the physical quantity on the d c -q c axis have the relationship of Equation 2.

【0018】[0018]

【数2】 (Equation 2)

【0019】数式1、数式2から数式3が得られる。Equation 3 is obtained from Equations 1 and 2.

【0020】[0020]

【数3】 [Equation 3]

【0021】なお、数式3において、L0=(Ld
q)/2,L2=(Ld−Lq)/2である。また、ωは
電動機の回転数に対応する駆動装置の励磁周波数であ
り、計算を簡略化するためにω=0とすると、数式4が
得られる。
In the equation 3, L 0 = (L d +
L q) / 2, is L 2 = (L d -L q ) / 2. Further, ω is an excitation frequency of the driving device corresponding to the rotation speed of the motor, and when ω = 0 for simplifying the calculation, Expression 4 is obtained.

【0022】[0022]

【数4】 (Equation 4)

【0023】数式4より、駆動装置側のdc軸上または
c軸上で電圧または電流を変化させると、マトリクス
の対角項にあるPL2sin2θ,−PL2sin2θの
項により、直交する軸上の電流または電圧に影響が出る
ことがわかる。ここで、電気的突極性を持つ電動機では
2はゼロではない(Ld≠Lq)ため、電動機側のd−
q軸と駆動装置側のdc−qc軸とが完全に一致しておら
ず相差角θがある場合には、PL2sin2θ,−PL2
sin2θの項が表われ、電流または電圧に影響が出て
くる。このdc軸またはqc軸のとり方は任意であるた
め、印加する電圧ベクトルまたは電流ベクトルの方向も
任意である。
[0023] from Equation 4, changing the voltage or current on d on the c-axis or q c axis of the drive device side, PL 2 sin2θ at diagonal term of the matrix, the term -PL 2 sin2θ, perpendicular It can be seen that the current or voltage on the axis is affected. Here, L 2 is an electric motor having electrical saliency is not zero (L d ≠ L q) Therefore, the motor side of the d-
If the q-axis and the driving device side of the d c -q c-axis is phase angle θ not completely match, PL 2 sin2θ, -PL 2
The term sin2θ appears, affecting the current or voltage. The direction of the d c axis or the q c axis is arbitrary, and the direction of the applied voltage vector or current vector is also arbitrary.

【0024】いま、電動機に交番電流を印加して電動機
端子電圧を検出する場合には、数式4をそのまま用いる
ことができる。一例として、数式4におけるIdc=I・
sin(2πf)t,Iqc=0とし、Rの項を省略すれ
ば数式5が得られる。なお、fは交番電流の周波数であ
る。
Now, when an alternating current is applied to the motor to detect the motor terminal voltage, Equation 4 can be used as it is. As an example, I dc = I ·
If sin (2πf) t, I qc = 0 and the term of R is omitted, Equation 5 is obtained. Here, f is the frequency of the alternating current.

【0025】[0025]

【数5】 (Equation 5)

【0026】数式5において、I,f,L2が判ってい
れば、Vqcだけからでも±45°(電気角、以下同じ)
の範囲で相差角θを得ることができ、また、I,f,L
2の一部が不明であっても適当な係数を用いることによ
り、ある程度の誤差を含むが相差角θを一応求めること
ができる。更に、次に述べる数式6のようにVdcとVqc
との双方を用いてtanの逆関数をとることによりθ′
を求め、Vdc及びVqcの大きさに応じた加減算を行なう
ことにより±90°の範囲で相差角θを得ることができ
る。この相差角θに基づき、後述のように磁極位置を直
接または間接に検出することが可能である。
In Equation 5, if I, f, and L 2 are known, then ± 45 ° (electrical angle, the same applies hereinafter) from V qc alone.
And the phase difference angle θ can be obtained in the range of I, f, L
Even if a part of 2 is unknown, it is possible to obtain the phase difference angle. Further, V dc and V qc are calculated as shown in the following Expression 6.
And taking the inverse function of tan using both
Is obtained and the addition and subtraction according to the magnitudes of Vdc and Vqc are performed , whereby the phase difference angle θ can be obtained in the range of ± 90 °. Based on the phase difference angle θ, the magnetic pole position can be detected directly or indirectly as described later.

【0027】[0027]

【数6】 θ′=(1/2)tan-1{−Vqc/(Vdc−V0)} θ=θ′+90° (Vdc<V0,Vqc<0), θ=θ′ (Vdc≧V0), θ=θ′−90° (Vdc<V0,Vqc≧0)Θ ′ = (1 /) tan −1 {−V qc / (V dc −V 0 )} θ = θ ′ + 90 ° (V dc <V 0 , V qc <0), θ = θ ′ (V dc ≧ V 0 ), θ = θ′−90 ° (V dc <V 0 , V qc ≧ 0)

【0028】数式6におけるθ′とθ,Vdc,Vqcとの
関係を図6に示す。なお、数式6において、V0=L0ω
I・sin(2πf)tである。
FIG. 6 shows the relationship between θ ′ and θ, V dc , V qc in equation (6). In Equation 6, V 0 = L 0 ω
I · sin (2πf) t.

【0029】上記説明においては、印加する交番電流I
dcを正弦波電流としたが、駆動装置側での演算負荷を減
らすためには、三角波電流を印加する方が有利である。
In the above description, the applied alternating current I
Although dc is a sine wave current, it is more advantageous to apply a triangular wave current in order to reduce the calculation load on the drive device side.

【0030】次に、電動機に交番電圧を印加して電流を
検出する場合には、数式4から次の数式7を得る。この
数式7において、Δ=L0 2−L2 2cos4θである。
Next, when an alternating voltage is applied to the motor to detect a current, the following equation (7) is obtained from the equation (4). In Expression 7, Δ = L 0 2 −L 2 2 cos 4θ.

【0031】[0031]

【数7】 (Equation 7)

【0032】一例として、Vdc=V・sin(2πf)
t,Vqc=0とし、Rの項を省略すれば、数式8が得ら
れる。
As an example, V dc = V · sin (2πf)
If t, V qc = 0 and the term of R is omitted, Equation 8 is obtained.

【0033】[0033]

【数8】 (Equation 8)

【0034】数式8において、V,f,L0,L2が判って
いれば、Iqcだけからでも±45°の範囲で相差角θを
得ることができ、また、V,f,L0,L2が一部判ってい
ない場合でも前記同様に相差角θを一応求めることが可
能である。更に、数式6と同様にして±90°の範囲で
相差角θを得ることができる。この相差角θに基づき、
後述のように磁極位置を直接または間接に検出すること
が可能である。ただし、この例では数式8中にΔの項が
あるため、相差角θの正確さには若干欠けることとな
る。
In equation (8), if V, f, L 0 and L 2 are known, the phase difference angle θ can be obtained in a range of ± 45 ° only from I qc , and V, f, L 0 , L 2 it is possible to determine once the similarly phase difference angle θ even if you do not know part. Further, the phase difference angle θ can be obtained in the range of ± 90 ° in the same manner as in Expression 6. Based on this phase difference angle θ,
It is possible to detect the magnetic pole position directly or indirectly as described later. However, in this example, since there is a term of Δ in Expression 8, the accuracy of the phase difference angle θ is slightly lacking.

【0035】上記説明では、印加する交番電圧Vdcを正
弦波電圧としたが、駆動装置側の演算負荷を減らすため
には方形波電圧を印加した方が有利である。また、何れ
の例でもdc軸の電流Idcまたは電圧Vdcを変化させて
いるが、qc軸の電流Iqcまたは電圧Vqcを変化させて
も同様にして相差角θを検出することができる。
In the above description, the alternating voltage Vdc to be applied is a sine wave voltage. However, it is more advantageous to apply a square wave voltage in order to reduce the calculation load on the drive device. Further, although changing the current I dc or voltage V dc of d c-axis in either example, detecting phase difference angle θ in the same manner by changing the current I qc or voltage V qc of q c axis Can be.

【0036】相差角θから磁極位置を検出する方法とし
ては、以下の実施例に述べるように駆動装置(インバー
タ)側のdc−qc軸位相角θ0に相差角θを加算して磁
極位置を直接求める方法のほか、相差角θがゼロになる
ようにdc−qc軸を回転させ、言い換えれば回転子の磁
束軸推定位置が磁束軸実際位置に一致するように磁束軸
推定位置を変化させることにより、相差角θを間接的に
検出する方法がある。
As a method of detecting the magnetic pole position from the phase difference angle θ, the phase difference angle θ is added to the d c -q c axis phase angle θ 0 of the driving device (inverter) as described in the following embodiment. In addition to the method of directly obtaining the position, the d c -q c axis is rotated so that the phase difference angle θ becomes zero, in other words, the estimated magnetic flux axis position such that the estimated magnetic flux axis position of the rotor matches the actual magnetic flux axis position. , There is a method of indirectly detecting the phase difference angle θ.

【0037】さて、図1は本発明の第1実施例を示すブ
ロック図である。この実施例は、請求項1に記載した第
1の発明の実施例に相当するものであり、電動機に交番
電圧を印加して電動機電流を検出している。図におい
て、4aは正弦波電圧Vdc(指令値Vdc *)及びV
qc(指令値Vqc *)(=0)とdc−qc軸位相角θ0とが
入力される座標変換器であり、その出力である三相
(U,V,W相)の電圧指令値は可変電圧・可変周波数
電源としてのインバータ8に入力され、その出力により
電気的突極性を有する電動機1が駆動される。ここで、
座標変換器4a及びインバータ8は本発明における交番
電圧印加手段を構成している。
FIG. 1 is a block diagram showing a first embodiment of the present invention. This embodiment corresponds to an embodiment of the first invention described in claim 1, and detects an electric motor current by applying an alternating voltage to the electric motor. In the figure, reference numeral 4a denotes a sine wave voltage V dc (command value V dc * ) and V
qc (command value V qc * ) (= 0) and d c −q c axis phase angle θ 0 are input to the coordinate converter, and the three-phase (U, V, W phase) voltage output from the coordinate converter. The command value is input to an inverter 8 as a variable voltage / variable frequency power supply, and the output drives an electric motor 1 having an electric saliency. here,
The coordinate converter 4a and the inverter 8 constitute an alternating voltage applying means in the present invention.

【0038】電動機1の各相電流は電流検出器5により
検出され、dc−qc軸位相角θ0と共に座標変換器4b
に入力されてIdc,Iqcに変換される。すなわち、電動
機電流は、印加している交番電圧ベクトルに対する平行
成分及び直交成分に分離される。ここで、座標変換器4
bは本発明におけるベクトル変換手段を構成する。
Each phase current of the electric motor 1 is detected by a current detector 5 and the coordinate converter 4b is used together with the d c -q c axis phase angle θ 0.
And converted into I dc and I qc . That is, the motor current is separated into a parallel component and a quadrature component with respect to the applied alternating voltage vector. Here, the coordinate converter 4
b constitutes a vector conversion means in the present invention.

【0039】各電流成分Idc,Iqcは位相差検出器6に
入力され、前述の数式8によりd−q軸との間の相差角
θが検出される。この相差角θを加算器7においてdc
−qc軸位相角θ0と加算することにより、磁極位置θm
が算出される。ここで、位相差検出器6及び加算器7は
本発明における磁極位置検出手段を構成する。
Each of the current components I dc and I qc is input to the phase difference detector 6, and the phase difference angle θ between the current components I dc and I qc and the dq axes is detected by the above equation (8). The phase difference angle θ is calculated by the adder 7 as d c
-Q c- axis phase angle θ 0 to add the magnetic pole position θ m
Is calculated. Here, the phase difference detector 6 and the adder 7 constitute magnetic pole position detecting means in the present invention.

【0040】本実施例によれば、相差角θが得られた瞬
間に磁極位置θmが得られるため、検出遅れが小さい利
点がある。但し、相差角θの検出には少なからず演算誤
差が含まれるため、これが直接、磁極位置θmの検出精
度に反映されてしまうという問題がある。
According to this embodiment, since the magnetic pole position theta m is obtained at the moment of phase difference angle theta is obtained, there is an advantage detection delay is small. However, because it contains not a little calculation error in the detection of the phase angle theta, which is directly, there is a problem that is reflected in the detection accuracy of the magnetic pole position theta m.

【0041】次に、図2は本発明の第2実施例を示して
いる。この実施例は、請求項1に記載した第1の発明及
び請求項2に記載した第2の発明の双方の実施例に相当
する。本実施例も電動機に交番電圧を印加して電流を検
出するものであり、図1と同一の構成要素には同一の番
号を付してある。
FIG. 2 shows a second embodiment of the present invention. This embodiment corresponds to both embodiments of the first invention described in claim 1 and the second invention described in claim 2. This embodiment also detects an electric current by applying an alternating voltage to the motor, and the same components as those in FIG. 1 are denoted by the same reference numerals.

【0042】本実施例において、Vdcを変化させてから
相差角θを得るところまでは図1と同様であるが、相差
角θを積分器9によってマイナス積分し、dc−qc軸位
相角θmに変換する。そして、この位相角θmを座標変換
器4a,4bに入力することにより、相差角θがゼロに
なるようにdc−qc軸を回転させる。
[0042] In this embodiment, from by changing the V dc far to obtain the phase difference angle theta is the same as FIG. 1, minus integrated by an integrator 9 phase difference angle theta, d c -q c-axis phase to convert the corner θ m. Then, the phase angle theta m coordinate converter 4a, by inputting the 4b, rotates the d c -q c-axis as phase difference angle theta is zero.

【0043】つまり、位相差検出器6により検出した相
差角θをゼロにするようにdc−qc軸を回転させて磁束
軸推定位置を変化させることにより、相差角θを間接的
に検出する。このように構成すれば、dc−qc軸位相角
θmはいずれ磁極位置に一致するため、dc−qc軸位相
角θm自体が磁極位置検出値となる。ここで、位相差検
出器6及び積分器9は本発明における磁極位置検出手段
を構成し、積分器9は磁束軸推定位置を変化させる調節
器として作用している。
That is, the phase difference angle θ is indirectly detected by rotating the d c -q c axis to change the magnetic flux axis estimated position so that the phase difference angle θ detected by the phase difference detector 6 becomes zero. I do. According to this structure, since the d c -q c-axis phase angle theta m that matches one magnetic pole position, d c -q c-axis phase angle theta m itself is a magnetic pole position detection value. Here, the phase difference detector 6 and the integrator 9 constitute magnetic pole position detecting means in the present invention, and the integrator 9 functions as an adjuster for changing the estimated position of the magnetic flux axis.

【0044】本実施例によれば、相差角θに含まれる検
出誤差は磁極位置検出精度に無関係となるため、精度的
に有利である。また、このような構成でdc軸の電圧ま
たは電流を変化させた場合、dc−qc軸が磁極軸に一致
していればq軸電流はゼロとなってトルクリプルを発生
しないため、不必要な振動を発生しない。この意味で、
交番電圧または電流を印加する軸は、dc軸の方がqc
よりも有利であると言える。
According to the present embodiment, the detection error included in the phase difference angle θ is irrelevant to the magnetic pole position detection accuracy, which is advantageous in accuracy. Moreover, since such a case of changing the voltage or current of the d c-axis configuration, where if d c -q c-axis coincides with the polar axis q-axis current generates no torque ripple becomes zero, non Does not generate the necessary vibration. In this sense,
Axis for applying an alternating voltage or current, it can be said that people of d c-axis is advantageous than q c axis.

【0045】なお、図1及び図2の実施例では、電動機
に交番電圧を印加して電動機電流を検出することにより
磁極位置を直接または間接に検出する場合を説明した。
一方、請求項4に記載した第3の発明や請求項5に記載
した第4の発明のように、電動機に交番電流を印加して
電動機端子電圧を検出することにより磁極位置を直接ま
たは間接に検出する磁極位置検出装置の基本原理は、前
述した数式4ないし数式6により既に明らかであり、そ
の実施例の構成もそれぞれ図1、図2から容易に想到す
ることができる。
In the embodiments shown in FIGS. 1 and 2, the case where the magnetic pole position is directly or indirectly detected by applying an alternating voltage to the motor and detecting the motor current has been described.
On the other hand, the magnetic pole position can be directly or indirectly detected by applying an alternating current to the motor and detecting the motor terminal voltage as in the third invention described in claim 4 and the fourth invention described in claim 5. The basic principle of the magnetic pole position detecting device to be detected is already clear from the above-described equations 4 to 6, and the configuration of the embodiment can be easily conceived from FIGS. 1 and 2, respectively.

【0046】例えば、図1及び図2における座標変換器
4aの入力を正弦波のIdc(指令値Idc *)及びI
qc(指令値Iqc *)(=0)とし、電流検出器5を電圧
検出器に置き換えると共に、座標変換器4bにより得た
dc及びVqcに基づいて位相差検出器6により数式5ま
たは数式6を演算して相差角θを求めれば良い。
For example, the input of the coordinate converter 4a in FIG. 1 and FIG. 2 is applied to the sine wave I dc (command value I dc * ) and I
qc (command value I qc * ) (= 0), the current detector 5 is replaced with a voltage detector, and based on Vdc and Vqc obtained by the coordinate converter 4b, Expression 5 or The phase difference angle θ may be obtained by calculating Expression 6.

【0047】さて、以上の説明はω=0を前提としたも
のであるが、以下ではこれをω≠0に拡張する。図3は
本発明の第3実施例を示すブロック図であり、請求項2
に記載した第2の発明及び請求項7に記載した第5の発
明の双方の実施例に相当する。この実施例により、ω≠
0の場合について説明する。
The above description is based on the assumption that ω = 0, but this is extended to ω ≠ 0 in the following. FIG. 3 is a block diagram showing a third embodiment of the present invention.
This corresponds to both embodiments of the second invention and the fifth invention described in claim 7. According to this embodiment, ω ≠
The case of 0 will be described.

【0048】図3においてΔVdcは交番電圧であり、電
流制御調節器10の電圧出力に加算器7aにて加算さ
れ、d軸電圧指令値として座標変換器4aに入力され
る。電流制御調節器10に与えられる電流指令値i
q *は、ノッチフィルタ11aを通すことで交番周波数成
分が除去されている。従って、座標変換器4aに入力さ
れる電圧指令値に含まれる交番周波数成分はΔVdc分だ
けとなる。この電圧指令値は、インバータ8によって電
動機1に実電圧として印加される。
In FIG. 3, ΔV dc is an alternating voltage, which is added to the voltage output of the current control controller 10 by the adder 7a and input to the coordinate converter 4a as a d-axis voltage command value. Current command value i given to current control controller 10
As for q * , the alternating frequency component is removed by passing through the notch filter 11a. Therefore, the alternating frequency component included in the voltage command value input to the coordinate converter 4a is only ΔVdc . This voltage command value is applied to the electric motor 1 by the inverter 8 as an actual voltage.

【0049】電動機1の電流は電流検出器5により検出
され、座標変換器4bを介してIdc,Iqcに変換され
る。これらのIdc,Iqcはノッチフィルタ11b,11
cによって交番周波数成分が除去された後、電流制御調
節器10にフィードバック信号としてそれぞれ入力され
る。
The current of the motor 1 is detected by a current detector 5 and converted into I dc and I qc via a coordinate converter 4b. These I dc, I qc is the notch filter 11b, 11
After the alternating frequency components have been removed by c, the current signals are input to the current control controller 10 as feedback signals.

【0050】一方、加算器7b,7cの出力はそれぞれ
原信号Idc,Iqcとノッチフィルタ11b,11cの出
力との差であるため、バンドパスフィルタの出力と等価
になっている。つまり、加算器7b,7cの出力には交
番周波数成分のみが現われ、これをΔIdc,ΔIqcとし
て位相差検出器6に入力することにより相差角θが検出
され、この相差角θを積分器9に入力してマイナス積分
すればdc−qc軸位相角θmを得ることができる。ここ
で、ノッチフィルタ11a,11b,11cは電動機を
駆動するための電圧指令値から印加交番電圧・電流の周
波数成分を除去する手段を構成している。なお、位相差
検出器6の入力側で交番周波数成分を抽出するにはフー
リエ積分を行なっても良い。
On the other hand, the outputs of the adders 7b and 7c are the differences between the original signals I dc and I qc and the outputs of the notch filters 11b and 11c, respectively, and are equivalent to the outputs of the band-pass filters. That is, only the alternating frequency components appear in the outputs of the adders 7b and 7c, and are input to the phase difference detector 6 as ΔI dc and ΔI qc to detect the phase difference angle θ. can be obtained d c -q c-axis phase angle theta m if negative integral to input 9. Here, the notch filters 11a, 11b, 11c constitute means for removing the frequency components of the applied alternating voltage and current from the voltage command value for driving the electric motor. In order to extract the alternating frequency component on the input side of the phase difference detector 6, Fourier integration may be performed.

【0051】以上のような構成とすれば、印加電圧また
は電流の交番周波数成分を電動機駆動用の電圧指令値ま
たは電流指令値から分離することができる。これは、交
番周波数成分だけについてみればω=0にしたのと同様
な結果となり、数式4と同様に次の数式9を得ることが
できる。よって、この数式9に基づき、ω=0の場合と
同様に相差角θを求めて磁極位置を直接または間接に検
出することが可能である。
With the above configuration, the alternating frequency component of the applied voltage or current can be separated from the motor command voltage command value or current command value. This is the same result as when ω = 0 when looking only at the alternating frequency component, and the following Expression 9 can be obtained in the same manner as Expression 4. Therefore, it is possible to directly or indirectly detect the magnetic pole position by obtaining the phase difference angle θ based on Expression 9 as in the case of ω = 0.

【0052】[0052]

【数9】 (Equation 9)

【0053】更に、電動機回転速度が高くなってくる
と、図3の積分器9によるθmの修正動作の遅れがθの
定常偏差を生じさせるため、問題となってくる。そこ
で、この定常偏差をなくす方法を、本発明の第4実施例
としての図4により説明する。なお、この実施例も第2
の発明及び第5の発明の双方の実施例に相当する。
[0053] Further, when the motor rotation speed becomes high, the delay of the corrective action of theta m by the integrator 9 of Figure 3 causes a steady-state deviation of theta, becomes a problem. Therefore, a method for eliminating the steady-state deviation will be described with reference to FIG. 4 as a fourth embodiment of the present invention. This embodiment is also the second embodiment.
This corresponds to the embodiments of both the invention and the fifth invention.

【0054】以下では図3との相違点についてのみ説明
する。まず、図3における積分器9のマイナス積分のゲ
インを、図4ではゲイン(−K)14として分ける。そ
して、微分器12によりθmの微分信号を得、その出力
をローパスフィルタ13を通して加算器7dに入力し、
その加算結果を積分器15により積分する。このような
構成とすることで、ローパスフィルタ13の出力が角速
度ωmとなり、これを積分してdc−qc軸位相角θmを得
ることで定常状態における相差角θをゼロにすることが
できる。
Hereinafter, only differences from FIG. 3 will be described. First, the gain of the minus integration of the integrator 9 in FIG. 3 is divided as a gain (-K) 14 in FIG. Then, a differentiated signal of θ m is obtained by the differentiator 12, and the output is input to the adder 7 d through the low-pass filter 13,
The result of the addition is integrated by the integrator 15. With such a configuration, the output becomes the angular velocity omega m of the low-pass filter 13, it can be a phase difference angle theta in the steady state to zero to obtain integrated to the d c -q c-axis phase angle theta m this Can be.

【0055】なお、図3及び図4の実施例により説明し
た第5の発明の着想は、第2の発明のみならず第1、第
3、第4の発明についても適用することが可能である。
The idea of the fifth invention described with reference to the embodiment of FIGS. 3 and 4 can be applied not only to the second invention but also to the first, third, and fourth inventions. .

【0056】[0056]

【発明の効果】以上のように本発明によれば、同期電動
機やリラクタンスモータ等の電気的突極性を持つ電動機
の駆動システムにおいて、磁極位置検出用の各種センサ
を用いることなく停止状態から駆動状態まで磁極位置を
検出することが可能になる。このため、センサ自体やそ
の電源、出力等の配線が不要になり、コストの低減を図
ることができると共に、配線の電圧降下によるセンサ電
源電圧の低下や出力信号の減衰、誤配線、断線等のトラ
ブルも防止できるといった効果がある。
As described above, according to the present invention, in a drive system for a motor having an electric saliency such as a synchronous motor or a reluctance motor, the drive state is changed from a stop state to a drive state without using various sensors for detecting magnetic pole positions. The magnetic pole position can be detected up to this point. This eliminates the need for wiring of the sensor itself, its power supply, output, etc., thereby reducing costs and reducing sensor power supply voltage due to voltage drop in the wiring, attenuating output signals, erroneous wiring, disconnection, etc. There is an effect that trouble can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示すブロック図である。FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示すブロック図である。FIG. 2 is a block diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施例を示すブロック図である。FIG. 3 is a block diagram showing a third embodiment of the present invention.

【図4】本発明の第4実施例を示すブロック図である。FIG. 4 is a block diagram showing a fourth embodiment of the present invention.

【図5】実施例におけるd−q軸とdc−qc軸との関係
を示す図である。
FIG. 5 is a diagram showing a relationship between dq axes and d c -q c axes in the example.

【図6】実施例におけるθ′とθ,Vdc,Vqcとの関係
を示す図である。
FIG. 6 is a diagram showing a relationship between θ ′ and θ, V dc , V qc in the embodiment.

【図7】従来技術を示す説明図である。FIG. 7 is an explanatory diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 電動機 4a,4b 座標変換器 5 電流検出器 6 位相差検出器 7,7a,7b,7c,7d 加算器 8 インバータ 9,15 積分器 10 電流制御調節器 11a,11b,11c ノッチフィルタ 12 微分器 13 ローパスフィルタ 14 ゲイン DESCRIPTION OF SYMBOLS 1 Electric motor 4a, 4b Coordinate converter 5 Current detector 6 Phase difference detector 7, 7a, 7b, 7c, 7d Adder 8 Inverter 9, 15 Integrator 10 Current control controller 11a, 11b, 11c Notch filter 12 Differentiator 13 Low pass filter 14 Gain

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02P 6/16 H02P 7/05 H02P 7/63 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02P 6/16 H02P 7/05 H02P 7/63

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電気的突極性を有する電動機の磁極位置
を検出し、この電動機を可変電圧・可変周波数電源とし
ての駆動装置により駆動するシステムにおいて、 電動機に交番電圧を印加する交番電圧印加手段と、 電動機電流を検出する手段と、 検出した電動機電流を、印加している交番電圧に対する
平行成分及び直交成分に分離するベクトル変換手段と、 前記電動機電流の平行成分及び直交成分のうち少なくと
も一方に基づいて電動機の磁極位置を検出する磁極位置
検出手段と、 を備えたことを特徴とする電動機の磁極位置検出装置。
1. A system for detecting a magnetic pole position of a motor having an electric saliency and driving the motor by a driving device as a variable voltage / variable frequency power supply, comprising: an alternating voltage applying means for applying an alternating voltage to the motor; Means for detecting the motor current; vector conversion means for separating the detected motor current into a parallel component and a quadrature component with respect to the applied alternating voltage; and based on at least one of the parallel component and the quadrature component of the motor current. And a magnetic pole position detecting means for detecting a magnetic pole position of the electric motor.
【請求項2】 電気的突極性を有する電動機の磁極位置
を検出し、この電動機を可変電圧・可変周波数電源とし
ての駆動装置により駆動するシステムにおいて、 回転子の磁束軸推定位置と同方向の交番電圧を電動機に
印加する交番電圧印加手段と、 電動機電流を検出する手段と、 検出した電動機電流の平行成分及び直交成分のうち少な
くとも一方に基づき、回転子の磁束軸推定位置を磁束軸
実際位置に一致させるべく調節器により磁束軸推定位置
を変化させ、前記磁束軸推定位置をもって磁極位置を検
出する磁極位置検出手段と、 を備えたことを特徴とする電動機の磁極位置検出装置。
2. A system for detecting a magnetic pole position of an electric motor having an electric saliency and driving the electric motor by a driving device as a variable voltage / variable frequency power supply. Means for applying a voltage to the motor; means for detecting the motor current; means for estimating the magnetic flux axis estimated position of the rotor based on at least one of the parallel component and the orthogonal component of the detected motor current. A magnetic pole position detecting device for an electric motor, comprising: a magnetic pole position detecting means for changing a magnetic flux axis estimated position by an adjuster so as to match, and detecting a magnetic pole position based on the magnetic flux axis estimated position.
【請求項3】 電動機に印加される交番電圧が方形波で
ある請求項1または2記載の磁極位置検出装置。
3. The magnetic pole position detecting device according to claim 1, wherein the alternating voltage applied to the electric motor is a square wave.
【請求項4】 電気的突極性を有する電動機の磁極位置
を検出し、この電動機を可変電圧・可変周波数電源とし
ての駆動装置により駆動するシステムにおいて、 電動機に交番電流を印加する交番電流印加手段と、 電動機端子電圧を検出する手段と、 検出した電動機端子電圧を印加している交番電流に対す
る平行成分及び直交成分に分離するベクトル変換手段
と、 前記電動機端子電圧の平行成分及び直交成分のうち少な
くとも一方に基づいて電動機の磁極位置を検出する磁極
位置検出手段と、 を備えたことを特徴とする電動機の磁極位置検出装置。
4. A system for detecting a magnetic pole position of a motor having an electric saliency and driving the motor by a driving device as a variable voltage / variable frequency power supply, comprising: an alternating current applying means for applying an alternating current to the motor; Means for detecting a motor terminal voltage; vector conversion means for separating a detected motor terminal voltage into a parallel component and an orthogonal component with respect to an alternating current to which the detected motor terminal voltage is applied; and at least one of a parallel component and an orthogonal component of the motor terminal voltage And a magnetic pole position detecting means for detecting a magnetic pole position of the electric motor based on the following.
【請求項5】 電気的突極性を有する電動機の磁極位置
を検出し、この電動機を可変電圧・可変周波数電源とし
ての駆動装置により駆動するシステムにおいて、 回転子の磁束軸推定位置と同方向の交番電流を電動機に
印加する交番電流印加手段と、 電動機端子電圧を検出する手段と、 電動機端子電圧の平行成分及び直交成分のうち少なくと
も一方に基づき、回転子の磁束軸推定位置を磁束軸実際
位置に一致させるべく調節器により磁束軸推定位置を変
化させ、前記磁束軸推定位置をもって磁極位置を検出す
る磁極位置検出手段と、 を備えたことを特徴とする電動機の磁極位置検出装置。
5. A system for detecting a magnetic pole position of an electric motor having an electric saliency and driving the electric motor by a driving device as a variable voltage / variable frequency power supply. Means for applying an electric current to the motor; means for detecting the motor terminal voltage; and at least one of the parallel component and the orthogonal component of the motor terminal voltage. A magnetic pole position detecting device for an electric motor, comprising: a magnetic pole position detecting means for changing a magnetic flux axis estimated position by an adjuster so as to match, and detecting a magnetic pole position based on the magnetic flux axis estimated position.
【請求項6】 電動機に印加される交番電流が三角波で
ある請求項4または5記載の磁極位置検出装置。
6. The magnetic pole position detecting device according to claim 4, wherein the alternating current applied to the electric motor is a triangular wave.
【請求項7】 請求項1,2,3,4,5または6記載
の磁極位置検出装置において、 電動機を駆動するための電圧指令値または電流指令値か
ら印加交番電圧または交番電流の周波数成分を除去する
手段を備えたことを特徴とする電動機の磁極位置検出装
置。
7. The magnetic pole position detecting device according to claim 1, wherein the applied alternating voltage or the frequency component of the alternating current is determined from a voltage command value or a current command value for driving the electric motor. A magnetic pole position detecting device for an electric motor, comprising: means for removing.
JP05502594A 1994-03-01 1994-03-01 Magnetic pole position detection device for motor Expired - Lifetime JP3312472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05502594A JP3312472B2 (en) 1994-03-01 1994-03-01 Magnetic pole position detection device for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05502594A JP3312472B2 (en) 1994-03-01 1994-03-01 Magnetic pole position detection device for motor

Publications (2)

Publication Number Publication Date
JPH07245981A JPH07245981A (en) 1995-09-19
JP3312472B2 true JP3312472B2 (en) 2002-08-05

Family

ID=12987136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05502594A Expired - Lifetime JP3312472B2 (en) 1994-03-01 1994-03-01 Magnetic pole position detection device for motor

Country Status (1)

Country Link
JP (1) JP3312472B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071651B2 (en) 2003-10-22 2006-07-04 Fanuc Ltd Position-of-magnetic-pole detecting device and method
US7084603B2 (en) 2003-05-13 2006-08-01 Kabushiki Kaisha Toshiba Motor control device
EP1758240A2 (en) 2005-08-26 2007-02-28 Sanyo Electric Co., Ltd. Motor control device
JP2008125207A (en) * 2006-11-10 2008-05-29 Denso Corp Controller of multi-phase rotary machine
JP2009126296A (en) * 2007-11-21 2009-06-11 Honda Motor Co Ltd Electric steering device
WO2010109522A1 (en) 2009-03-25 2010-09-30 三菱電機株式会社 Rotary electric machine controller
WO2010109520A1 (en) 2009-03-25 2010-09-30 三菱電機株式会社 Device and method for rotating electric machine
EP2424105A2 (en) 2010-08-31 2012-02-29 Hitachi Industrial Equipment Systems Co., Ltd. Vector control apparatus and motor control system
EP2515431A2 (en) 2011-04-19 2012-10-24 Hitachi Industrial Equipment Systems Co., Ltd. Electrical power conversion device and electric motor control system
WO2013114688A1 (en) 2012-02-02 2013-08-08 三菱電機株式会社 Device for controlling alternating current rotating machine
WO2013136829A1 (en) * 2012-03-13 2013-09-19 株式会社 日立産機システム Electric power conversion device, electric motor drive system, transport machine, and lifting device
WO2014080497A1 (en) 2012-11-22 2014-05-30 三菱電機株式会社 Control device for ac rotating machine, ac rotating machine drive system equipped with control device for ac rotating machine and electric power steering system
US9874461B2 (en) 2014-10-21 2018-01-23 Denso Corporation Apparatus for estimating rotational position of predetermined magnetic pole of rotary electric machine
US10348230B2 (en) 2014-09-12 2019-07-09 Mitsubishi Electric Corporation Control device for AC rotary machine and magnetic-pole-position correction amount calculation method
EP3664281A1 (en) 2018-12-04 2020-06-10 Aisin Seiki Kabushiki Kaisha Motor control device
DE112018008190T5 (en) 2018-12-06 2021-10-14 Mitsubishi Electric Corporation Rotary machine control device and electric vehicle control device

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3401155B2 (en) * 1997-02-14 2003-04-28 株式会社日立製作所 Synchronous motor control device and electric vehicle
US6320349B1 (en) 1997-02-14 2001-11-20 Satoru Kaneko Method of estimating field pole position of synchronous motor, motor controller, and electric vehicle
JP3282541B2 (en) * 1997-05-21 2002-05-13 株式会社日立製作所 Motor control device
US6242882B1 (en) 1998-05-21 2001-06-05 Hitachi, Ltd. Motor control apparatus
US6281656B1 (en) 1998-09-30 2001-08-28 Hitachi, Ltd. Synchronous motor control device electric motor vehicle control device and method of controlling synchronous motor
JP3510534B2 (en) * 1999-08-05 2004-03-29 シャープ株式会社 Motor control device and control method
JP3454212B2 (en) 1999-12-02 2003-10-06 株式会社日立製作所 Motor control device
JP3681318B2 (en) 2000-02-28 2005-08-10 株式会社日立製作所 Synchronous motor control device and vehicle using the same
JP3719910B2 (en) * 2000-05-30 2005-11-24 株式会社東芝 Motor control device
JP3979561B2 (en) 2000-08-30 2007-09-19 株式会社日立製作所 AC motor drive system
JP2002112597A (en) * 2000-09-28 2002-04-12 Toyo Electric Mfg Co Ltd Controller of permanent magnet synchronous motor
EP1198059A3 (en) 2000-10-11 2004-03-17 Matsushita Electric Industrial Co., Ltd. Method and apparatus for position-sensorless motor control
JP3485905B2 (en) 2001-04-26 2004-01-13 本田技研工業株式会社 Motor control device
JP2003037990A (en) * 2001-07-24 2003-02-07 Hitachi Ltd Motor control device
JP3668870B2 (en) 2001-08-09 2005-07-06 株式会社日立製作所 Synchronous motor drive system
JP3695436B2 (en) 2002-09-18 2005-09-14 株式会社日立製作所 Position sensorless motor control method and apparatus
US7161324B1 (en) 2003-07-16 2007-01-09 Mitsubishi Denki Kabushiki Kaisha Device for estimating pole position of synchronous motor
JP2005151640A (en) * 2003-11-12 2005-06-09 Toyo Electric Mfg Co Ltd High-frequency voltage superposed motor controller
JP4989075B2 (en) 2006-01-11 2012-08-01 株式会社日立産機システム Electric motor drive control device and electric motor drive system
WO2007114058A1 (en) * 2006-03-31 2007-10-11 Thk Co., Ltd. Permanent magnet synchronization motor magnetic pole position detecting method
JP4882645B2 (en) * 2006-10-02 2012-02-22 株式会社日立製作所 Permanent magnet motor inductance identification control device and inverter module
JP5281339B2 (en) * 2008-09-01 2013-09-04 株式会社日立製作所 Synchronous motor drive system and control device used therefor
JP5308109B2 (en) 2008-09-17 2013-10-09 ルネサスエレクトロニクス株式会社 Synchronous motor drive system
JP5697745B2 (en) 2011-05-13 2015-04-08 株式会社日立製作所 Synchronous motor drive system
CN103122851A (en) * 2011-11-21 2013-05-29 中国石油天然气股份有限公司 Intelligent control method of direct drive screw pump
JP2013228247A (en) * 2012-04-25 2013-11-07 Toyota Industries Corp Insulation abnormality detector
JP5696700B2 (en) 2012-08-29 2015-04-08 トヨタ自動車株式会社 Rotor position estimation device, motor control system, and rotor position estimation method
JP6837259B2 (en) 2017-08-10 2021-03-03 日立Astemo株式会社 Control device for three-phase synchronous motor and electric power steering device using it
JP6932063B2 (en) 2017-10-31 2021-09-08 日立Astemo株式会社 Motor control device and brake control device
US11081985B2 (en) 2018-06-21 2021-08-03 Mitsubishi Electric Corporation Synchronous rotating machine control device and machine learning device
JP7205117B2 (en) 2018-09-06 2023-01-17 株式会社アドヴィックス motor controller
JP2022085227A (en) 2020-11-27 2022-06-08 オリエンタルモーター株式会社 Ac motor control device and drive system including the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084603B2 (en) 2003-05-13 2006-08-01 Kabushiki Kaisha Toshiba Motor control device
US7071651B2 (en) 2003-10-22 2006-07-04 Fanuc Ltd Position-of-magnetic-pole detecting device and method
EP1758240A2 (en) 2005-08-26 2007-02-28 Sanyo Electric Co., Ltd. Motor control device
EP2432115A1 (en) 2005-08-26 2012-03-21 Sanyo Electric Co., Ltd. Motor control device
JP2008125207A (en) * 2006-11-10 2008-05-29 Denso Corp Controller of multi-phase rotary machine
JP2009126296A (en) * 2007-11-21 2009-06-11 Honda Motor Co Ltd Electric steering device
JP4559464B2 (en) * 2007-11-21 2010-10-06 本田技研工業株式会社 Electric steering device
US8125175B2 (en) 2007-11-21 2012-02-28 Honda Motor Co., Ltd. Electric steering system
WO2010109522A1 (en) 2009-03-25 2010-09-30 三菱電機株式会社 Rotary electric machine controller
WO2010109520A1 (en) 2009-03-25 2010-09-30 三菱電機株式会社 Device and method for rotating electric machine
EP2424105A2 (en) 2010-08-31 2012-02-29 Hitachi Industrial Equipment Systems Co., Ltd. Vector control apparatus and motor control system
EP2515431A2 (en) 2011-04-19 2012-10-24 Hitachi Industrial Equipment Systems Co., Ltd. Electrical power conversion device and electric motor control system
WO2013114688A1 (en) 2012-02-02 2013-08-08 三菱電機株式会社 Device for controlling alternating current rotating machine
US9231511B2 (en) 2012-02-02 2016-01-05 Mitsubishi Electric Corporation Control device of AC rotating machine
WO2013136829A1 (en) * 2012-03-13 2013-09-19 株式会社 日立産機システム Electric power conversion device, electric motor drive system, transport machine, and lifting device
JP2013192325A (en) * 2012-03-13 2013-09-26 Hitachi Industrial Equipment Systems Co Ltd Electric power conversion device, motor drive system, carrier machine, and lifting device
WO2014080497A1 (en) 2012-11-22 2014-05-30 三菱電機株式会社 Control device for ac rotating machine, ac rotating machine drive system equipped with control device for ac rotating machine and electric power steering system
JP5837230B2 (en) * 2012-11-22 2015-12-24 三菱電機株式会社 AC rotating machine control device, AC rotating machine drive system and electric power steering system equipped with an AC rotating machine control device
US9621083B2 (en) 2012-11-22 2017-04-11 Mitsubishi Electric Corporation Control device for AC rotating machine, AC rotating machine drive system equipped with control device for AC rotating machine and electric power steering system
US10348230B2 (en) 2014-09-12 2019-07-09 Mitsubishi Electric Corporation Control device for AC rotary machine and magnetic-pole-position correction amount calculation method
US9874461B2 (en) 2014-10-21 2018-01-23 Denso Corporation Apparatus for estimating rotational position of predetermined magnetic pole of rotary electric machine
EP3664281A1 (en) 2018-12-04 2020-06-10 Aisin Seiki Kabushiki Kaisha Motor control device
US11075597B2 (en) 2018-12-04 2021-07-27 Aisin Seiki Kabushiki Kaisha Motor control device
DE112018008190T5 (en) 2018-12-06 2021-10-14 Mitsubishi Electric Corporation Rotary machine control device and electric vehicle control device
US11309817B2 (en) 2018-12-06 2022-04-19 Mitsubishi Electric Corporation Control device of rotating machine, and control device of electric vehicle

Also Published As

Publication number Publication date
JPH07245981A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
JP3312472B2 (en) Magnetic pole position detection device for motor
EP2779414B1 (en) Motor control system having bandwidth compensation
JP3529752B2 (en) DC brushless motor rotor angle detector
CN104052361B (en) Electric machine control system to compensate torque pulsation
JP4687846B2 (en) Magnetic pole position estimation method and control apparatus for synchronous motor
US6163127A (en) System and method for controlling a position sensorless permanent magnet motor
US6894454B2 (en) Position sensorless control algorithm for AC machine
KR101046802B1 (en) Control device of AC rotor and electric constant measurement method of AC rotor using this controller
JP2003061386A (en) Synchronous motor drive system
WO2007001007A1 (en) Power conversion control device, power conversion control method, and power conversion control program
JP3914108B2 (en) DC brushless motor control device
JP3707528B2 (en) AC motor control method and control apparatus therefor
JP3832443B2 (en) AC motor control device
JP4583257B2 (en) AC rotating machine control device
JP3435975B2 (en) Current control unit of rotating electric machine and control device using the same
JP3914107B2 (en) DC brushless motor control device
JP3945904B2 (en) Position and speed sensorless controller for synchronous motor
JPH05308793A (en) Control circuit for power conversion device
JP3656944B2 (en) Control method of synchronous motor
JP5515885B2 (en) Electric vehicle control device
JP3484058B2 (en) Position and speed sensorless controller
JP4119183B2 (en) DC brushless motor rotor angle detector
JP3958920B2 (en) Spindle controller
JP4119195B2 (en) DC brushless motor rotor angle detector
JP3309520B2 (en) Induction motor control method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020430

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140531

Year of fee payment: 12

EXPY Cancellation because of completion of term